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Some general results on the subalgebras of the Lie algebra AP( l,n) of the extended Poincare 
group P( l,n) (n:>2) with respect to P( l,n) conjugation have been obtained. All subalgebras 
of AP ( 1,4) that are nonconjugate to the subalgebras of AP ( 1,4) are classified with respect to 
P ( 1,4) conjugation. The list of representatives of each conjugacy class is presented. 

I. INTRODUCTION 

The systematic study of subalgebras of quantum me­
chanics transformation algebras was begun in the funda­
mental paper by Patera, Winternitz, and Zassenhaus 
(PWZ) (Ref. 1) in which the general method for classifying 
the subalgebras of a finite-dimensional Lie algebra with a 
nontrivial solvable ideal with respect to some group of auto­
morphisms was suggested. This method is applied to classify 
all subalgebras of Lie algebras of the following groups: the 
Poincare group P(1,3),! the extended Poincare groups 
P( 1,2),2 P( 1,3),3 the de Sitter groups 0 ( 1,4),40 (2,3),5 the 
optical groups Opt(1,2),5 Opt(1,3),6 the Euclidean group 
E(3)/ the Schrodinger group Sclt(2),8 and the extended 
Schrodinger group Sch(2),8 the Poincare group P( 1,4 ),9-11 

the Euclidean group E(5),12,13 the Galilei group G(3),12 
and the extended Galilei group G (3).12 The application of 
the general method had allowed us to study the subalgebras 
structure of the Lie algebra of the generalized Euclidean 
group E(n) (n:>2).13 The subalgebras of the algebras 
AP(1,3), AG(3), and AG(3) were described by another 
method. 14--17 

The PWZ method needs the development for particular 
classes of algebras of its generality. In the present paper we 
give the further development of the PWZ method for ex­
tended Poincare algebras AP( 1,n) (n:>2), denoted also by 
ASim (1,n). The necessity in the description of subalgebras 
of AP ( 1,n) follows from certain problems of theoretical and 
mathematical physics. l In particular, knowledge of the alge­
bra AP( l,n) subalgebras gives us the possibility to study the 
symmetry reduction for the relativistically invariant scalar 
differential equation 

cI>(Du,(Vu)2,u) = 0, 
where 

and cI> is a sufficiently smooth function. 18-20 The description 
of the algebra AP(1,n) subalgebras allows us to solve the 

I 

x= 

problem of the reduction of AP( l,n) algebra representa­
tions on its subalgebras.21 ,22 

In Sec. II we describe the maximal reducible subalge­
bras of the algebra AO ( 1,n), and in Sec. III we describe the 
completely reducible subalgebras of the algebra AO( 1,n) 
= AO( l,n) E9 (0), where 0 is the dilatation generator. Sec­

tion IV is devoted to study of the subalgebras of the extended 
Galilei algebra AG(n - 1), which is one of the important 
subalgebras of the AP(1,n) algebra. In Sec. V which is the 
logical sequel to Sec. IV, a number of assertions on subalge­
bras of the normalizer of isotropic subspace of the Minkow­
ski space M ( l,n) in algebra AP ( l,n) are conceived. Classifi­
cation of the AP (1,4) algebra subalgebras with respect to 
the P(1,4) conjugation is carried out in Sec. VI. The conclu­
sions are summarized in Sec. VII. 

II. MAXIMAL REDUCIBLE SUBALGEBRAS OF THE 
ALGEBRA AO(1,n) 

In this section we describe the maximal reducible subal­
gebras and the maximal Abelian subalgebras of the algebra 
AO(1,n). 

Let R be the real number field; (YI , ... , Ys ) is a vector 
space or Lie algebra over R with the generators Yj> ... , Ys ; R m 

is the m-dimensional arithmetical vector space over R; 
U = M(1,n) is (1 + n)-dimensional pseudo-Euclidean 
space with the scalar product 

(X,Y) =xOYO-XIYl -'" -xnYn; (2.1) 

o ( l,n) is the group of the linear transformations of M ( 1,n) 
which conserve (X,x) for every XEM(1,n); Eq is the unit 
matrix of degree q. We suppose that O(1,n) is realized as the 
group of the real matrices of degree n + 1. 

We call the extended Poincare group P( 1,n) the multi­
plicative group of the matrices 

(
AA Y) 
o l' 

where AEO( 1,n), AER,A >0, YER n+ I. 

We denote by AG the Lie algebra of the Lie group G. 
Using the definition of Lie algebra, we find that AO( l,n) 
consists of matrices 

(2.2) 

aO,n-1 -al,n_1 -a2,n_1 o an_l,n 

a On - a ln - a 2n -an_l,n 0 
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Let Eik be the matrix of degree n + 2 which has the unity on 
the cross of ith line and k th column and zeros on the other 
places (i,k = 0, I, ... ,n + 1). It is easy to get that the basis of 
the algebra AP( I,n) is formed by the matrices 

D = Eoo + Ell + ... + Enn; JOa = - Eoa - EaO , 

Jab = -Eab + E ba ; Po=EO.n+ l , Pa =Ea,n+1 

(a < b, a,b = I, ... ,n) . 

The basis elements satisfy the following commutation rela­
tions: 

[Jap ,Jr15 ] = gal5Jpr + gPrJa15 - garJPI5 - gPI5 Jar ' 

[Pa,Jpr ] =gapPr -garPp, Jpa = -Jap , (2.3) 

[Pa,Pp ] = 0, [D,Jap ] = 0, [D,Pa ] = Pa , 

where goo = - gIl = ... = - gnn = 1, gaP = 0, when 
a=/=(3 (a,(3 = O,I, ... ,n) . 

The generators of turning Jap generate the algebra 
AO( I,n) and the translation Pa the commutative ideal N, 
and moreover AP( l,n) = NEi-(AO( I,n) 6l (D»). LetO( l,n) 
= {AEn+ I IAER,A>O}XO(1,n). Evidently, AO(1,n) 
= AO( l,n) 6l (D). It is easy to see that [X,Y 1 = X· Y for 
all XEAO(1,n), YEN. Let us identify Nand M(1,n) estab­
lishing correspondence between Pi and the (n + I)-dimen­
sional column with unity on the ith place and zeros on the 
others (i = O,I, ... ,n). 

Let C be such matrix of degree n + 2 over R that map­
ping fPc: X-+CXC- I is an automorphism of the algebra 
AP(1,n). IfCEG, where G is a subgroup ofP(1,n), then fPc 
is called G automorphism. The subalgebras Land L ' of alge­
bra AP(1,n) are called p(1,n) conjugated if fPc(L) = L' 
forsomeP(1,n) automorphism fPc of algebra AP(1,n). Let 
us identify fPc and C. 

Let Wbe a nondegenerate subspace of the space U. This 
subspace we also consider to be pseudo-Euclidean relative to 
scalar product defined in U. Let O( W) be the group of iso­
metries of the space W, O( W) = O( W) X {AEn + I IAER, 
A> O}. A subalgebraFCAO( W) is called irreducible ifin W 
there does not exist any F-invariant subspace different from 
o and W. Otherwise F is called reducible. If for every F­
invariant subspace W' in W there exists an F-invariant sub­
space W" in W such that W = W' 6l W" then it is called 
completely reducible. 

Theorem 2.1: The maximal reducible subalgebras of al­
gebra AO( I,n) are exhausted with respect to O( I,n) conju­
gation by the following algebras: (1) AO( I,n - 1) 6l (D); 
(2) AO(n) 6l (D); (3) AO(1,k) 6lAO'(n - k) 6l (D), 
where AO'(n - k) = (Jab la,b = k + 1, ... ,n) (k = 2, ... ,n 
-2); (4) (G1, ... ,Gn_ l ) Ei-(AO(n-I) 6l(Jon,D»),where 

Ga =JOa -Jan (a = 1, ... ,n - 1). 
Proof: If L is a maximal subalgebra of the algebra 

AO( I,n) thenL = AO( I,n) or L = LI 6l (D), whereL I is a 
maximal subalgebra of the algebra AO ( l,n ). Let Fbe a max­
imal reducible subalgebra of the algebra AO( l,n), U' a sub­
space of the space U invariant under F. If U' is a degenerate 
space then it contains one-dimensional F-invariant isotropic 
space W conjugated under O( I,n) to the space (Po + Pn). 
In this case 

F = {XEAO( I,n) IX(Po + Pn )E(Po + Pn)} . 
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It is not difficult to show that 

F= (GI, ... ,Gn_ l ) Ei- (AO(n - I) 6l (JOn»)' 

If U' is a nondegenerate space of dimension r then it 
possesses an orthogonal basis consisting of r vectors with 
nonzero length. Let r +' r _ be numbers of positive and nega­
tive length vectors, in the given basis of the space U', respec­
tively. These numbers are independent of the choice of basis. 
In accordance with Witt's mapping theorem any two spaces 
U / and U; , for which r + = rl+ " _ = ,1_ , are mutually con­
jugate under the group O( I,n). Obviously, r +E{O,I}. Since 
U = U' 6l U'l and U'l is invariant under F therefore F is 
o ( l,n) conjugated to one of the algebras, 

AO(1,n -1), AO(n), AO(1,k) 6lAO'(n - k). 

The theorem is proved. Let 

AE(n) = (PI"",Pn ) Ei-(AO(n ) 6l (][Jl)) , 

AE'(n - k) = (Pk+ I , ... ,Pn ) Ei-AO'(n - k) , 

and AG(n - 1) is the extended Galilei algebra with the ba­
sis 

(a,b = I, ... ,n - 1) . 

According to Theorem 2.1, the description of subalgebras of 
the algebra AP( I,n) is reduced to the description with re­
spect to the P ( I,n) conjugation of irreducible subalgebras of 
the algebra AO( I,n) and subalgebras of the following alge­
bras: 

(Po) Ei-AE(n), (AP(1,k) 6l AE'(n - k»)Ei-(D) , 

AG(n - 1)Ei-(JOn,][Jl) (k = 2, ... ,n - 1) . 

Let 1T be the projection of the algebra AP ( I,n 1 onto 
AO( I,n), F a nonzero subalgebra of AO( I,n), and F such 
subalgebra of AP(1,n) that 1T(F) = F. If the algebra F is 
P(1,n) conjugated to the algebra WEi-F, where W is a~ F­
invariant subspace of the space U, then we shall assumeF to 
be splitting. If every subalgebra FCAP(1,n) satisfying 
1T(F) = F is splitting, we shall say that subalgebra F pos­
sesses only splitting extensions in the algebra AP ( 1 ,n ). The 
splittability of subalgebras for other algebras of inhomogen­
eous transformations is defined by analogy. If nothing is re­
served, then the investigation of subalgebras of given algebra 
for conjugation is carried out with respect to the group of 
inner automorphisms. 

The affine group IGL(n,R) is defined as a group of ma­
trices 

(~ ~), (2.4 ) 

where BEGL(n,R), YER n. The Lie algebra AIGL(n,R) of 
this group consists of matrices 

(~ ~), 
where X is a square matrix of degree n over R. Let Oa be the 
zero matrix of degree a, Pa = Ea,n + I . Let us identify X and 
diag[X,Otl, then AIGL(n,R) = (PI""'Pn )Ei-AGL(n,R). If 
m < n, then we shall assume that AGL(m,R) consists of the 
matrices diag [X,On + I _ m ], where deg X = m. 
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Lemma 2.1: Let Fbe a completely reducible subalgebra 
of the Lie algebra AGL(m,R) (m <n), which is not semi­
simple. If Z is a nonzero central element of the algebra Fand 
F is the Lie algebra, which is obtained from Fby replacing Z 
by Z + Pm + I' then the algebra F is nonsplitting in 
AIGL(n,R) with respect to IGL(n,R) conjugation. 

Proof" Let Xo be a square matrix of the degree m, T 
=diag[Xo,On~m]' Z=diag[T,OI]' 

IfFis a splitting algebra, then there exists the matrix C of the 
form (2.4) such that C(Z + Pm + I )C ~I = diag[ T',Oj]' It 
follows that - BTB -I Y + BY m + I = 0, which implies 
that Ym + I = (TB -I) Y. However, 

TB-I= (:0 ° ) fBI 
On~m \B3 

and therefore 

° 
° This contradiction proves the lemma. 

Proposition 2.1: Let Fbe a completely reducible Lie alge­
bra oflinear transformations of vector space Vover the field 
R, W is an irreducible F submodule of module V. If FW =1= 0, 
then algebra F possesses only splitting extensions in algebra 
We-F. 

Proof" Since F is a completely reducible subalgebra of 
the algebra gI(V), then F= QEfJZ(F), where Q is Levy's 
factor and Z (F) is the center of F. 23 U sing Jacobi identity it 
is not difficult to conceive that F = FI EfJ F2, where FI W = ° 
and every direct summand of algebra F2 annuls in W only 
zero subspace. Further we may restrict ourselves only with 
the case when F = F2 • 

Let Q =1= 0; F be such a subalgebra of the algebra We-F 
that its projection onto F coincides with F. According to 
Whitehead's theorem23 H I (Q, W) = 0. From this it follows 
that the algebra Fcontains Q. LetJEZ(F), YEW, Y =1=0, and 

A 

J + YEP. Since [Q, Y ] =1= 0, then there exists such an element 
X EQ that [X, Y ] =1= 0. Let YI = [X, Y], WI be the F submo­
dule of module W, generated by YI. Because of the fact that 
WI =1=0 and Wis the irreducible Fmodule we have WI = W. 
HenceJEE. Therefore, ifQ =1=0 then FCF, i.e., Fis a splitting 
algebra. 

Let Q = 0, JEZ(F). Since J annuls in W the only zero 
subspace is then [J,W] = W. Whence for every YEW there 
exists such element Y'~W ~hat [J,Y'] = Y. Consequently 
wemaysupposethatJEP. IfFcontainsJI + YI, where YIEW 
and YI =1= 0, then [J, YI] EE and [J, YI ] =1= o. Arguing as in the 

case Q =1=0, we get thatJlEE, i.e., Fis a splitting algebra. The 
proposition is proved. 

Proposition 2.2: Let 

AE(n - 1) = (GI,.··,Gn ~ I )e-(AO(n - 1) EfJ (JOn»), 
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where Ga = JOa - Jan (a = 1, ... ,n - 1). The subalgebra 
FCAO(n - 1) EfJ (JOn) possesses only splittable extensions 
in AE(n - 1) if and only if Fis a semisimple algebra or Fis 
not conjugated to a subalgebra of the algebra AO(n - 2). 

Proof" Let W = (GI, ... ,Gn ~ I)' Since every subalgebra 
of the algebra AO(n - 1) is completely reducible and 
[ JOn' G a] = - G a' then every subalgebra F of the 
AO(n - 1) EfJ (JOn) algebra is also a completely reducible 
algebra of linear transformations of space W. 

Let W = WI EfJ ... EfJ Ws be the decomposition of W into 
the direct sum of irreducible F modules. If projection F onto 
(JOn) is nonzero, then [F, Wi] = w,. for every i = 1, ... ,s. 
Whence according to Proposition 2.1 F has only splittable 
extensions in AE(n - 1). Let us assume that projection ofF 
onto (JOn) is equal to 0. If F is a semisimple algebra then by 
Whitehead's theorem every extension of Fin AE(n - 1) is 
splitting. Let F not be a semisimple algebra. When dim W. 
;;.2 for every i = 1, ... ,s we have [F, Wi] =1=0 and in view of 
Proposition 2.1 F possesses only splitting extensions in 
AE(n - 1). When dim Wi = 1 (1 <;i<;s), the module Wi is 
annuled by the algebra Fand the algebraFis conjugated to a 
subalgebra of the algebra AO(n - 2). If Z(F) is the center 
of F and X is a nonzero element of Z(Fl then for every 
nonzero YE Wi there exists a subalgebra F of the algebra 
AE(n - 1), which is obtained from F by replacing X by 
X + Y. By Lemma 2.1 F is not splitting. The proposition is 
proved. 

From Theorem 2.1 and properties of solvable subalge­
bras of algebra AO (n) it follows that if n is odd then 
AO ( l,n) possesses with respect to 0 ( l,n) conjugation only 
one maximal solvable subalgebra 

(GI> ... ,G n ~ I ,J12,J34,···,Jn - 2,n ~ I ,JOn) . 

If n is even then AO(1,n) possesses two maximal solvable 
subalgebras 

(JW J34,···,Jn ~ I,n) ; 

(GI,···,Gn ~ 1 ,JI2,J34,···,Jn - 3,n ~ 2,JOn ) . 

Since an extension of an Abelian algebra with the help of a 
solvable algebra is a solvable algebra itself then maximal 
solvable subalgebras of the algebra AP ( l,n) are of the form 
Ue-F, whereFis the maximal solvable subalgebra of the alge­
bra AO ( 1,n ). Maximal solvable subalgebras of the Ai> ( l,n) 
are exhausted by algebras Ue- (F EfJ (D) ) . 

Proposition 2.3: Let AH (t) be the Cartan subalgebra of 
the algebra AO( t). The maximal Abelian subalgebras of the 
algebra AO( l,n) are exhausted with respect to O( l,n) con­
jugation by the following algebras: AH (n - 1) EfJ (JOn ,[])); 
AH(n) EfJ (D) [n:=O(mod 2)]; (GI,oo.,Gn~ I'D); AH(2a) 
EfJ(G2a+i'oo.,Gn~i'D) (a= 1, ... ,[n-2/2]). The written 
algebras are pairwise nonconjugated. 

Proof" If F is a maximal Abelian subalgebra of the alge­
bra AO(1,n) then from Proposition 2.2 F = n EfJL EfJ (D), 
where L is a subalgebra of the algebra AO (I) EfJ (JOn) or the 
algebra AO(n) and n is a subalgebra of the algebra 
<Gl,oo.,Gn~ I)' IfprojectionL onto (JOn) is different from ° 
then n = 0. Let projection L onto (JOn) be equal to O. If 
L = AH(n), thenn = 0. IfL = AH(2a), l<;a<;[n - 2/2], 
then n = < G2a + 1 ,oo.,G n ~ 1 ). The proposition is proved. 
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III. COMPLETELY REDUCIBLE SUBALGEBRAS OF THE 
ALGEBRA AO(1 ,n) 

In this section we shall prove a number of general results 
on completely reducible subalgebras of the algebra AO ( l,n) 
and shall indicate how to search invariant subspaces of space 
U for these algebras. The main results of this section are 
Proposition 3.3 and Theorem 3.1. 

Proposition 3.1: If n>2 then any irreducible subalgebra 
of the algebra AO( l,n) is semisimple and noncompact. 

Proof Let F be an irreducible subalgebra of the algebra 
AO(1,n), Z(F) the center of F. If Z(F) #0 then Z(F) 
= (J), whereJ2 = - En + I' LetXbe an arbitrary element 

of the form (2.2) of the algebra AO(1,n). If X 2 = - En + I 
then a61 + a62 + ... + a6n = - 1. This contradiction 
proves that Z(F) = O. 

If F is a compact algebra then there exists such symmet­
ric matrix C that C -IFC CAO(n + 1).24 Since 

exp(C-jFC) = C-j'expF'C 

then in O(n + 1) there exists an irreducible subgroup con­
serving simultaneously 

X6 +xi + ... +x~ and A6x6 -Aixi - ... -A~X~ 

(AO,Aj,. .. ,An are nonzero real numbers). This contradiction 
proves the second part of the proposition. 

Proposition 3.2: A reducible subalgebra of the algebra 
AO( l,n) is completely reducible if and only ifit is conjugat­
ed toLj EBL2 or a subalgebra ofalgebraL EB (0), whereL j is 
an irreducible subalgebra of the algebra AO( l,k) (k>2), L2 
is a subalgebra of AO'(n - k) EB (0) and L is one of the 
algebras, AO(n), AO(n - 1) EB (JOn)' 

Proposition 3.2 follows from Theorem 2.1, Propositions 
2.2 and 3.1, and the fact that Ga acts noncompletely reduc­
ible onto the space (Po + Pn,Pa ). 

LetL bea direct sum of the Lie algebrasLl' ... ,Ls,B a Lie 
subalgebra of L, and 1Tj the projection L onto L j . If 1Ti (B) 
= L j for i = 1, ... ,s, then B is called a subdirect sum of 

LI,· .. ,Ls • 

Proposition 3.3: A completely reducible subalgebra 
FCAO( l,n) has only splitting extensions in AP( l,n) ifand 
only if F is semisimple or F is nonconjugate to subalgebra of 
one of the algebras, AO(n) or AO( l,n - 1). 

The proof of Proposition 3.3 is analogous to that of 
Proposition 2.2. 

LetA j be a Lie algebra over R (i = 1,2),fA j --->A 2 is an 
isomorphism, B = {(X,J(X») IX51 j}' Here B is the Lie alge­
bra over R with "componentwise" operational rules, 

[(X,J(X»),(X',J(X'»)] = ([X,x'],J( [X,X']»), 

(X,J(X») + (X',J(X'») = (X +X',J(X +X'»), 

A (X,J(X») = (AX,J(AX») , 

whereX,x '51 I' AER. Let us denote it as (A 1.A2,ip). Evident­
ly (A j.A2,ip) is the subdirect sum of the algebras Aj and A2. 

Let W; be a leftAi module (i = 1,2). It is easy to see that 
Wi is the B module if we put 

(X,J(X»)' Yj =X Yj , (X,J(X»)' Y2 = I(X)' Y2 , 

for every X51 1, YjEW; U = 1,2). Let WbeaBsubmoduleof 
the module Wj EB W2. If W = W; EB W;, where W;C Wi 
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(i = 1,2) then W is called a splitting B module. Otherwise 
the module W is called non splitting B module. 

Lemma 3.1: Let B = (A j.A2,ip) and Vi be a left Ai mod­
ule (i = 1,2). In theB module VI EB V2 exists anonsplittingB 
submodule if and only if the B modules VI and V2 have iso­
morphic composition factors. 

Proof Let Wbe a nonsplitting B submodule of the mod­
ule V j EB V2 • Then W is the subdirect sum of the modules Wj 
and W2, where Wi C Vi U = 1,2). Let Si = W n V; 
(i = 1,2). Evidently, Si is theB submodule of the module W. 
The module W I(SI EBS2) is nonsplittingB submodule of the 
module Vj/Sj EB V2/S2. Whence we shall assume that wn Vj 
=0 U= 1,2). 

For every element YIE WI there exists only one such ele­
ment Y2 C W2 such that (Yj,Y2)EW. We put ip( Y I ) = Y2 • 

The mapping ip is the isomorphism of B modules Wj and W2• 

In this case modules WI and W2 have isomorphic composi­
tion factors. The necessity is proved. 

Let Wi be a left B submodule of the module Vi (i = 1,2) 
and let the composition factor WI/N I of the module Wj be 
isomorphic to the composition factor W21 N2 of the module 
W2 • We denote as W the vector space over the field R genera­
ted by the pairs (ZI'O), (0,Z2), (YI>Y2), where ZiENi> Yi 
EWj U = 1,2) and ip( Y I + N I ) = Y2 + N2 for the isomor­
phism ip: Wjl NI ---> W21 N2. It is easy to see that W is a non­
splitting B module. The sufficiency of the lemma is proved. 

Let r: X --->X be the trivial representation of the com­
pletely reducible algebra FCAO(1,n), the projection of 
which onto AO( l,n) has not any invariant isotropic sub­
spaces in the space U or annuls the isotropic subspaces. Then 
r is O(1,n) equivalent to diag[rj, ... ,r m], where r j is an 
irreducible subrepresentation U = 1, ... ,m). One may sup­
pose that algebra Fi = {~iag[O, ... ,ri (X), ... ,O] IXEF} is an 
irreducible sub algebra AO( Wi)' where 

Wi = (Pk;_1+I,Pk;_1+2"",Pk,) 

(ko = - 1, km = n, i = 1, ... ,m) . 

If Fi # 0 then we shall call algebra F, an irreducible part of 
the algebra F. It is well known that if representations Ll and 
Ll' of the Lie algebra L by skew-symmetric matrices are 
equivalent over R, then C' Ll (X) . C -I = Ll' (X) for some or­
thogonal matrix C (XEL). Whence and from Proposition 3.1 
we conclude that if r j and rj are equivalent representations 
then we can assume that for every XEF the equality r i (X) 
= rj (X) takes place. Having united equivalent nonzero ir­

reducible subrepresentations we shall get a nonzero disjunc­
tive primary sub representation of the representation r. Cor­
responding to those subalgebras of the algebra AO (1,n ) 
built by the same rule as the irreducible parts of Fi> we shall 
call them primary parts of the algebra F. IfF coincides with 
its primary part then F is called a primary algebra. 

Theorem 3.1: Let KI> K,1, ... ,Kq be primary parts of a 
subalgebra F ofthe algebra AO ( l,n ), and Va subspace of the 
space U invariant under F. Then V = Vj EB ... EB Vq EB V, 
where V; = [~i>V] = [Ki>V;], [Kj,V;) =0 when j#i 
U,j = 1, ... ,q), V = {XEV I [F,x] = O}. If the primary alge­
bra K is the subdirect sum of the irreducible sub algebras of 
the algebras AO( WI), AO( W 2 ), .. ·,AO( WI)' respectively, 
then nonzero subspaces W of the space U with the condition 
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[K.W] = W are exhausted with respectto O(1.n) conjuga­
tion by the spaces WI' WI ffi W2 •...• WI ffi W2 ffi •.. ffi Wr • 

Proof: From the complete reducibility of algebra F it 
follows that V = V' ffi V". where V" is the maximal sub­
space of the space V. annulled by F. Further we shall suppose 
that V= V'. From Proposition 3.1 one can suppose that 
FCAO(m). m<,n. Let K; be a subdirect sum of irreducible 
partsK;p ...• K;Si' Vij = [Kij,V],'lTa be a projection of Vonto 

Sa 
L ffi Va}' 
}~ I 

In view of Lemma 3.1 'ITa (V) C V and that is why 
q 

V= L ffi 'ITa (V) . 
a=1 

Since Ka annuls in 'ITa (V) only the zero subspace, then 
[Ka'V] = [Ka,'lTa(V)] = 'ITa (V). 

Let primary algebra K be a subdirect sum of irreducible 
subalgebrasofalgebras AO( WI). AO( W2 ), .•• ,AO( Wr ). re­
spectively. If W is a nonzero subspace of the space 

r 

!}= L ffi~ 
j~1 

and [K,W] = W then in view of Witt's mapping theorem 
there exists such isometry B EO(!}) that B( W) = WI ffi ... 

ffi Ws (1 <,s<,r) and the space W; is invariant under BKB -I 
(i = l •... ,s). Whence BKB -I is a subdirect sum ofirreduci­
blesubalgebrasofalgebras AO( WI)' AO( W2 ), ••• ,AO( Wr ), 

respectively. Since irreducible parts of the algebra 
L C AO (n) are defined uniquely up to conjugation then one 
may consider that BKB - I = K. The theorem is proved. 

On the basis of Theorem 3.1 the description of splitting A _ A 

subalgebras FCAP(1,n), for which 'IT(F) is a completely 
reducible algebra and has no isotropic invariant subspaces in 
the space U, reduces to the description of irreducible subal­
gebras of the algebras AO( l,k) and AO(k) (k = 2,3, ... ,n). 
The rest of the cases can be reduced to the case of the algebra 
AG(n - 1)e-(Jon ,lO). 

IV. ON THE SUBALGEBRAS OF THE EXTENDED 
GAll LEI ALGEBRA 

The aim of this section is to study subalgebras of the 
algebra AG(n - 1) with respect to P(1,n) conjugation. The 
main result concerning this problem is contained in 
Theorem 4.1. Theorem 4.2 gives a description of all Abelian 
subalgebras of the algebra AG(n -1). As a corollary, we 
obtain the list of maximal Abelian subalgebras and one-di­
mensional subalgebras of the algebra A G (n - 1). 

The basis elements of the extended Galilei algebra 
AG(n - 1) satisfy the following commutation relations: 

[Jab,Jed ] = gadJbc + gbcJad - gacJbd - gbdJac ; 

[Pa,Jbc ] = gabPe - gacPb; [Pa,Pb] = 0; 

[Ga,Jbc ] =gabGc -gacGb; [Ga,Gb] =0; 

[Pa,Gb] =8ab M; [Pa,M] = [Ga,M] = [Jab,M] =0; 

[Po,Jab ] = [Po,M] = [Po,Pa] = 0, [Po,Ga ] = Pa 

(a,b,c,d = 1, ... ,n - 1) . 

Let VI = (GI, ... ,Gn _ I ) be a Euclidean space with or-
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thonormal basis G\> ... ,Gn_ l , V2= [Po,Vd (n>3), we 
= VI + V2 + (Po,M). We settle on identifying the group 

O(n - 1) with the isometry group O( VI), O( V2). If Wis a 
subspace of VI and dim W = k then according to Witt's 
theorem for every a, O<,a<,n - k - 1, there exists an iso­
metry B a EO ( VI) such that 

Ba(W) = VI(a+ l,a+k) = (Ga+I,Ga+2,· .. ,Ga+k)· 

Further, in spaces VI' V2 we shall consider only subspaces 
VI(a,b), V2(a,b) = [Po,vl(a,b)]. We call them elementary 
spaces. The basis Ga, Ga + 1, ... ,Gb of the space VI (a,b) and 
the basis Pa, Pa+ P""Pb of the space V2(a,b) we shall call 
canonical. 

Let WI' W2 be subspaces of some vector space Wover 
the field R and WI n W2 = O. If rp: WI -+ W2 is an isomor­
phism then we denote as ( WI' W2,rp) the space 
{Y + rp( Y) I YEWI }. As I( WI' W2 ) we denote the isomor­
phism of elementary spaces WI and W2 , by which the ca­
nonical basis of WI is mapped to the canonical basis of W2 

with numeration of the basis of elements maintained. 
Let AG(n - 1) = AG(n - 1)/(M). For the genera­

tors of the AG (n - 1) we preserve the notation of the gener­
ators of the algebra AG(n - 1). By 7,70,71, and 72 we de­
note the projection of AG(n - 1) and AG(n - 1) onto 
AO(n - 1) ffi (Po), Po, VI' and V2, respectively. 

Let F be a subalgebra of the AO(n - 1) ffi (Po), F an 
subalgebra of the AG(n - 1) such that 7(F) = F. If algebra 
Fis conjugated to the algebra We-F, where Wis theF-invar­
iant subspace of space VI + V2, then F is called splitting in 
the algebra AG (n - 1). The notion of a splitting subalgebra 
of the algebra AG(n - 1) is defined analogously. 

Proposition 4.1: Let LI be a subalgebra of the 
AO(n - 1), L2 be a subalgebra of the (Po), and F be the 
subdirect sum of LI and L 2. If Pof$F then the algebra F only 
has splitting extensions in the algebra AG(n - 1) if and 
only if LI is a semisimple algebra or LI is not conjugated to 
any subalgebra of the algebra AO(n - 2). When PoEF, the 
algebra F only has splitting extensions in the AG (n - 1) if 
and only if LI is not conjugated to any subalgebra of the 
algebra AO(n - 2). 

Proof: If LI is a semisimple algebra and L2 = (Po) then 
by Whitehead's theorem23 PoEF. Let us assume that 
L2 = (Po) and Pof$F. Let F be an subalgebra of the 

A 

AG(n - 1) such that 7(F) = F. If LI is not conjugated to 
any subalgebra of the AO(n - 2) then by Proposition 2.2 
the algebra F is splitting. If L I is conjugated to some subalge­
bra of AO(n - 2) then F= (X) ffiFI where X #0, (X), 
and FI are subalgebras of the algebra AO(n - 2) ffi (Po), 
The algebra 

,A 

F= (PI""'Pn _ 2,Pn _ I ,GI,.··,Gn _ 2'X + Gn _I )e-FI 

is not splitting by Lemma 2.1. The case L2 = 0 can be treated 
similarly. 

Let PoEF. If LI CAO(n - 2) then algebra (Po 
+ G n _ I ) e-L I is nonsplitting. If L I is not conjugated to any 

subalgebra of the algebra AO (n - 2) then by way o~ com­
plete reducibilitx, of the algebra LI we get that PoEF and 
whence algebra F is splitting. The proposition is proved. 

Proposition 4.2: The sub algebra F of the algebra 
AO(n - 1) ffi (Po) has only splitting extensions in the 
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AG(n - 1) if and only if F is a semisimple algebra. 
Lemma 4.1: Let WI = (Yw"'Ym )' Wz = (ZI"",Zm) 

be Euclidean spaces over the field R, O( Wi) the isometry 
group of Wi (i= 1,2), O<al<;az<;"'<;a" S~ =0, S5 
= (Z,+ p ... ,Z,+j) (j = I, ... ,m - t). The subspaces of the 
space WI (f) Wz are exhausted with respect to O( WI) 
X 0 ( Wz) conjugation by the following spaces: 

O'(Yw"'Yr)' (ZI""'Zs)' 

(YI"",Yr,ZI'''''Zs) (r,s = I, ... ,m); 

(YI,. .. ,Yk,Yk+ 1+ aIZI""'Yk+, + a,Z,) (f)S; 

(k = I, ... ,m - I, t = 1, ... ,m - k, j = O,I, ... ,m - t); 

(YI + aIZI, ... ,Y, + a,Z,) (f)S5 

(t = I, ... ,m, j = O,I, ... ,m - t) . 

Proof Let N be a subspace of WI (f) Wz and N #- W; 

(f) W;, where W; is a subspace of Wi (i = 1,2). If Bi 
= Nn Wi' Ni is a projection of N onto Wi (i = 1,2) and 

then NI IBI ~NzIBz' Let dim BI = k. By Witt's theorem 
the space BI is conjugated to the space (YI, ... ,Yk ). If 
dim(NIIBI) = t then N contains elements Yk + j 

+ aljZI + ... + atjZ, (j = 1, ... ,t), and moreover the ma-
trixA = (aij) is nonsingular. The matrix A can be represent­
ed uniquely in the form CT, where C is an orthogonal matrix 
and Tis a positively definite symmetric matrix. 

The isometry diag [Em,C - \Em _,] maps N onto the 
space to which the matrix C - I (Cn = T corresponds. 
There exists such orthogonal matrix CI that CI TC 1- I 

=diag[AI, ... ,A,]. The isometry diag[Ek,CI,Em_k_"CH 
Em _, ] maps N onto the space to which the matrix CI TC 1- I 
corresponds. Therefore N is conjugated to the space 

BI (f) (Yk+ I + ajZI,· .. ,Yk+, + a,Z,) (f)Bz , 

where O<al<az<;" ·<;a,. The lemma is proved. 
Let K be the primary subalgebra of the algebra 

AO(n - I) which is a subdirect sum of irreducible subalge­
bras of the algebras AO(VI(l,q»), AO(VI(q + 1,2q»), ... , 
AO(VI(r-l)q+ l,rq), respectively, and Wa nonzero 
subspace of the space ~ with the property [K, W] = w. If 
'T I (W) = 0 then by way of Theorem 3.1 W is conjugated to 
the space Vz(l,iq) (l<i<;r). If'Tz(W) = o then Wisconju­
gated to VI(l,iq) (l<;iq). Let us suppose that 'TI( W)#-O, 
'Tz(W) #-0. Then Wis a subdirect sum of'TI(W), 'Tz(W), 
where 'TI(W) = VI(l,m) and 'T2 (W) coincides with 
Vz(l,k) or Vz(m + I,m + I) or a subdirect sum of Vz(l,k) 
and Vz(m + I,m + l) (k<;m). Every number of k, m, and 1 
is divisible by q. Let us consider the case when 'T2( W) is a 
subdirect sum of Vz( I,k) and V2 (m + I,m + I). In the 
space W we choose the basis in the following form: 

Ga + a~Po f3~Pi 

(a = I, ... ,m, c = m + I, ... ,m + t, 
i = I, ... ,k,m + 1, ... ,m + l). 

(4.1 ) 

The coefficients of the decomposition we write down as the 
corresponding columns of the matrix 

r=(AI BI), 
A2 Bz 
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having m + t columns and k + llines. We call the matrix r a 
coupling matrix of elementary spaces in the space W. With 
the coupling matrix we shall carry out the transformations 
corresponding to definite O(n - I) automorphisms and 
transformations to new bases of the form ( 4.1 ). Let 
CIEO(k), C2EO(m - k), C3EO(l), S = diag[ CI'C2 ], Tbea 
t X m matrix, and T2 a nonsingular matrix of degree t. The 
most general admissible transformations of the coupling ma­
trix have the form 

If B2 #-0 then according to Theorem 3.1 for some matri­
ces C3, T2 , the following equality is correct: 

C3B2T2 = (~ ~), 
where III = diag [ f1IEq, .. ·,f1aEq], f11 = ... = f1a = 1. By 
this transformation algebra K is left invariant. Applying 
Theorem 3.1 again we get that with k = m the matrix A2 can 
be transformed into matrix 

where 112 is a square matrix of degree bq. For simplicity we 
shall assume that Ilz is a coupling matrix of elementary 
spaces in the subdirect sum of the spaces VI (l,bq) and 
V2 (bq + I,2bq). One can admit that 

K = diag[A b,A b] = {diag[X, ... ,x] IXEA}, 
'tb 

where A is an irreducible subalgebra of the algebra AO (q). 

Since for every matrix YEA b the equality 1l2 Y = Yll z takes 
place then 112 = QS, where S is a symmetric matrix, Q is an 
orthogonal matrix, and y.Q = Q' Y. Applying the auto­
morphism diag[E,Q -I] we transform the coupling matrix 
112 into S. There exists such matrix CEO(bq) that 

CSC -I = diag[ AIE(I) ,AzE(2) , ... ,A,E(t) ] , 

where Ai #-Aj when i#-j, and E U ) is the unit matrix 
(i,j = I, ... ,t). The automorphism diag[ C,C] transforms K 
into diag [ CA bC - I,CA bC -I] and the coupling ma­
trix S into CSC -I. If YECA bC -I then Y( CSC -I) 
= (CSC - 1 ) Y. Whence Y = diag [ YI, Y2, •.• , Y,] where 

deg Yi = deg E U ) • The further decomposition of the blocks 
Yi by O(2bq) automorphisms diag[C,C], where C 
= diag[ CI, ... ,C,], deg Ci = deg E U) does not change the 
coupling matrix. Since irreducible parts of an algebra are 
defined uniquely then by the considered transformations of 
the coupling matrix the algebra K is left invariant. That is 
why one can suppose that with k = m 

~) , 
where Ilz = diag[AIEq, ... ,AbEq], O<A I<;" . <;Ab, and 
(a+b)q=l or AI ='" =Ab =0 and aq=l. If BI#-O 
then for some CI, Tz we have 

C1BITz = (~ ~J, 
where 113 = diag [Eq, ... ,Eq ]. 
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The complete classification of coupling matrices one 
can get for large n. 

Further we shall use the following notation: 

WC = (PO,M,PI"",Pn _pGI, ... ,Gn _ I); m = [(n - 1 )/2] ; 

r(n - 1) = {f ri J2i _ I,2i Iri = 0,1} ; 
J= 1 

Xa nXb = OifXa,XbEr(n - 1) and have no common sum­
mand. 

Lemma 4.2: Let T = alXI + ... + akXk + Z, Z 
= /3JOn + rO + tJPo, where XiEr(n - 1), a i #0, a~#aJ, 

Xi nXj = 0 when i#j (i,j = 1,00.,k). If W is a subspace of 
the space WC and [T, W ] C W then W = WI Ell 00' Ell Wk Ell W, 
where Wi = [Xi'W] = [XOWi]' [Z,Wi] C Wi' [Xj,Wi ] 
= 0 whenj#i, [XoW] = 0, [Z,W] C W. 

Proof: Let X = T - Z, WC/ = [X,WC], m = {YEWCI [X, 
Y] =O}, W/ be a projection of Wonto WC/, and Wbe a 
projection of W onto M. Evidently, WC = WC/ Ell m (as 
spaces). Since composition factors of the (Z ) module WC are 
one dimensional, then the composition factors of the (Z) 
module Ware one dimensional, too. Let WC(P) = {Pa 
EWCI [X,Pa] #O}. It is easy to see that (WC(P) and WC'I 
(WC(P) can be represented as direct sums of two-dimen­
sional irreducible (T) submodules. Whence the dimensions 
of composition factors of the (T) module W / are equal to 2, 
too. When we now apply Lemma 3.1 we conclude that 
W= W/Ell W. 

Let WCi = [XoWC] and Wi be a projection of W/ onto 
WCi . Clearly WC/ = WC I Ell ... Ell WCk. At first let us establish 
that [Z,Wd C Wi' Since for any YiEWi we have [Jon 
- 0, Yi ] = - Yo then we may assume that /3 = O. Obvi­

ously 

[T,[T,Y;]] = -a~Yi +2ai [Xo[Z,Yd] +r[Z,Yd. 

Let 

Y;=2ai [Xo [Z,Yd] +r[Z,Yd, 

Y;'=2ai [XO[Z,Y;]] +r[Z,Y;]. 

The space Wi contains Y;, Y;'. It is easy to check that 

Y;' = 4aiy[Xo [Z,Yd] + r(y - 4a~) [Z,Yd . 

The determinant constructed by the coefficients of 
[Xo[Z,Yd], [Z,Yd in Y;, Y;' is equal to -2air 
(Y + 4af)· If r#O then [Z,YdEWi' If r = 0 then Wi 
contains Y; = [Xo [tJPo,Yd] and Y;' = [T,Y;] 
= -ai[tJPO'Yi ]' 

In the composition factors of the (T) module WCi one 
can choose the basis so that the matrix of the operator Tis 
one of the matrices 

( r - a i ), ( - /3 - a i ) • 

a i r a i -/3 

Iffor i # j the modules WCi and WCj are possessed by isomor­
phic composition factors then one of the following condi-
. . . fi d 2 2 2 2/3'.2 2 /3 2 2 tions IS satls e : a i =aj ; r= - , r +ai = +aj . 

Since it is impossible then on the basis of Lemma 3.1 we 
conclude that W/ = WI Ell ... Ell Wk' The lemma is proved. 

Proposition 4.3: Let LI be a subalgebra of the 
AO(n - 1), L2 = (/3Jon + rO + oPo), and Fa subdirect 
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sum of L I and L 2• If W is a subspace of WC and [F, W] C W 
then [Lj,W] C W (j = 1,2). 

This is proved by virtue of Lemma 4.2. 
Theorem 4.1: Let VI = (GI,oo.,Gn_ I ), V2 = [PO,VI ], 

VI,a be a subspace of VI' V2,a = [Po, VI,a ]; K I, K 2,.00,Kq be 
primary parts of nonzero subalgebra L I of the algebra 
AO (n - 1); 9C be the maximal subalgebra of algebra WC, an­
nulled by L I ; and L2 be a subalgebra of the algebra 
9Ce-(Jon ,0). IfFis thesubdirect sum ofL I andL2, and Wis a 
subspace of WC invariant under F, then W = WI Ell ... 
Ell Wq Ell W, where Wi= [Ki'W] = [Ki'Wi ], [L2,Wi ] 
CWi , [KpWd =Owhenj#i, [KoW] =0, [L2,W]CW 
(i,j = 1,00.,q). 

If a primary algebra K is a subdirect sum of irreducible 
subalgebras of the algebras AO( VI,I ),oo.,AO( VI,r)' respec­
tively, then nonzero subspaces W of the space WC with the 
property [K, W] = Ware conjugated to 

(a = 1,00.,r) 

or to subdirect sums of such spaces 
a 

I 
i= 1 

a 

I 
j= 1 

[, a c 

VI,i and I V2,i; I VI,i and I 
;=1 ;= 1 i=a+ 1 

b c 

vI,o I V2,i' and I V2,i 
;=1 i=a+ 1 

(a = 1,00.,r, b = 1,00.,a, a = 1,00.,r - 1, 

b = 1,00.,a, c = a + 1,00.,r). 

The subdirect sums of the spaces 

V2,i; 

are exhausted with respect to O(n - 1) conjugation by the 
following spaces: 

a c 

I VI,i Ell I V2J ; 
i~1 j~a+1 

b 

I (VI,o V2,a + I ,AJ( vI,o V2,a + i)) 
i= 1 

a c 

Ell I VIJ Ell I V2,k 
j~b+ I k~a+b+ I 

(o<..tl< .. ·<..tb, b= 1,00.,min{a,c-a}). 

The written spaces are mutually nonconjugated. 
Proof Let Q = [LI,W], Sbe a projection of Wonto 9C. 

It is easy to see that W is the subdirect sum of Q and S. Since 
the composition factors of the L2 module 9C are one dimen­
sional and the composition factors of the Ll module [L 1,WC] 
have dimension not less than 2 then in view of Lemma 3.1 
W = Q + S. In virtue of Proposition 4.3 [L2,Q] C Q. We 
can show, as in Theorem 3.1, that Q = WI Ell ... Ell Wq , where 
Wi = [KuQ], Wi = [Ki,Wd (i = 1,00.,q). The truthful­
ness of the further statements is established earlier when 
considering the transformations of the coupling matrix of 
elementary spaces in the space W. The theorem is proved. 

Theorem 4.2: Let a l <a2<" '<as' a l = 0, and as 
E{O,l},AH(O) =0,AH(2d) = (J12,J34,00·,J2d_12d),andL 
be a nonzero Abelian subalgebra of the algebra AG(n - 1). 
If the projection 7 0 (L) of the algebraL onto (Po) is equal to 
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o then L is conjugated to the subdirect sum of the algebras 
L I, L 2, L 3, and L 4, where LI CAH(2d) (O<;d<;m), L2 = 0 

or L2 = (G2d + I + a lP2d + I ,G2d + 2 + a2P2d+2, .. ·,G2d+s' 
+ a S P2d + S )' L3 = 0 or L3 = (P2d + s+ I , ... ,P,), L4 = 0 or 

L4 = (M). If70 (L) =1=0 thenL is conjugated to the subdirect 
sum of the algebras L I' L 2, L 3, and L4 where L I C AH (2d), 
L2 = (Po + aG2d + I) (aE{O,l}), L3 = 0 or L3 
= (P" ... ,P,), L4 = 0 or L4 = (M) (O<;d<;m; r = 2d + 1 

when a = 0; r = 2d + 2 when a = 1). 
Proof: Let 

2d+s 
X j = G j + I (3jiPj ' L = (X2d + 1,···,x2d+J . 

j~ 2d+ I 

Obviously, [Xj,xk] = «(3kj - (3jk )M. SinceL is an Abelian 
algebra then (3 jk = (3 kj and therefore B = ( (3jk) (i,k = 2d 
+ 1, ... ,2d + s) is a symmetric matrix. Hence, there exists a 
matrix CEO(S) such that CBC-I=diag[AI, ... ,As ]' 

Whence we can assume up to conjugacy under O(n - 1) 

thatX2d + j = G2d + j + Aj P2d + j (j= I, ... ,s). O(n -1) au­
tomorphisms permit us to change the numeration of genera­
tors G2d + I , ... ,G2d + s· That is why we can suppose that 
AI<;" . <;As· Applying the automorphism exp( -AIPo) we 
get generators G2d + j + f1j P2d + j (j = 1, ... ,s), wheref11 = 0, 
0<;f12<;' .. <;f1s' If f1s > 0 then f1s = exp 0 (OER). Evidently, 

exp ( - OJOn )( GZd + j + f1j P2d + j) exp (OJOn ) 

= exp O'(GZd + j + f1j exp ( - 0)P2d + j ). 

Therefore when f1s > 0 we can assume that f1s = 1. 
The rest of the assertion of the theorem follows from 

Proposition 4.1. The theorem is proved. 
Corollary 1: Let 

A(r,t) = (Gr +arPr,Gr+ 1 

+ar+IPr+I, ... ,G, +a,P"M), 

where a r <;ar + I <; ... <;a" a r = 0, and a, = 1 when a, =1=0. 
The maximal Abelian subalgebras of the algebra 
AG(n - 1) are exhausted up to conjugacy under P( 1,n) by 
the following algebras: 

U; A(1,n - 1); A(1,s) $ V2(s + 1,n - 1) 

(s = I, ... ,n - 2); 

(G I +Po,M) $ V2(2,n - 1); 

AH(n-2)$(Gn_ 1 +Po,M) [n=0(mod2)]; 

AH(2d) $ (Po) $ V2(2d + I,n) (d = 1, ... , [(n - 1 )/2]); 

AH(2d) $A(2d + 1,n - 1) (d = 1, ... ,[ (n - 2)/2]); 

AH(2d) $A(2d + 1,s) $ V2(s + 1,n - 1) 

(d= 1, ... ,[(n-3)/2]); 

AH(2d) $ (G2d + I + Po,M) $ V2(2d + 2,n - 1) 

(d = 1, ... ,[ (n - 3)/2]). 

The written algebras are not mutually conjugated. 
Corollary 2: Let n)3, X, = a lJ I2 + a 2J34 + '" 

+ a,J2 , _ 1,21; 
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a 1 = 1, 0<a2<;"'<;a,<;I; t= I, ... ,[(n -1)/2]; 

s = 1, ... ,[ (n - 2)/2] . 
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The one-dimensional subalgebras of the algebra AG(n - 1) 

are exhausted with respect to PC I,n) conjugation by the fol­
lowing algebras: (Po); (M); (PI); (GI); (GI +P2); 
(GI+PO); (X,); (X, + Po); (X,+M); (X,+P2'+I); 
(Xs +G2s + I ); (Xs+G2s+I+PO); (Xr +G2r + 1 

+P2r + 2) (r= I, ... ,[(n - 3)/2]), 

The written algebras are not mutually conjugated. Let 

<1>(0) = (M), <I>(i) = (M,PI,. .. ,P), ncO) = (M,Po), 

n(i) = (M,Po,PI, .. ·,Pj ), V2(s,t) = (Ps, ... ,P,) (s<;t), 

Ar+ I,k+ I (j) = (Pr+ d + AdPk +d Id = I,2, ... ,j) , 

where 

0<A I<;A2<; ... <;Aj (1 <;j<;k - r) , 

(4.2) 

Proposition 4.4: Let L = (G 1, ... ,Gk ). The subspaces of 
the space U = (Po'Pl>""Pn), which are invariant under L, 
are exhausted with respect to O( I,n) conjugation by the fol­
lowing spaces: 0, <I>(i), n(k), V2(k + I,t), 

<I>(i) $ V2(k + I,t), n(k) $ V2 (k + I,t) , 

<I>(r)$Ar+l,k+I(j) , 

<I>(r) $ Ar+ I,k+ I (j) $ V2 (k + j + I,s) , 

where i = O,l, ... ,k, t = k + I, ... ,n - 1, r = O,I, ... ,k - 1, 
j = I, ... ,k - r, s = k + j + I, ... ,n - 1. 

Proof: Let Wbe a subspace of the space n(k) invariant 
under L. Since [Pa,Ga ] = M then with W =1=0 we have 
MEW. The normalizer of the algebraL in O(n - 1) contains 
O(k). It follows from this and Witt's theorem that if 
W =1= (M) and PoE: W then W = <I> (i) (1 <;i <;k). If PoE W 
then W = n(k). 

For a description of all subspaces of the space U which 
are invariant under L we shall use the Goursat twist meth­
od. 25 Since by Witt's theorem the nonzero subspaces of the 
space Vz (k + I,n - 1) are exhausted with respect to 
O(n-I) conjugation by the spaces V2(k+ 1,t) (t=k 
+ 1, ... ,n - 1) we need to classify the subdirect sums of the 

following pairs of spaces: n(k), V2(k + 1,t); <I> (i), 
V2(k + 1,t) (i = O,l, ... ,k, t = k + 1, ... ,n - 1). 

Let Nbe the sub direct sum of n(k) and V2(k + I,t). If 
Po + APk+ I EN (A =1=0) then N contains PI' PI = - [GI, 
Po + APk + I ], and whence it contains M, too. Let 

N'=exp(OGk+I)'N'exp( -OGk + I )· 

The space N' contains Po + (A - O)Pk+ 1+ (0 2/2 
- AO)M. Since MEN' then Po + (A - O)Pk+ I EN'. Put­

tingO = A we get thatPoEN' and whence n(k) CN'. There­
fore N' = n(k) $ Vz(k + 1,t '). 

LetNbe the subdirect sum of <I> (i) and V2 (k+ I,t). If 
i = 0, M + APk + I EN (A =1=0) then N' contains (1 - OA) 
XM + APk + I' Putting 1 - OA = 0 we get thatN' = V2(k 
+ I,t). If i=l=O then MEN. Let us assume that N =1= <I> (i) 
$ V2(k + 1,t). Then <I> (i)/SI ~ V2(k + 1,t)/S2' where 

SI = Nn <I> (i), S2 = Nn Vz(k + 1,t). Let dim(<I> (i)/Sl) 
= i - r = j. Within the conjugation we can assume that 

SI = <I>(r) and S2 = 0 or S2 = V2(k + j + I,s) and that is 
why by means of Lemma 4.1 N is conjugated to one of the 
spaces, 
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<P(r) a1 Ar+ I,k+ I (j); 

<P(r) a1 Ar+ I,k+ I (j) a1 Vz(k + j + 1,s) . 

The proposition is proved. 

v. ON SUBALGEBRAS OF THE NORMALIZER OF 
ISOTROPIC SPACE 

In virtue of Theorem 2.1 the normalizer of the isotropic 
space (Po + P n) in AP (1,n) coincides with the algebra 
K = AG(n - I) El- )Jon,lOl). In this section we shall establish 
a number of assertions on subalgebras of the algebra K pos­
sessing nonzero projection onto (Jon'lOl). On the grounds of 
these results in Theorem 5.1 we describe all Abelian subalge­
bras of the algebra K that are nonconjugate to the subalge­
bras of AG(n - I). As a corollary, we obtain the list of max­
imal Abelian subalgebras and one-dimensional subalgebras 
of the algebra K as well as one-dimensional subalgebras of 
the algebra AP( I,n). 

Further E denotes the projection of K onto (Jon,lOl) and 
S denotes the projection of K onto AO (n - 1) a1 (Jon,lOl). 

Proposition 5.1: Let L = (GI,oo.,Gk ) (1 <k<n - 1), and 
F be a subdirect sum of Land (lOl). The algebra F has only 
splitting extensions in AP ( l,n). 

Proof: LetEbe a subalgebra of AP( I,n) such that 1T(E) 

= F. Up to an 0 (n - 1) automorphism one can assume that 
A 

F contains the generator 
n 

XI = G I + I avPv + ylOl (y#O). 
v=o 

Clearly, 

exp (± b/-,P/-,)'XI'exp (- t b/-'P/-') 
/-,=0 /-,-0 

= G I + ylOl + (ao - ybo + b l )Po 

+ (a l + bo - bn - ybl)PI + (an + bl - ybn )Pn 
n-I 

+ I (a j - ybj)Pj . 
;=2 

We put 

a o - ybo + b l = 0, a l + bo - bn - yb l = 0, 

an + b l - ybn = 0 , 

a j - ybj = 0 (i = 2,oo.,n - 1) . (5.1 ) 

The determinant of coefficients by bo, bl , and bn is equal to 
- y. Since y#O then the systems (5.1) has a solution. 

Therefore one can assume that X I = G I + ylOl. Let a # 1, 
n 

Xa =Ga + I a/-,P/-, +olOl. 
/-,=0 

Since 

[XI,xa] = - (ao-an)PI-aIM+yIa/-,P/-" 

[XI,xa] - yXa = - yGa - yolOl - (ao - an )PI - aiM, 

we shall assume that 

Xa = Ga + aM + /3PI + olOl . 

Then 

[XI,xa] = (ya - /3)M + y/3PI (2<a<k). 
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If ya - /3 #0 then we shall consider that a = 0, /3 #0. 
Since 

[Xl> [XI,xa ]] = - 2y/3M + r/3PI , 

A 

then F contains M - yPI, - 2M + yPI and whence M, 
pl(F. That is why Ga + OlOl(F. A 

Let ya - /3 = O. If /3 #0 then PI~ Since [XI,Ptl 
= [GI + l:::n,Ptl = - M + yPj then MEF an<1 therefore 

Ga + olOlEF. If /3 = 0 then a = O. It proves that F is a split­
ting algebra. The proposition is proved. 

The record F: WI,oo., Ws means that we deal with the 
subalgebras W/j-F,oo.,WJj-F. 

In virtue of Propositions 4.4 and 5.1 we conclude that 
the subalgebras of the algebra :mEl- (lOl) possessing a nonzero 
projection onto (lOl) are exhausted with respect to P(1,n) 
conjugation by the following algebras [see notations ( 4.2) ] : 

(lOl): 0, <P(i), Vz(s,t) 

(i=0, I,oo.,n -1, s=O,I, t=s,s+ I,oo.,n); 

(GI + allOl,oo.,Gk + aklOl, f3lOl): 0, <P(i), O(k) , 

Vz(k + I,t), <D(i) a1 Vz(k + I,t), O(k) a1 Vz(k + I,t), 

<P(r) a1 Ar + I,k + I (j) , 

<D(r) a1 Ar+ I,k+ I (j) a1 Vz(k + j + I,s) 

(k = I,oo.,n - 1, i = O,I,oo.,k, t = k + l,oo.,n - 1, 

r = O,I,oo.,k - 1, j = I,oo.,k - r, 

s = k + j + I,oo.,n - 1) . 

These algebras must then be simplified using transforma­
tions contained in the normalizer of each algebra in the 
group of 0 ( l,n) automorphisms. If, for example, the nor­
malizer contains exp(OJ12 ) then instead of (G I + aiD, 
Gz + azD) we can take (GI + a ID,G2 ) • 

Proposition 5.2: Let L be a subalgebra of AO (n ), and F 
be the subdirect sum of Land (D). The algebra F possesses 
only the splitting extensions in AP ( I,n ). 

Proposition 5.2 is proved by virtue of Propositions 2.1 
and 3.2. 

Proposition 5.3: Let LI be a subalgebra of AO(n - 1), 
L z = (D,Jon ) or L z = (D + yJOn )' where y = 0, r# 1, 
2 Y + 1 # O. If F is a subjirect sum of the algebras L I and L z 
then every subalgebra F of the algebra K with the property 
s(E) = Fisconjugated to the algebra (WI + W2 )El-F, where 
WI C U, W2 C VI = (GI,oo.,Gn -I)' 

Proof: Let L2 = (D, JOn)' On the basis of Propositions 
2.2 and 5.1 algebra E contains the elements 

n n-l 

XI = JOn + I ajPj> X z = D + I /3)G) . 
j=O )=1 

Since [XI'X2 ] = }; yjPj - }; /3) G) then D + }; yjpj(F. 
A A 

The~efore one can suppose that DEF. Whence JOn EF and 
FCF. 

Let 1.2 = (D + yJOn ). Since [D + yJOn ,Pa ] = Pa, 
[D + yJOn,Ga ] = - yGa (a = I,oo.,n

A
- 1), then by virtue 

of Proposition 5.2 one can admit that F contains the subdir­
ect sum of Fand subalgebra of the algebra (PO,Pn). Evident­
ly 
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exp(8oPo + OnPn ) . (lI) + yJOn + aoPo + anPn ) 

'exp( - 0oPo - 0nPn) 

= D + yJOn + (ao - 00 + yOn )Po 

+ (an + yeo - On )Pn . 

Since Y# 1, then coefficients by Po, Pn can be transformed 
into zero. On the basis of the conditions r# 1, 
[D t yJon,En Wl] C F n m it is not difficult to get that 
FCF. 

Let W=Fnm, Y="LDaGa +"Lpj PjEW. Since 

and r # 1 then one can assume that Y = L Da Ga + Po Po 
+ P n Pn · By the direct calculations we find that 

+ (Po - YPn )Po + (Pn - YPo)Pn , 

[D + yJOn ' [D + yJon,Y]] 

= r I DaGa + (YPo - 2YPn + po)Po 

+ (rpn - 2ypo + Pn )Pn . 

The determinant A constructed by the coefficients of 
L ~aGa' Po, Pn in Yand the vectors received is equal to 
y(2y+ 1) (p~ -p~). If 41#0 then L~aGa' Po, PnEW. If 
41=Othenpn = ±Po' Whenpn =Po we get that 

Ifpn = -Po then 

The proposition is proved. 
Proposition 5.4: The subalgebras of the algebra 

me-(Jon,D) containing JOn or having the property that their 
projection F onto (Jon,D) coincides with (D + yJOn ), where 
:[#0, Y# 1, 2y + 1 #0, are exhausted with respect to 
P( l,n) conjugation by the following algebras [see notation 
(4.2)] : 

F: 0, <I>(a), neal, V2(1,d) 

(a = O,I, ... ,n - 1, d = 1, ... ,n - 1) ; 

(GI, ... ,Gk )e-F: 0, <I>(i), n(k), 

V2 (k + l,t), <P(i) Ell V2 (k + 1,t) , 

n(k) Ell V2 (k + 1,t), <I>(r) Ell Ar+ I,k+ I (j), 

<P(r) EIlAr+ I,k+ I (j) Ell V2 (k + j + l,s) 

(i = O,I, ... ,k, t = k + 1, ... ,n - 1, 

r=O,I, ... ,k-l, j=l, ... ,k-r, 

s = k + j + 1, ... ,n - 1, k = 1, ... ,n - 1) . 

The proof of Proposition 5.4 is based on Proposition 5.3. 
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Proposition 5.5: Let L I be a subalgebra of AO (n - 1), 
L2 = (2D - JOn)' Fa subdirect sum of L I and L 2 , and F such 
subalgebra of K that 5'(F) = F. The algebraFis conjugated 
to the algebra We-F, where wcm and satisfies the follow­
ing condition: if YEW and projection of Y onto 
VI = (GI> ... ,Gn_ l ) is equal to L ~aGa then W contains 
L~aGa +pPoandpM or"LDaGa +p(PO-Pn )· 

Proposition 5.6: Let LI be a subalgebra of AO(n - 1), 
L2 = (D + Jon + yM) (YE{O, 1}), and F the subdirect sum 
of LI and L 2 • If a subspace W of the space m is invariant 
under F then W = WI + W2, where WI C U, W2 C VI' 

The proof of Propositions 5.5 and 5.6 is similar to that of 
Proposition 5.3. 

Let 0= (yo - Yn )/2. Since 

exp(ePo)' (D + JOn + yoPo + YnPn) 'exp( - epo) 

=D+JOn +!(Yo+Yn)M, 

then further we shall suppose that the projection of the alge­
bra FCAP(1,n) onto (D+Jon,PO'Pn) contains D+Jon 
+ aM where ado,1}. Proposition 5.6 gives the consider­

able information on the structure of such algebras. 
Proposition 5.7: Let LI be a subalgebra of AO(n - 1), 

L2 = (D - JOn + ypo) (ydo,1}), andF the subdirect sum 
of the algebras L I and L 2• If a subspace W of the space m is 
invariant under F, then W contains its own projection onto 
(PO'Pn) and [LI,W] C w, [YPo,W] C W. 

Proof: On the basis of Proposition 4.3 [L j , W] C W 

(i= 1,2). Ledn = {YEml [LI,Y] = a}, and Wbeaprojec­
tion of Wonto Wc. It is easy to see that the matrix diag [2,0] is 
the matrix of the operator D - JOn in the basis Po + Pn, 
Po - Pn of the space (PO'Pn) and in the basis of the space 
ml (Po,Pn) the matrix of the same operator is the unit one. 
Whence by Lemma 3.1 we conclude that W contains its own 
projection onto (PO,Pn). It remains for us to note that for 
arbitrary 

n-I 

Y= I (aJj +PjGj ) 
j=1 

we have [D - JOn + yPo, Y] = Y + [yPo, Y]. The proposi­
tion is proved. 

Proposition 5.8: Let F be a subalgebra of the algebra 
AO( l,n) generated by JOn and Ga , where a runs through 
some subset! oft~ set {1,2, ... ,n - 1}. IfFis a subalgebra of 
AP( l,n) with 1T(F) = F, then within the conjugation with 
respect to the group of translations the algebra F contains 
elements Ga (aEl) and JOn + L ~jPi (i = 1, ... ,n - 1). 

Proposition 5.9: Let L be a subalgebra of the algebra 
AP(1,n), X=Jab + Man +PPc ' Y=Gc +LYiPj 
(i = 1, ... ,n), wherep #0, ~#o, and a, b, and c are different 
numbers of{1,2, ... ,n - 1}. If X, YEL then L contains Gc ' 

Theorem 5.1: Let L be an Abelian subalgebra of the alge­
bra K and t{L) # 0. If E(L) = (JOn) then L is P(1,n) conju­
gated to the subdirect sum of algebras L 1, L 2, (JOn), where 
Ll CAH(2d), L2_= 0, or L2 = (P2d + 1 , ... ,P2d +S>. If E(L) 
= (D) then L is P ( l,n) conjugated to the subdirect sum of 

L 1, L 2, (D), where Ll CAH(2d), L2 = ° or 
L2 = (G2d + 1 , ... ,G2d + S>. If t{L) = (D,Jon ) or E(L) 
= (D + yJOn )' where Y#O, r# I then Lis P( I,n) conju­

gated to the subdirect sum of algebras E(L) and 
L 1 C AH (2d). If E(L) = (D + JOn), then L is conjugated to 
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the subdirect sum of the algebras L 1, L 2, L3, where 
LI CAH(2d), L 2C (M), L3 = (JOn + lD). 

Proo/" If E(L) = (Jon) then in view of Propositions 2.2 
and 4.3 the algebra L contains its own projection onto 
(M,PO-Pn,Gl> ... ,Gn_ I )· Since [JOn,Ga ] = -Ga , 

[Jon,M] = -M, [JOn,PO-Pn] =PO-Pn then this pro­
jection is equal to zero. Therefore L is the subdirect sum of 
LI CAH(2d) and L 2C (P2d + 1 , ... ,Pn -I)' If L 2=1=0 then by 
Witt's theorem L2 is conjugated to (P2d + 1 "",P2d + J. 

Ift:(L) = (lD) then in virtue of Propositions 4.3 and 5.2 
the projection of L onto U is equal to 0. 

If ECL) = (lD,Jon) or E(L) = (lD + yJOn ), where y=l= 0, 
r=l= 1, 2y + I =1=0, then by Proposition 5.3 the algebra Lis 
conjugated to the subdirect sum of the algebras E(L) and 
LI CAH(2d). With E(L) = (2lD - Jon) Proposition 5.5 is 
applicable. 

Let E(L) = (lD - Jon). On the basis of Propositions 2.2 
and 4.3 the projection of L onto (GI, ... ,Gn -I) is equal to 0. 
Applying the O(1,n) automorphism corresponding to the 
matrix diag [ 1, ... ,1, - 1] we getthat E(L) = (lD + JOn)' Ac­
cording to Proposition 5.2 the projection of L onto 
(P1""'Pn _ I) is equal to 0. Since [JOn + lD,Po + Pn ] = 0, 
[Jon + ])},Po - Pn] = 2(Po - Pn) then by Propositions 2.1 
and 4.3 the projection of L onto (PO,Pn) belongs to 
(Po + Pn ). The theorem is proved. 

Corollary 1: The maximal Abelian subalgebras of the 
algebra K with the condition E(K) =1=0 are exhausted with 

I 

V!. SUBALGEBRAS OF THE ALGEBRA AP(1 ,4) 

respect to P( l,n) conjugation by the following algebras: 

AH(n -1) Gl (Jon'])})' AH(n -1) Gl (M,Jon,lD), 

AH(2d) Gl (P2d + 1 , •.. ,Pn - l' JOn) , 

AH(2d) Gl (G2d + 1, ... ,Gn_l,lD) (d = 0,1, ... J(n - 2)/2]). 

The written algebras are not conjugated mutually. 
Corollary 2: Let n>3, X, = a l J 12 + a z J34 + ... 

+ a, J2'_1.2'; a l = 1, O<az<" '<at <1; t = 1, 
. .. ,[(n-1)/2]; s=1, ... ,[(n-2)/2]; a>O. The one-di­
mensional subalgebras of the algebra K with the condition 
E(K) =1=0 are exhausted with respect to P( l,n) conjugation 
by the following algebras: (Jon); (lD); (lD + aJOn ); 
(Jon + PI); (])} + GI ); 

(lD + JOn + M); (Xt + a])} + /3JOn ) (/3>0); 

(X, + aJOn ); (Xt + a(lD + JOn + M»; 

(Xs + G2s+ I + alD); (Xs + P2s + I + aJOn ) . 

The written algebras are not conjugated mutually. 
Proposition 5.10: The one-dimensional subalgebras of 

the algebra AP(1,n) are exhausted wtih respect to the 
P (1,n) conjugation by the one-dimensional subalgebras of 
the algebra K and the following algebras: 

(J12 + /31 J34 + '" + /3n/2 - I I n - I.n + ylD) , 

(J12 +/31 J34 + '" +/3n/2-1 In-l.n + Po) , 

where n =O(mod 2), y>O, ° < /31 < ... </3 n12 _ 1 < 1. 

In this section we make use of the previous results to provide a classification of all subalgebras of AP ( 1,4) with respect to 
P( 1,4) conjugation. 

LetFbe an subalgebra of AP(1,4) such that 1T(F) = F. An expressionF + W means that Wis a subspace of U, [F,Wl 
A A A A 

C W, and Fn UC W. As concerns the algebras F + WI, ... ,F + Ws we will use the notation F: WI"'" Ws' 
Lemma 6.1: Leta,/3, yER, a > 0,/3>0, y=l=O, andFrun through thefull system of representatives of the classes ofO( 1,4)­

conjugated subalgebras of the algebra AO ( 1,4) .4 The subalgebras of the algebra AO ( 1,4) Gl (lD) are exhausted with respect to 
O( 1,4) conjugation by the algebras F, F Gl (lD) and the following algebras: 

(J12+alD); (J12 + eJ34 +alD) (0<e<1); (J04 + alD); (J12+eJ04 +a])}) (e>O); (G3 +lD); 

(G3 - J I2 + alD); (J12 + alD, J34 + /3lD); (J04 + alD, J 12 + /3lD); (J04,J12 + alD); (G3 + lD, J I2 + /3lD); 

(G3, J 12 + alD); (G I + lD,Gz); (G3,J04 + ylD); (G3,J12 + eJ04 + ylD) (e > 0); 

(G3,J04 + ylD,J12 + /3lD); (G3, J04,J12 + alD); (G I,G2,J12 + alD); (G I,GZ,J04 + ylD); (G I,G2,JIZ + eJ04 + ylD) 

(e>O); (G I + lD,GZ,G3); (G I,GZ,G3 - J 12 + alD); (J03,J04,J34,JIZ + alD); 

(J12 + J34,J13 - J24,J23 + J 14,J34 + ylD); (Gl>Gz,J12 + alD,J04 + l>lD); (GI,G2,JIZ,J04 + ylD); 

(GI,GZ,G3 + lD,J12 + /3lD); (GI,G2,G3,JI2 + alD); (GI ,G2,G3, J04 + ylD); (G I,GZ,G3,J12 + eJ04 + y])}) 

(e> 0); (J12,J13,JZ3,J04 + alD); (GI,GZ,G3,JI2 + alD,J04 + l>lD); (GI,G2,G3,JI2,JI3,JZ3,J04 + ylD) . 

Lemma 6.1 is proved with the Goursat method25 and the result on the classification of subalgebras of the algebra 
A0(1,4).4 

Theorem 6.1: Let I:l.( r) be the system of representatives of the classes of conjugated subalgebras of the algebra AO( 1,4) 
[respectively, AO( 1,4) 1 found in Lemma 6.1. The splitting subalgebras of the algebra AP( 1,4) are exhausted with respect to 
P( 1,4) conjugation by the following algebras: 
(1) We-F, where FEr, WC U, and [F, W 1 C W; 

A A A 

(2) We-F, where FEI:l. and the projection of F onto A0(1,4) coincides with F, FEr; 
(3) (JIZ,J34 +alD): (PI,P2), (PO,PI,PZ) (a>O); 
(4) (G l +alD,Gz+/ID): (M,P1), (M,Pl + (J)P3), (M,Pl>P3), (M,PI+(JJP3,P2) «(JJ>O, a>O, /3>0, a 2+/3z=l=O); 
(5) (G l +alD,Gz +/3lD,G3,M,PI) (a>O, /3>0, a 2 +/32=1=0); 
(6) (G l + alD,G2,G3 + /3lD,M,PI,P2) (a>O, /3>0, a 2 + /3z=l=O) . 
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Proof LetFbe the subdirect sum ofFEr and (1O), and Wasubspaceof Uinvariant under F. Then [F,W] C W and on the 
contrary, if [F, W] C W then [F, W] C W. Therefore we can use the results on the classification ofthe splitting subalgebras of 

A 

AP ( 1,4).9 Only the cases of the algebras FEll simplified by 0 ( 1,4) automorphisms demand an additional consideration. Such 
algebras correspond to the algebra F coinciding with ( J 12,J34 ), (G),Gz), or (G),GZ,G3). If, for example, 

A 

F= (G) + a)lO,Gz + a 21O,G3 + a 31O) 

then this algebra must be simplified using transformations contained in the normalizer of (M,P), (M,P),Pz), respectively, in 
the group of 0 ( 1,4) automorphisms. The theorem is proved. 

We conceive the classification of non splitting subalgebras of AP( 1,4) with respect to P( 1,4) conjugation by virtue of the 
known classification of the nonsplitting subalgebras of AP( 1,4) with respect to P( 1,4) conjugation.)) The application of the 
automorphism exp(OlO) allows us to substitute one of the continuous parameters by the translation generators onto 1. 

Let (i), ... ,iq ) = (Pj" ... ,P;); (awb) = (Pa +wPb ) (UI>0);_(04) = (M). _ 
Theorem 6.2: The nonsplitting subalgebras of the algebra AP ( 1,4) are exhausted with respect to P ( 1,4) conjugation by 

the non splitting subalgebras of the algebra AP ( 1,4) and the following algebras: 

(J04 -1O + Po): 0, (1), (04), (1,2), (04,1), (1,2,3), (04,1,2), (04,1,2,3); 

(J12 + c( J04 -1O + Po»: 0, (04), (3), (04,3), (1,2), (1,2,3), (04,1,2), (04,1,2,3) (c>O); 

(J04+lO+M,J12+aM): 0, (3), (1,2), (1,2,3) (a>O); (J04 +lO,J)z+M): 0, (3), (1,2), (1,2,3); 

(J04 + 1O + M,J12): 0, (3), (1,2), (1,2,3); < J04 - 1O + Po,J12 + aPo): (04), (04,3), (04,1,2), (04,1,2,3) (a;>O); 

(J04 -1O,J)2 + Po): (04), (04,3), (04,1,2), (04,1,2,3); 

(Jo4 -21O,G3+Po): (04), (04,1), (04,1U13), (04,3), (04,1U13,2), (04,1,2), (04,1,3), (04,1,2,3); 

(Jo4-21O,G3+Po-P4): 0, (1), (1,2); (Jo4 -1O,G3+P): 0, (04), (04,3), (0,3,4); 

(J04 -1O,G3+P2): (1), (04,1), (04,1U13), (04,1,3), (0,1,3,4); (G3+aP),Jo4-1O+Po,M,P3) (a>O); 

(J04 -1O + PO,G3 + aP2,M,P),P3) (a >0); (G3,J04 -1O + Po): (04,3), (04,1,3), (04,1,2,3); 

(G3,Jo4+1O+M): 0, (1), (1,2); (G3+PO,J12 +c(J04 -2lD): (04), (04,3), (04,1,2), (04,1,2,3) (c>O); 

(G3 +PO -P4,J12 +c(Jo4 -2lD): 0, (1,2) (c>O); (G3,JI2+c(Jo4-1O+Po»: (04,3), (04,1,2,3); 

(G3,J12+c(Jo4+1O+M»: 0, (1,2); (G3+Po,J12,J04 -21O): (04), (04,3), (04,1,2), (04,1,2,3); 

(G3+Po-P4,J)2,J04 -21O): 0, (1,2); (G3,JI2+aPo,J04-1O+Po): (04,3), (04,1,2,3) (a;>O); 

(G3,J12 +Po,J04 -1O): (04,3), (04,1,2,3); (G3,J12 +aM,J04 +lO+M): 0,(1,2) (a;>O); 

(G3,J12 + M,J04 + D): 0,(1,2); (G),G2 + PO,J04 - 2lO): (04,1), (04,1,2), (04,1,2U13), (04,1,3), (04,1,2,3); 

(G) + P3,G2 +J.lP2 + OP3,J04 - D) (J.l>0, 0;>0); (G I + P3 ,GZ,J04 - D); 

(G1,G2 + Pz + OP3,J04 - D) (0;>0); (G),Gz + P2,J04 - lO,P3) ; 

(G) + P2 + AP3,GZ - p) + J.lP2 + OP3,J04 - lO,M) (J.l > 0, A> ° V A = 0, 0;>0); 

(G) + P2 + AP3,GZ - PI'J04 - lO,M) (A;>O); (G1 + P3,G2,J04 - lO,M) ; 

(G) + AP3,GZ + P2 + OP3,J04 - lO,M) (A> ° VA = 0; 0;>0); 

(G) + P2,GZ - p) + J.lPZ,J04 - lO,M,P) (J.l;>0); (GI'G2 + PZ,J04 - n,M,P3) ; 

(G) + aPz +/3P3,G2 + P3,J04 -lO,M,PI) (a>OVa = 0, /3;>0); (G) + Pz +/3P3,G2,J04 - lO,M,P) (/3;>0); 

(G I + P3,GZ,J04 - lO,M,P); (G I + aP2 +/3P3,GZ + P3,J04 - lO,M,PI + UlP3) (UI>O); 

(G1 + P2 + /3P3,G2,J04 - lO,M,PI + UlP3) (w> 0); (GI + P3,G2,J04 -lO,M,P) + UlP) (UI >0) ; 

(G) + P3,GZ,J04 - lO,M,PI,Pz); (G) + PZ,G2,J04 - lO,M,PI,P3); (GI>G2 + P3,J04 - lO,M,P) + UlP3,PZ) (UI > 0) ; 

(G) + P3,G2,J04 - lO,Po,P),PZ'P4); (G) + /3P3,GZ,J04 - lO + PO,M,P),P2) (/3;>0); 

(G),GZ,J04 - lO + PO,M,p),P2,P3); (G I,G2,J04 + lO + M); (GI>G2,J04 + lO + M,P3) ; 

(G I +P2,GZ -p),J)z+c(J04 -lD): (04), (04,3) (c>O); 

(GI,GZ,JI2 + c( J04 - lO + PO),M,PI,P2,SP3) (c>O, s = 0,1) ; 

(G),Gz,J12 +c(J04 +lO+M»: 0, (3) (c>O); (GI,G2,JI2+Po,J04-lO,M,PI>Pz,sP3) (s=O,l); 

(G),G2,JI2 + M,J04 + D): 0, (3); (G),G2,J12 + oPO,J04 - lO + PO,M,PI>PZ'sP3) (0;>0, s = 0,1) ; 

(G)+P2,G2-PI,J),J04-lO,M,sP3) (s=O,I); (GI>G2,J12 +aM,Jo4 +lO+M): 0, (3) (a;>O); 

(G),G2,G3 + PO,J04 - 2lO,M,PI>P2,sP3) (s = 0,1) ; 

(G),G2 + P2,G3 + aP3,J04 - D); (G),Gz + P2,G3 + aP3,J04 - lO,M); 
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(GI + P2 + (3P3,GZ - PI + J-lPz + yP3,G3 + (3PI + yPz + 8P3,J04 - D,M) ( J-l > 0, (3 > 0 V (3 = 0, y;>O); 

(GI + Pz + (3P3,GZ - PI,G3 + (3PI + 8P3,J04 - D,M) ( (3;>0) ; 

(G I + (3PZ,GZ + P3,G3 - PZ,J04 -D,M,PI) «(3;>0); 

(G I + (3Pz + yP3,G2 + P3,G3 - P2 + J-lP3,J04 - D,M,PI) (J-l > 0, (3) 0 V (3 = 0, y;>O); 

(G I +(3Pz + yP3,G2,G3 +P3,J04 -D,M,PI) «(3>OV(3 = 0, y;>O); 

(G I + PZ,G2,G3,J04 -D,M,PI); (G I + P3,G2,G3,J04 -D,M,PI,P2) ; 

(GI,GZ,G3,J04 -D + PO,M,PI,PZ'P3); (GI,GZ,G3,J04 + D + M) ; 

(G I,G2,G3 + PO,J12 + c( J04 - 2D)'M,PI,P2,SP3) (c > 0, S = 0,1) ; 

(G I + PZ,G2 - PI,G3 + (3P3,JI2 + c( J04 - D),M) (c>O); 

(G I + P2,G2 - PI,G3,J12 + c( J04 -D),M,P3) (C>O); 

(G I,G2,G3 + P3,JJ2 + C( J04 -D»: 0, (04); (GI,G2,G3,JI2 + c( J04 -D + PO)'M,PI,PZ'P3) (c>O); 

(GI>G2,G3,JI2+C(J04+D+M» (c>0); (JI2,JJ3,JZ3,J04-D+Po): 0, (04), (1,2,3), (04,1,2,3); 

(GI,GZ,G3 + Po,JJ2,J04 - 2D,M,PI,P2,SP3) (s = 0,1); (GI,GZ,G3,JIZ + PO,J04 -D,M,PI,PZ'P3) ; 

(GI,G2,G3,J12 + 8PO,J04 -D + PO,M,PI,PZ'P3) (8;>0); (GI + Pz,Gz - PI,G3 + (3P3,JIZ,J04 - D,M) ; 

(GI + P2,G2 - PI,G3,JI2,J04 -D,M,P3); (GI,GZ,G3 + P3,JI2,J04 -D): 0, (04); 

(GI,GbG3,JI2 + M,J04 + D); (GI,G2,G3,JI2 + 8M,J04 + 8 + M) (8;>0); 

(GI,GZ,G3,JIZ,J13,JZ3,J04 - D + PO,M,PI,P2,P3); (GI,G2,G3,J12,J13,JZ3,J04 + D + M) . 

VII. CONCLUSIONS 

The results of the present paper may be summarized in 
the following way. 

( 1) The maximal Abelian subalgebras of the algebra 
AP(1,n) have been explicitly found in Corollary 1 to 
Theorem 4.2 and Corollary 1 to Theorem 5.1. 

(2) The full classification of one-dimensional subalge­
bras of algebra AP(1,n) is contained in Corollary 2 to 
Theorem 4.2, Corollary 2 to Theorem 5.1 and Proposition 
5.10. 

(3) The completely reducible subalgebras of AO( l,n) 
which possess only splitting extensions in the algebra 
AP(1,n) have been picked out. We have established in 
Theorem 3.1 that the description of the splitting subalgebras 
F of AP( 1,n), whose projection F onto AO( l,n) does not 
have any invariant isotropic subspaces in the space of trans­
lations or annul such subspaces, could be reduced to the 
description of the irreducible parts of the algebra F. 

( 4) A number of assertions on the subalgebras of the 
algebra U(J-K I has been proved where K I is the normalizer of 
(Po + Pn ) in AO(1,n). These assertions concern the follow­
ing matters: The splittability of all extensions of the subalge­
bra LCK I in AP( 1,n) or in some other algebras (Proposi­
tions 4.1, 4.2,5.1, and 5.2); the decomposition of invariant 
subspaces into a direct sum of its projections onto certain 
subspaces (Propositions 5.3, 5.5, 5.6, 5.7, and 5.8); the ex­
plicit description of some classes of the conjugated subalge­
bras of the algebra AP( l,n) (Theorem 4.1, Propositions 4.4 
and 5.4). 

(5) The full classification with respect to P ( 1,4) conju­
gation ofthe nonsplitting subalgebras of APe 1,4) which are 
nonconjugate to the subalgebras of AP (1,4) has been car­
ried out. 

Note added in proof In Refs. 26-28 the subalgebras of 
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the algebra AP(1,n) were used to construct the exact solu­
tions of many-dimensional nonlinear d' Alembert and Dirac 
equations. The invariants of subgroups of the generalized 
Poincare group PC l,n) were constructed in Ref. 29. A num­
ber of general results on continuous subgroups of pseudo­
orthogonal pseudounitary groups had been obtained. 30 
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An approach to time-ordered operators based upon von Neumann's infinite tensor product 
Hilbert spaces is used to define Feynman-Dyson algebras. This theory is used to show that a 
one-to-one correspondence exists between path integrals and semi groups, which are integral 
operators defined by a kernel, the reproducing property of the kernel being a consequence of 
the semigroup property. For path integrals constructed from two semigroups, the results are 
more general than those obtained by the use of the Trotter-Kato formula. Perturbation series 
for the Feynman-Dyson operator calculus for time evolution and scattering operators are 
discussed, and it is pointed out that they are "asymptotic in the sense of Poincare" as defined 
in the theory of semi groups, thereby giving a precise formulation to a well-known conjecture of 
Dyson stated many years ago in the context of quantum electrodynamics. Moreover, the series 
converge when these operators possess suitable holomorphy properties. 

I. INTRODUCTION 

It has long been an open question as to what mathemat­
ical meaning can be given to the Feynman-Dyson time-or­
dered operator calculus, which was developed in the 1950's 
for the study of quantum electrodynamics. In this paper we 
define Feynman-Dyson algebras and show that they give a 
natural algebraic framework which allows for the replace­
ment of the noncommutative structure of quantum theory 
with a uniquely defined commutative structure in the time­
ordered sense. This approach is analogous to the well-known 
method in the study of Lie algebras wherein the use of the 
universal enveloping algebra allows the replacement of a 
nonassociative structure with a uniquely defined associative 
structure for the development of a coherent representation 
theory.l 

The use of this tensor algebra framework allows us to 
improve upon the customary formal approach to time-or­
dered operators based upon product integration. 

In Sec. II we discuss infinite tensor product Hilbert 
spaces Vand V¢ modeled on an arbitrary separable Hilbert 
space JY' and discuss the relationship between algebras of 
bounded linear operators on these two types of spaces. It is 
shown that V¢ may be assumed separable with no loss in 
generality (see also Sec. IV). 

In Sec. III we apply these considerations to the discus­
sion of time-ordered integral operators and discuss how this 
approach leads to unique solutions to the Cauchy problem 
for the Schrodinger equation with time-dependent Hamilto­
nians. The use of infinite tensor product Hilbert spaces re­
quires the introduction of a new topology, and so we discuss 
how uniqueness in the Cauchy problem is to be understood 
in this framework. 

In Sec. IV we discuss the relationship between various 

aj On leave from the Department of Mathematics, Howard University, 
Washington, D.C. 20059. 

bj Present address: Department of Electrical Engineering, Howard Univer­
sity, Washington, D.C. 20059. 

algebras of bounded linear operators on infinite tensor prod­
uct Hilbert spaces and give a mathematically rigorous treat­
ment of algebras of time-ordered operators on these spaces. 
The latter algebras, called Feynman-Dyson algebras, pro­
vide a mathematical treatment ofFeynman's operator calcu­
lus. 2 Our use of infinite tensor product Hilbert spaces in this 
connection can be seen to be the mathematical embodiment 
of the method of Fujiwara3 in the implementation of Feyn­
man's approach. The definition of these so-called "expan­
sional" operators has been discussed in a Banach algebraic 
framework different from that of the present paper by Mir­
anker and Weiss4 and Araki. 5 Related discussions of time­
ordered operators have been given by Nelson6 and Maslov. 7 

In Sec. V we apply our theory of time-ordered operators 
to the discussion of path integrals of the type first envisioned 
by Feynman.8 We show that there exists a one-to-one corre­
spondence between path integrals and semigroups which are 
integral operators defined by a kernel. In this situation, the 
reproducing property of the kernel follows from the semi­
group property. In this section, path integrals are written for 
more general Hamiltonians than perturbations of Lapla­
cians by making use of some results of Maslov and Shish­
marev9

,10 on hypoelliptic pseudodifferential operators. In 
those cases in which one is dealing with two semigroups, it is 
not necessary to assume that the sum of the generators is a 
generator of a third semigroup. In particular, it is not neces­
sary to assume that one of the two generators is small in some 
sense relative to the other. 

In Sec. VI we discuss perturbation expansions for time­
evolution operators. It is shown that these expansions gener­
ally do not converge, but are "asymptotic in the sense of 
Poincare" as this term is used in the theory of semigroups. II 
This nonconvergence of the perturbation expansions was 
conjectured in the special case of the renormalized perturba­
tion expansions of quantum electrodynamics in a well­
known paper by Dyson.12 We also prove that these series 
converge when the semigroups possess suitable holomorphy 
properties. 

Section VII consists of some concluding remarks. 

1459 J. Math. Phys. 28 (7), July 1987 0022-2488/87/071459-12$02.50 ® 1987 American Institute of Physics 1459 



                                                                                                                                    

II. PRELIMINARIES 

Let J = [ - T,T], T> 0, denote a compact subinterval 
of the real line and V = ® SEJdY(S) the infinite tensor prod­
uct Hilbert space, where dYes) = dY for each sEJ and dY 
denotes a fixed abstract separable Hilbert space. Here 
L [dY] and L [ V] denote the bounded linear operators on the 
respective spaces. Here L [dY(s)] is defined by 

L[dY(s)] = {B(S) = ® I, ®B®( ® Ir)IBEL [dY]} 
T;;~f;;"S s> r> - T 

(2.1) 

where Ir is the identity operator, and L # [ V] is the uniform 
closure of the algebra generated by the family: 
{L[dY(s») IsEJ}. 

Definition 2.1: We say that ¢ = ® s¢s is equivalent to 
¢ = ® s ¢s and write ¢ = ¢ if and only if 

(2.2) 

where < , ) s denotes the inner product on dY (s ). It is to be 
understood that the sum is meaningful only if at most a 
countable number of terms are different from zero. The fol­
lowing result is due to von Neumann, 13 but see Guichardet '4 

for a simplified proof. 
Theorem 2.1: The above relation is an equivalence rela­

tion V. If we let V", denote the closure of the linear spin of all 
¢=¢, then (1) ¢not equivalent to¢ implies v,pn V", = {O}; 
and (2) if we replace J by] C J, where] is a countable dense 
subset, in our definition of V [i.e., V = ; SE] (s)], then Vis a 
separable Hilbert space. 

Let lP '" be the projection from V onto V"'. 
Theorem 2.213

: For all TEL # [ V ], the restriction of T to 
V", is a bounded linear operator, and 

V. 

lP",T= IF", . (2.3) 

Let C [V] denote the set of closable linear operators on 

Definition 2.2: An exchange operator E[t,t'] is a linear 
operator defined on C [V] for pairs t,t'EJ such that 

(1) E[t,t'] mapsC[dY(t'») ontoC[dY(t)]' 
(2) E[t,s] E[s,t'] = E[t,!'], 
(3) E[t,t'] E[t',t] =1, 
(4) ifs0;6t,t',thenE[t,t']A(s) =A(s),forall 

A (S)EC[dY(S)]. 

It should be noted that E [t,t '] is linear in the sense that 
whenever the sum of two closable operators is defined and 
closable, then E[t,t'] maps in the appropriate manner (see 
Gill 15 ). In particular, E[ t,t '] restricted to L # [ V] is a 
Banach algebra isomorphism and E[t,t'] E[s,s'] 
=E[s,s'] E[t,t'] for distinct pairs (t,t') and (s,s') inJ. 

Theorem 2.3: If F=n:~IE[7n,Sn]' {(7n,Sn)EJ 
XJ InEN} then F is a Banach algebra isomorphism on 
L #[ V] and 

(1) IIFII# = 1, 
(2)F- ' =F. 
Proof As liE [7,S] 11# = 1, Fis a convergent product of 

algebra isomorphisms and IIFII# .;;;;IIE [7n,Sn] 11# = 1. On 
the other hand, 1 = III II # = IIF(l) II # .;;;; IIF II # III II #' so 
that IIFII# = 1. Since E[7n,SnJE[sn,7nJ =1 and ex-
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change operators for distinct pairs commute, we see that 
FZ=I~F-'=F. 

Definition 2.3:A chronological morphism (or c-mor­
phism) on L # [ V] is any (Banach) algebra isomorphism F 
on L # [ V] composed of products of exchange operators 
such that 

(1) IIFII# = 1, 
(2) F- ' =F. 
Definition 2.4: Let {H(t) ItEJ} C C[dY) denote a family 

of densely defined closed self-adjoint operators on dY, then 
the corresponding time-ordered version in C [V] is defined 
by 

H(t) = ® Is ®H(t) ® ( ® Is). (2.4) 
T>S>I t>s> - T 

Definition 2.5: A family {H (t) I tEJ} C C [ V] is said to be 
chronologically continuous (or c-continuous) in the strong 
sense at to if there exists an exchange operator E[to,t] such 
that 

limllE [to,t ]H(t)¢ - H(to)¢11 = 0 , (2.5) 
t--- to 

where ¢E ® SEJ .80 [dY(s)]. 
Definition 2.6: The family {H(t) ItEJ} is said to be 

chronologically differentiable (or c-differentiable) in the 
strong sense at to if there exists an operator DH(to) and an 
exchange operator E(ta,t) such that 

lim II E(ta,t)H(t)¢ - H(ta)¢ - DH(ta)¢ II = 0, 
1-10 t-ta 

for all ¢E® S€J .8O(H(s»). 
Theorem 2.4: Suppose the family of operators 

{H(t) ItEJ} have a common domain. Then the correspond­
ing family {H(t) ItEJ} is strongly c-continuous iff 
{H(t) ItEJ} is strongly continuous. 

Proof See Gill. 15 

III. INTEGRALS AND EVOLUTIONS 

In the following discussion, all operators of the form 
{A (t) I tEJ} are closed infinitesimal generators of contraction 
semi groups, while {H(t) It€I} are strongly continuous 
densely defined linear operators with a common domain, 
and generate unitary groups. The corresponding operators 
of the form {A (t) It€I} Crespo {H(t) ItEJ}) are the time-or­
dered versions. Define A z (t) by 

Az(t) =exp{zA(t)}-Ilz (3.1) 

and recall that exp{A z (t)} is a linear contraction and 
s-limzla A Z(t) =A(t) (strong limit). Similar results hold 
for HZ(t), with z replaced by iz in (3.1). 

Definition 3.1: An integral approximate on L # [ V] is a 
family of operators of the form {Q ~ [t, - T] with 
- T.;;;;t.;;;;T,A.>O}, where 

00 (UT)n k(n) 
Q~ [t, - T] = e- 2AT I I MjA Z(7j) . 

n~a n! j~l 

For each n,k=k(n)-;;.n and {lP'k={-T=t l 

< tz' .. < tk = t}, n,kEN} is a family of partitions of [ - T,t] 
such that limn _ oc llP'k I = 0 and we take 7j E [tj _ I ,tj)' 

Definition 3.2: Let {Q~ [t, - T]} and {Q~ [t, - T]} 
be any two families of integral approximates. We say Q ~ is c-
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equivalent to Q ~ and write Q ~ ~ Q ~ (in the uniform sense) 

if and only if there exists a c-morphism F = F [Q ~ ,Q ~ ] 
such that 

lim IIQ~ [t, - T] - FQ~ [t, - T] II = O. (3.2) 
).-00 

Theorem 3.1: The relation ~ is an equivalence relation 
on the set of all integral approximates on L # [ V] . 

Proof· Reflexivity is obvious. To prove symmetry, we 
note that 

IIQ~ - FQ~ II = IIF-IQ~ - Q~ II 

since IIFII = 1, and F= F- 1
• Hence Q~ ~Q~ implies 

Q~ ~Q~. To prove transitivity, supposeFI andF2 exist such 

that 

Setting F = FIF2 we have 

IIQ~ -FQ~II = IIQ~ -FIQ~ +FIQ~ -FIF2Q~11 
.;;;IIQ~ -FIQ~II + IIQ~ +F2Q~II, 

hence lim)._oo IIQ~ - FQ~ II = 0, so that Q~ ~Q~. 
Here QZ[t, - T] = s-lim)._oo Q~ [t, - T] is called the 

time-ordered integral operator associated with the family 
{A Z (t) I tEJ} C L # [ V] if the above limit exists. 

Theorem 3.2 (existence): For the family {Hz(t)ltEJ} 
wehave(1) s-lim)._oo Q~ [t, - T] = QZ[t, - T] exists and 

QZ[t, _ T] = QZ[t,s] + QZ[s, - T], - T';;;s<t, 

(2) s-limz!o QZ[t, - T] = Q [t, - T] exists, is a densely 
I 

IfwenowletA ..... 00, we obtain lim)._oo IIQ~cp -FQ~cpll <€. 
Since € was arbitrary we are done. II 

Let us note that in Theorem 3.3 it is not necessary to 
require that Sj' 'Tj E [ tj _ 1 ,tj ). It suffices to assume that for n 
sufficiently large, ISj-'Tjl<o, 1.;;;J.;;;k(n) [i.e., 
limn _ oo I!.L -'Tjl~O 'rJj , 1.;;;J.;;;k(n)]. 

Let Q ~ and Q ~ be two integral approxima~s generated 
from arbitrary families of partitions {PI }, {PI,} with re­
spec~ve ylace values T/E(tl_1,tl ), '1.;;;1.;;;/~(n), and 
7/E [tl _ 1 ,tl ), 1.;;;1.;;;lz (n). Define a new family of partitions 
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defined generator of a unitary group on V, and 

Q[t, - T] = Q[t,s] + Q[s, - T] , 

and 

(3) s-lim[s-lim Q~ [t, - TJ] = s-lim[s-lim Q~ [t, - TJ]. 
A--OO zlO Z!o A~oo 

Proof" See Gill, 16 Theorems ( 1.1) and (1.2). 

From now on, our results assume that we are working 
with the family {Hz(t) ItEJ}. 

Theorem 3.3: Let Q~ [t, - T] and Q~ [t, - T] be two 
integral approximates with the same family of partitions but 
different points 'Tj,SjE[tj _ 1 ,tj) ("place values"). Then 

Q~ ~Q~ (in the strong sense). 

Proof" Define 

F= n~I(~XE['Tj'Sj]) 
so that 

Finz -2AT ~ (UT)n ~ A E [ ]HZ() 
~). = eLL utj 'Tj ,sj Sj. 

n~O n! j~1 
(3.3 ) 

By Theorem 2.3, we see that Fis a c-morphism and 

IIQ~cp - FQ~cpll 

k 

X I !l.tj IIHZ( 'Tj)CP - E ['Tj,Sj ]HZ(Sj )cpll . 
j~l 

We now note that strong c-continuity of H (t) (cf. definition 
2.5) implies strong c-continuity of HZ(t) so, given €>O, 
there exists 0> 0 such that I'T - S I < 0 implies for CPE V, 
IIHZ('T)cp-E['T,s]HZ(s)cpll<€I(t+T). Now, choose N 
so large that n>Nimplies IPk I <0, then 

P k = PI, U PI, and integral approximate 
'TjE[tj_l,tj). 

Since PI, CPk , 

may be reindexed to give 

Q~ 

T. L. Gill and W. W. Zachary 
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wheresj = 7/ for (/-1 <Jj _ 1 <t/:;,(/. Thus Q~ and Q~ have 
the same family of partitions, but different place values. 

- c= 
Theorem 3.4: Q ~ = Q ~ . 

Proof: We first show that Q~ ~Q~. From the above 

remarks, it suffices to show that ITj - Sj 1-0, n -: 00. To see 
this, recall that TjE [ tj _ ptj) and Sj = 7/ for t/_ 1 <tj _ 1 

< tj <t, hence h - Sj 1< at/ --+0 as n - 00. Therefore 

Q~ ~Q~ by Theorem 3.3. The same argument with Q~ re­

placed by Q ~ shows that Q ~ ~ Q ~. We now use the transi­

tivity of ~ to conclude that Q ~ ~ Q ~ . II 
Definition 3.3: A time-ordered integral operator is said 

to be chronologically unique (or c-unique) if every integral 
approximate is c-equivalent. 

Let Q[t, - T] = s-limZIO QZ[t, - T]. 
Theorem 3.5: (1) Q Z [t, - T] is c-unique. 
(2) Q[t, - T] is a generator ofa unitary group (densely 

defined and closed) . 
Proof: (1) is clear; (2) is in Gill. 16 

The uniqueness property in part (1) of this theorem is 
an important feature of our theory. There are path integrals 
which depend upon the choice of partition. See Ref. 17 for a 
discussion. 

Theorem 3.6: UZ[t, - T] = exp{ - iQZ[t, - Tn sat­
isfies 

(1) UZ[t, - T] = UZ[t,s]UZ[s, - T], - T<s<t, 

(2) i aUZ[~t- T] = HZ(t) UZ[t, - T] , 

(3) U [t, - T] = s-lim uz[t, - T] 
zlO 

= exp{ - iQ [t, - Tn 

satisfies 

U[t,s]U[s, - T] = U[t, - T], - T<s<t, 

(4) i aU[t, - T] =H(t)U[t, - T]. 
at 

Proof: See Gill. 16 The derivatives are in the strong 
chronological sense. This theorem allows us to give a com­
plete solution to the Cauchy problem. Recall that if 
¢oED (H( t») C J7'" for tEJ, then the initial value problem 

i af(t) =H(t)f(t) , f( - T) =¢o, 
at 

has a unique solution f(t) provided a few additional as­
sumptions are made. For a direct proof with explicit state­
ments of the required additional assumptions, see Tanabe. IS 

We prove a similar result in the Hilbert space V with no 
additional assumptions. 

Theorem 3.7: Let ¢s = ¢o, Ii¢oll = 1, sEJ, and set 
¢ = ® S ¢s' Then ¢(t) = U(t, - T)¢ is the c-unique solu­
tion to 

i a¢a~t) = H(t)¢(t) , ¢( - T) = ¢ , 
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where the derivatives are interpreted in the strong chronolo­
gical sense. 

Proof: Follows from Theorems 3.5 and 3.6. 

IV. OPERATOR ALGEBRAS 

Let us recall from Theorem 2.1 that if we replace J by 
]CJ, where ] is a dense subset and construct 
V = ~ SEJ J7"'(s) then V¢ (the closure of the linear span of all 
if; = ¢) is a separable (Hilbert) subspace. The next theorem 
is quite interesting in view of the fact that Vand V are not 
related as spaces. 

Theorem 4.1: L # [V] CL # [ V] (i.e., is an injection 
into ). 

Proof: From (2.1), it is easy to see that L [J7"'(s)] is a 
closed subalgebra of L # [ V] for each sEJ (a detailed proof is 
in von Neumann \3). This is also true for each s6i, so the 
result follows trivially, since L # [V] is generated by 
{L [J7"'(s)] Is6J}, and L [J7"'(s) ] CL # [ V], sEJ. 

Let us note that the existence and uniqueness of 
Q Z[t, - T] and U[t, - T] do not change if we restrict 
{rj 11 <J<k(n), nEN}, to lie inJin defining Q~ and U).. This 
means that the following holds. 

Theorem 4.2: 

(1) QZ[t, - T] and U[t, - T] belong to L # [V] , 

(2) QZ[t, - T]lv"EL [V¢] , (4.1) 

(3) U[t,-T]lv"EL[V¢]. (4.2) 

Proof: (1) is obvious while (2) and (3) follows from 
Theorem 2.3. 

The above result shows that both U[ t, - T] and 
Q[t, - T] are well defined (and the same operators as in 
V¢ ) when restricted to V¢, which is a separable Hilbert 
space. This means that all of standard quantum theory can 
be formulated in our setting. 

We now turn to some other important properties of 
L # [ V]. First, let us establish some notation. If {o (t), tEJ} 

denotes an arbitrary family of opertors in L [J7"'] , the opera­
tor fitEJB(t) (when defined) is understood in its natural 
order: 

II B(t). (4.3 ) 
1>t> - T 

It is easy to see that every operator A in L # [ V] that depends 
on a countable number of elements in J may be written as 

n, 

A = Ia; II A;(tk) , (4.4 ) 
k=1 

where Ai (tk )EL [J7"'Ctk )], t l ,t2 , ... ,tn, for all i. Define dT: 

L #[ V] -L [J7"'] by 

00 

dT[A]=Ia; II A;(tk)' (4.5 ) 
i= 1 nj>k;;;d 

Lemma 4.2: The map dTis a bounded linear map which 
is surjective but not injective. 

Proof: The proof is trivial. To see that dTis not injective, 
note that (for example) dT[E[t,s]A(s)] = dT[A(s)] yet 
A(s)EL[J7"'(s)] while E[t,s]A(s)EL[J7"'(t)] so that these 
operators are not equal when t ,#s. 
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From Theorem 2.2, we know that the algebras 
L [Jt" (t) ] and L [Jt"] are isomorphic as Banach algebras so 
that for each tEJ, there exists an isomorphism to: 
L [Jt"] ..... L [Jt"(t)]. Now to -I: L [Jt"(t)] ..... L [Jt"]; and 
since L [Jt" (t)] is a closed subalgebra of L # [ V], we know 
that dT restricted to L [Jt"(t)] is an algebra homomor­
phism. 

Theorem 4.3: dTL [JY'(t) J = to -I. 
Proof.· It is clear thattO -I [A (t)] = A (t) anddT [A (t)] 

= A (t), A (t)EL [Jt"(t)], so we need only show that dT is 
injective when restricted to L [Jt" (t) ]. If A (t) and B (t) be­
long to L [Jt"(t)] and dT[A (t)] = dT[B(t)]' then 
A (t) = B(t) (by definition of dT) so that A (t) = B(t) by 
definition of L [Jt"( t)]. 

Definition 4.1: The map dT is called the disentanglement 
morphism. 

Definition 4.2: The quadruple ({to !tEJ}, L [Jt"], 
dT,L # [V]), is called a Feynman-Dyson algebra (FD alge­
bra) over Jt" for the parameter set J. 

We now show that the FD algebra is universal for time 
ordering in the following sense. 

Theorem 4.4: Given any family {B(t) !tEJ}E(L[Jt"])J 
there is a unique family {B(t) !tEJ}CL # [V] such that the 
following conditions hold. 

(1) B(t)EL[Jt"(t)], tEJ. 

(2) dT[B(t)] = B(t), tEJ. 

(3) For an arbitrary family {{rj!1 <j<n}!nEN}, 1"j EJ 
(distinct) the map 

00 00 

X (B(1"n)'···,B(1"I») ..... I an IT B(1"j) 
n = I n = I n>j> 1 

from 

n~ 1 t~1 L [Jt"]} toL[Jt"], 

has a unique factorization through L # [ V] so that 

i: an IT B( 1"j) 
n=O n>j>1 

corresponds to 
00 n 

I an IT B(1"j) . 
n=O j=1 

Here we naturally assume that {an} is such that 

i: an IT B( 1"j)EL [Jt"] . 
n=O n>j>1 
Proof B(t) = to[BU)], 'VtEJ, gives (1). By Theorem 

4.3 we have dT[B(t)] = to -I [BU)] = B(t) which gives 
(2). To prove (3), note that 

8: n~ 1 t~1 L [Jt"]} ..... n~ 1 j~1 L [Jt"(1"j)] 

defined by 

8[X:= 1 (An,1n-I> ... ,1I)] 

=X:=I (1"n O [An] , 1"n_I O [An_d,···,1"IO [Ad) 

is one-to-one and onto (1"j O [Aj] =A(1"j)EL [Jt"(1"j))). 
The map 

00 00 00 

X (B(1"n)'···,B(1"I») ..... I an IT B(1"j)EL#[V] 
n=1 n=1 j=1 

factors through the tensor algebra 
EB : = 1 { ® ; = 1 L [Jt" ( 1"j ) J} via the universal property of 
that object (Hu,19 p. 179). We now note that 
EB := 1 { ® ; = 1 L [Jt" ( 1") J} C L # [ V] . In diagram form we 
have 

X (B(1"n). ... ,B(1"I»)EX {.x L[Jt"]} ~ i: an IT B(1"j)EL[Jt"] · ~ , oT' r' · ~ '.>,» I dT 

n~ 1 (B( 1"n ), ... ,B( 1"1»)E n~ 1 t~ 1 L [Jt"( 1"j))} -: ntl an j~1 B( 1"j)EL # [V] 

so that dToj ® 00 = f 
Example 1: Let 

A(t) = ® IT®A®( ® IT)' 
T>r>t t>'1"> - T 

where A and B are bounded on Jt". If s < t, then by Lemma 
2.3 in Ref. 15, we have 

A (t)B(s) = B(s)A (t) 

= ® IT®A®( ® IT)®B®( ® IT)' 
T;;o-r>t t>r>s s>r> - T 

so that dT[A (t)B(s)] = dT[B(s)A (t)] = AB, while 
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I 
dT[A (t)B(s) - B(t)A (s)] 

= dT[A (t)B(s) - A (s)B(t)] = AB - BA . 

Example 2: Let {net) !tEJ} be strongly continuous 
(with common dense domain), and suppose this family gen­
erates a product integral (Dollard and Friedman20

). Choose 
any family {If\ !nEN} of partitions such that 

n 

lim IT exp{ - i!:J.t/"l( 1"j)} = f; [t, - T] , 
n ....... oo j= 1 

then lim,,_ 00 U" [t, - T] = U [t, - T], where 

U,,[t,-T] 

00 (UT)n n ._ 
= e- UT I IT exp{ -1!:J.tj H(1"j)}. 

n=O n! j=1 

This follows from the fact that Borel summability is regular. 
For the same family {Pn !nEN}, construct 
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U). [t, - T] 

00 (u,T)n {n } 
= e - 2AT n~o n! exp - i /~1 l:it)H( 7) . 

As in Ref. 16, we see that U[t, - T] = lim)._oo U). [t, - T] 
exists in L # [ V] . Furthermore, dT{ U [t, - T]} 
=dTlim)._oo U).[t, -T] =lim)._oo dT{U).[t, -Tn 
= U [t, - T]. We can interchange limits since dT is a 
closed linear operator on L # [ V]. It should be noted that 
the above limit can exist even if the standard product integral 
does not. This result will be discussed in a subsequent paper 
(see Gill and Zachary21 ) • 

v. APPLICATIONS TO THE CONSTRUCTION OF PATH 
INTEGRALS 

In the present section we consider time-ordered opera­
tors in more detail, and discuss the proposition that there 

Vn (t, - T)¢o = exp [ - i )tl f~ I E( 7),7)Ho( 7)d7] ¢o 

exists a one-to-one correspondence between path integrals 
and semigroups which are integral operators defined by a 
kernel. We apply our formulation of time-ordered operators 
to the discussion of path integrals of the type first considered 
by Feynman. 8 There have been many approaches to the 
mathematical construction of time-ordered operators and 
path integrals in recent years. We will not be using any of 
these approaches, so we content ourselves with offering the 
following admittedly incomplete list of references 7,9,10,22-25 

from which the reader can trace these developments. 
Let us consider the time-independent self-adjoint gener­

ator Ho of a unitary group defined on JY'in terms of a transi­
tion kernel K which satisfies the Chapman-Kolmogorov 
equation. 

If we replace the operator H 0 by its time-ordered version 
{Ho (t): tEJ}, we induce a natural family of kernels 
K(x(t),t;y(s),s) via Theorem 3.2. To see this, note that 

= IT [( ® Is) ® exp[ - i(t) - t)_1 )Ho] ® ( ® Is)] ¢o 
j=l t">S>Tj 'Tj>s>-T 

where ¢o = ® SEJ ¢(s), J = [ - T,T]. In (5.1), x) = x(t) 
and the index 7) on lK. is used to indicate the time at which lK. 
acts. Combination of (5.1) with Theorem 3.2 shows that 
V). (t, - T) may be represented in the form 

V). (t, - T)¢o 
00 

= e- 2AT I. 
n=O 

(5.2) 

Since U). (t, - T) exists as a well-defined bounded operator, 
and 

lim V). (t, - T) = Uo(t, - T) 
).-00 

exists in the uniform operator topology, Uo(t, - T) has a 
natural representation as an operator-valued path integral: 

Uo(t, - T) = r lK.(x(t),t;x(s),s) § [x(s)] , (5.3) J?(t, - T) 

where 2" (t, - T) = Rk(t, - T) denotes the set of all functions 
from [t, - T] to Rk. In (5.3) we have used a formal "func­
tional measure" notation, although a measure generally does 
not exist, as we discuss in more detail below. 

In recent years many authors have attempted to bypass 
the difficulty that Feynman-type path integrals cannot gen­
erally be written in terms of countably additive measures, 25 
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(5.1 ) 

as is the case for its closest relative, the Wiener integral. In 
the present paper we take the point of view that integration 
theory, as contrasted with measure theory, is the appropriate 
vehicle to be considered for a theory of path integration. An 
essential ingredient in our approach is the idea that it is pos­
sible to define path integrals by giving up the requirement of 
the existence of a countably additive measure. This idea has a 
precursor in the theory of integration in Euclidean spaces. 
That is, it is possible to define a consistent theory of integra­
tion, which generalizes Lebesgue integration, in which the in­
tegrals are finitely additive, but are generally not countably 
additive. 26 Indeed, Henstock27 has already discussed the 
Feynman integral from this point of view. 

Returning now to our discussion of (5.3), we note that 
many authors have sought to restrict consideration to con­
tinuous functions in the definition of path integrals. The best 
known example is undoubtedly the Wiener integral. 28 How­
ever, the fact that we must see 2" (t, - T) follows naturally 
from the time-ordered operator calculus, and such a restric­
tion is probably neither possible nor desirable in our theory. 
This means that our approach does not encourage attempts 
at the standard measure theoretic formulations with counta­
bly additive measures. In previous work by one of us, 15 the 
Riemann-complete (generalized Riemann) integral of Hen­
stock and Kurzweil26 was employed, because the time-or­
dered integrals need not be absolutely integrable, even in the 
bounded operator case. These issues will be studied in 
greater depth at another time. We note in passing that this 
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failure of absolute integrability also plays an important role 
in the path integral theory of Albeverio and H0egh-Krohn, 23 

and also in more recent developments (see, e.g., Ref. 24). 
Our theory, to be discussed in the remainder of the present 
section, allows for more general Hamiltonians. 

Before proceeding to a discussion of these results, we 
pause to discuss some examples. The first one is well 
known-the familiar Laplacian operator. Our purpose in 
discussing it here is to show how our theory works in a famil­
iar case. 

Let Ho = - a/2 so that Ho{t) = - a t /2, where the 
subscript t indicates the time slot at which this operator is to 
be evaluated. We have 

K(x,t; y,s) = (21Ti(t - s») - k/2 exp[ilx - yl2/2(t - s)] . 

In this case it is easy to see that 

Un (t, - T)<po 

= exp -~---..::..-..::..-) )- (1".) lIn 1 [i{tj.-tj._ I ) IX'-X' 112 ] 
j = I Rk 2 tj - tj _ I j 

dXj _ 1 <Po 
X----'~~~-

[21Ti{tj - tj _ l ) ]k/2 
(5.4 ) 

= ( exp[i ± ~(tj_tj_I)IXj-Xj-1 1\1"j)] 
JRk" j = I 2 tj - tj _ I 

n dx. I 

X II . j - k /2 <Po . 
j= I [21Tl{tj - tj _ I )] 

(5.5) 

By analogy with the definition ofHo{t) given above, the (1"j) 

are used to remind us that the corresponding functions in 
(5.4) and (5.5) are not ordinary exponentials because they 
have a specific time slot at which they are evaluated. This is 
our version of the occurrence of expansionals in the usual 
approachY Using (5.5) with (5.2), we have 

U~ (t, - T)<po 

n 

X II D(xj _ 1 ) <Po , 
j= I 

where D(xj _ I) = (21Ti{tj - tj _ I ») - k/2 dxj _ I' This means 
that U°{t, - T) may be represented by 

U°{t, - T)<p = i exp[~ i Jt 1 dx 12 dS] 
ir(t, - n 2 - T ds 

X II D (x(s) )<Po . 
t>s> - T 

As our second example, we consider the operator 
H = ~ - a + w 2 • It was shown by Pursey29 that the Barg­
mann-Wigner equation for a relativistic particle of any phy­
sically allowed spin value s = O,p,~, ... is unitarily equiva­
lent to the equation defining the Cauchy problem for this 
square root operator. Foldy and Wouthuysen30 showed that 
this operator is nonlocal with effective spatial extension 
equal to a Compton wavelength. Our interest here is to show 
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that it is an integral operator defined by a kernel K. 
The method of pseudodifferential operators can be used 

to show that a kernel exists and, under reasonable condi­
tions, can provide a phase space representation as we discuss 
in detail more general operators later in this section. How­
ever, if we desire a direct representation, then other methods 
are required. In our case, we have found that the method of 
fractional powers of operator semigroups allows us to solve 
the problem in a simple manner. By using results on pp. 281 
and 302 of Ref. 31, p. 260 of Ref. 32, and p. 498 of Ref. 11, it 
can be shown that the semigroup generated by the closure of 

~ - a + w2
, T( 1"), can be written in the form 

T( 1")<p(x) = iw
2 

( K2 [w1"~lx ~ y12/? - 1] <p( y)dy , 
2r1" JR' Ix - yl I~ - 1 

(5.6) 

where K2 ( .) denotes the modified Bessel function of the 
third kind of order 2. It is clear that T( 1") is holomorphic. 
From (5.6) we see that we have an example ofa semigroup 
with a kernel that is not of the form 

[ mix. - x· I 12 ] exp i - j j - (tj - tj _ I) . 
2 tj-tj _ 1 

(5.7) 

Since (5.7) is appropriate for the nonrelativistic regime, 
we cannot expect it to have general validity. However, if the 
argument of the Bessel function is large, we should expect 
the kernel in (5.6) to approximate (5.7) when 
I (Xj - x j _ I )/(tj - tj _ 1 ) I is small compared to unity 
( = speed of light). Since K 2(z) -~1T/2 e -zlz forlarge ar­
gument, we see that we may approximate the kernel in (5.6) 

by (using,.fiT=T - i,JT=ll ) 
K(xj,tj;Xj_1 ,tj _ I) 

iw2 

2r{tj - tj _ I) 

Jf exp[ - iw{tj - tj _ 1 ),JT=Il] 
X - ~=======:::::;;~;=:~=-

2 ~ iw(tj - tj _ I ),JT=Il (1 - v2) 

where v = I (Xj - xj _ 1 )/{tj - tj _ l ) I. Now, letting v-O in 
the denominator and approximating the square root in the 
numerator, we obtain 

K(xj,tj;Xj _ I ,tj _ I ) 

~ + i( . W )3/2 exp[ - iw{tj - tj _ I)] 
21Tl{tj - tj _ I) 

[
Wi x· - x· I 12 ] X exp i -) j - (tj - tj _ I) . 
2 tj-tj _ 1 

(5.8) 

Thus we see that the kernel in (5.6) reduces to the nonrelati­
vistic limit except for the extra phase factor which corre­
sponds to a rest mass term in the standard approaches. It is 
important to realize, however, that two distinct assumptions 
are required to obtain (5.8). The first corresponds to obser­
vations far removed from the particle, while the second in­
volves the nonrelativistic approximation. In order to see the 
effect of the first assumption, we need only note that for 
smallz, 

(5.9) 
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It is also of interest to investigate the limit UJ -- 0 corre­
sponding to a massless particle. In this case we replace K 2 (z) 
by (5.9) to obtain 

K(Xj,fj;Xj _ 1 ,fj _ l ) 

+ i [1 _I Xj - Xj - I 12] - 2 
t?(tj - fj _ I )3 fj - fj _ 1 

(5.10) 

It is very interesting to note that both (5.8) and (5.10) are 
propagators for unitary groups. 

In order to describe path integrals for more general 
situations than covered thus far in the present section, we 
consider the case of two families of self-adjoint time-ordered 
operators {Ho(t): fEJ} and {HI (t): fEJ} with respective do­
mains Do and DI which are dense in V¢. It is assumed that 
both families are strongly c-continuous generators of unitary 
groups. Consider a partition Pn of [ - T,t] as in Definition 
3.1 and let 7j ,SjE[fj _ 1 ,f). We then define 

Un (t, - T) = eXP[jtl (tj - fj _ I ){Ho( 7j ) + HI (Sj)} ] , 

U~ (t, - T) = eXP[jtl (tj - tj _ I )Ho( 7j ) ] , 

U~ (t, - T) = eXP[jtl (tj - fj _ 1 )HI (S)] . 

Since we do not assume any relationship between Do and Dp 
Un (f, - T) is well defined except when 7j = Sj for some j. In 
the contrary case we have 

Un (t, - T) = U~ (t, - T) U ~ (t, - T) 

= U~(t, - T)U~(t, - T). 

Now, defining Vi (t, - T), U~ (t, - T), and U 1 (t, - T) by 
combining the notations of Theorems 3.2 and 3.6, we have 
the following theorem. 

Theorem 5.416
: 

(1) lim Vi (t, - T) = U(t, - T) exists a.s., 
,1-00 

(2) U(t, - T) = UI(t, - T)U°(t, - T) 

= U°(t, - T)UI(t, - T) a.s. 

By specializing the partition Pn by choosing 
fj -tj _ 1 = lin, I <,J<,n, we have 

UA (t, - T) = e - 2AT n~o (~~)n [ill exp { ~ H o( 7)}] 

X [ill exp{ ~ HI (Sj) }] . 

This is reminiscent of the Trotter-Kato product formu­
la, 31.33 but is more general due to our weak restrictions on the 
two self-adjoint operator families and our use of the Borel 
summability procedure. For example, it is not necessary to 
assume that H o + HI is self-adjoint as in Ref. 33. This means 
that, in particular, it is not necessary to assume that one of 
the operators, HI say, is small in some sense relative to the 
other, Ho' The fact that Theorem 5.4 does not depend on the 
domains is anticipated by the work of Chernoff 34 on the 
"generalized additivity" of generators of semigroups arising 
from Trotter-Kato-type product formulas. This author has 
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given an extensive discussion of these formulas for quite ar­
bitrary domains. See also Kat035 for a discussion of the case 
of two positive self-adjoint operators on a Hilbert space 
when the intersection of their domains may be arbitrary. 

We remind the reader at this point that the Trotter­
Kato formula is one of the standard methods for formal deri­
vations of Feynman's formula for the nonrelativistic time­
evolution operator. 23

,36 Similarly, Theorem 5.4 is the basis 
for our treatment of the Feynman integral which, however, 
is completely rigorous. 

We now discuss the results in Theorem 5.4 from a slight­
ly different point of view. We see from this theorem that 

UCt, - T) =exp [ -i fT {Ho(7) +HI (7)}d7] 

exists a.e. and 

U(t, - T) = lim UA Ct, - T) , 
,1_ 00 

where 

xexp [ - i jtl r~ 1 {E( 7j ,7)Ho( 7) 

+E(Sj,7)HI (7)}d7] (5.11) 

with 7j,SjE [tj _ I ,tj ). Ifwe use (5.5), the exponent in (5.11) 
can be replaced by 

n { IX'-X' 112 iI (tj-fj _ l ) j j- (7j ) 
j=1 tj-tj _ 1 -r~ 1 E(Sj,7)HI(x( 7),7)d7} . 

Taking limits, we have 

UCt, - T) = J r eXP[iJI {~/ dx /2 
Jr(l, - n - T 2 ds 

- HI(X(S),S)} dS] II D (x(s») . 
I>s> - T 

(5.12) 

It is clear that our conditions on the family HI (x,s) are suffi­
ciently general to cover most cases of interest in nonrelativis­
tic quantum theory. We can now write (5.12) in the form 
originally envisioned by Feynman, namely, 

U(t, - T) = ( exp[i JI L (X(S),X(S),S)dS] 
J"'(I. - n - T 

XII D(x(s»), 
s 

where xes) = dx/ds and 

L (x(s),x(s),s) = ~/ dx /2 _ HI(x(s),s) 
2 ds 

denotes the Lagrangian. 
We now generalize the representation (5.12) by consid­

ering more general choices for the operator Ho( 7). For these 
operators we choose the class of hypo elliptic pseudodifferen­
tial operators studied by Shishmarev. \0 In this way, we are 
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able to derive a representation for U(t, - T) analogous to 
(5.12) which will include cases useful for studies in relativ­
istic quantum mechanics such as, e.g., perturbations of the 
square root operator studied earlier. 

LetH(x,p) denoteak xkmatrixoperator [Hij(x,p)], 
i,j = 1,2, ... ,k, whose components are pseudodifferential op­
erators with symbols hij (x,1/ )EC 00 (]RN X ]RN) and we have, 
for any multi-indices a and {3, 

Ih ~~~) (x,1/) I <CaP (1 + 11/I)m -,; lal + I>IP I , 

where 

h~~~) (x,1/) =aapphij(x,1/) 

(5.13 ) 

with a l = a la1/I' and PI = (l/i)(a lax l ). The multi-in­
dices are defined in the usual manner by a = (a I"" ,aN) for 
integers a j ;;;.0, and la I = };f"~ I a j , with similar definitions 
for {3. The notation for derivatives is aa = af'" ·a~N and 
pp = It,· . ·lJ:. Here, m, {3, and {j are real numbers satisfying 
O<{j <S. Equation (5.13) states that each hij (x,1/) belongs 
to the symbol class3

? S 21> . 
Leth(x,1/) = [hij(x,1/)] be the matrix-valued symbol 

for H(x,p), and letA I (x,1/), ... ,Adx,1/) denote its eigenval­
ues. If 1'1 denotes a norm in the space of k X k matrices, we 
suppose that the following conditions are satisfied by 
h(x,1/): For 11/1> Co > 0 and XE]RN we have 

(1) Ih ~.B; (x,1/) I <CaP Ih(x,1/) I (1 + 11/1) -,; lal +l>IPI 

(hypoellipticity) , 

(2) Ao(X,1/) = max ReAj (x,1/) <0, 
I<j<k 

(3) Ih(x,1/) I =0((1 + 11/1)(,;-I»/(2k-E») , €>O. 
IAo(X,1/) I 
We assume that H(x,p) is a self-adjoint generator of a 

unitary group, so that 

U(t,O)¢o(x) = exp[ - itH(x,p) ]¢o(x) = ¢(x,t) 

solves the Cauchy problem 

i a¢ = H(x,p)¢,¢(x,o) = ¢o(x) . 
at 

(5.14 ) 

Definition 5.1: We say that Q(x,t,1/,O) is asymbolfor the 
Cauchy problem (5.14) if ¢(x,t) may be represented as 

¢(x,t) = (21T) -N/2 r ei(X,TilQ(x,t,1/,o)¢o(1/)d1/. (5.15) 
JRN 

It suffices to assume that ¢o belongs to the Schwartz 
space y (]RN), which is contained in the domain of H(x,p), 
in order that (5.15) makes sense. 

Following Shishmarev,1O and using the theory of Four­
ier integral operators, we define an operator-valued kernel 
for U(t,O) by 

K(x,t; y,O) = (21T) - N /2 r ei(X - y;rilQ(x,t,1/,O)d1/, 
JRN 

so that 

U(t,O)¢o(x) = ¢(x,t) = r K(x,t;y,O)¢o( y) dy. (5.16) 
JRN 

1467 

The following results are due to Shishmarev. lo 

Theorem 5.5: Suppose H (x,p) is a self-adjoint generator 
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of a strongly continuous unitary group with a domain which 
is dense in L 2(]RN) and contains y(]RN), such that condi­
tions (1 )-( 3) are satisfied. Then there exists precisely one 
symbol Q(x,t,1/,O) for the Cauchy problem (5.14). 

Theorem 5.6: Suppose one replaces condition (3) in 
Theorem 5.5 by the condition 

(3') Ih(x,1/) I = 0((1 + 11/i)(,;-I»/(3k-I-E») , 
IAo(X,1/) I 

€ > 0 , 11/1 > Co . 

Then the symbol Q(x,t,1/,O) of the Cauchy problem (5.14) 
has the following asymptotic behavior as t ..... O: 

Q(x,t,1/,O) = exp[ - ith(x,1/)] + 0(1) , 

uniformly for X,1/E]RN. 
Now, using Theorem 5.6 we see that under the strength­

ened condition (3') the kernel K(x,t; y,O) satisfies 

K(x,t;y,O) = r exp[i{(x - y,1/) - th(x'1/)}]~ JRN (21T)N 

+ r exp[i(x-y'1/)]~ 0(1). JRN (21T)N 

We now apply the results discussed earlier in this section 
to construct the path integral associated with H(x,p). The 
group property of U(t,O) insures thatK has the reproducing 
property expressed by the Chapman-Kolmogorov equation. 
In our time-ordered version, we obtain 

K,.(x,t;y,O) = r exp[i{(x-y,1/) -th,.(x,1/)}] JRN(,.) 

x~+o(1). 
(21T)N 

This representation leads to the Feynman phase space ver­
sion of the path integral. 

We can now obtain more general path integrals than 
(5.12) by replacing (5.5) by (5.16). It follows from Theo­
rems 5.4-5.6 that path integrals exist which are generaliza­
tions of (5.12). These new path integrals correspond, of 
course, to Hamiltonian operators which are perturbations of 
the operators described in Theorems 5.5 and 5.6, rather than 
to Hamiltonians which are perturbations of Laplacians. 
These path integrals constitute a very large class which con­
tain most integrals of interest in mathematical physics. 

VI. PERTURBATION EXPANSIONS 

In this section we discuss the Feynman-Dyson operator 
calculus for U(t, - T). It is shown that the corresponding 
perturbation expansions do not converge in general, but are 
"asymptotic in the sense of Poincare" in the sense used in the 
theory of semigroups. liOn the other hand, if we assume that 
the semigroups possess certain holomorphy properties, then 
the perturbation series converge. Previous investigations of 
these perturbation expansions have been confined to the in­
teraction representation in the framework of nonrelativistic 
scattering by time-dependent potentials38 and external field 
problems in quantum field theory.39 

Our results of this section pertaining to the asymptotic 
nature of these perturbation expansions affirms a well-
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known conjecture of Dyson 12 made in the context of the 
special case of the renormalized perturbation expansions in 
quantum electrodynamics on the basis of a simple physical 
argument. Although presently, many people believe quan­
tum electrodynamics should be formulated in a Hilbert 
space with an indefinite metric (see, e.g., Ref. 40 and the 
works cited therein), Dyson made no such assumptions. In 
our concluding remarks to this section, we make explicit our 
basic assumptions and argue that they certainly cover condi­
tions that physicists believe QED should satisfy. 

9>nsider the infinite tensor product Hilbert space 
V = ® seJ JY(s) of Sec. II, where J = [ - T,T], 
JY(s) = JY for each sEJ, and JY denotes a fixed abstract 
separable Hilbert space. For a family {H(t): tEJ} of densely 
defined strongly continuous self-adjoint operators on JY, 
the corresponding time-ordered family {H(t): tEJ} is de­
fined on Vby (2.4). Let U(t, - T) denote the corresponding 
time-evolution operator whose existence is guaranteed by 
Theorem 3.2. 

Let 

Q(t, - T) = - i J~ T H(s)ds 

denote the time-ordered integral of the family { - iH (t) : 
tEJ}. Then the closure of Q(t, - T), which we will also de­
note by Q(t, - T), generates the strongly c-continuous uni­
tarygroup U(t, - T) = exp[Q(t, - T)] on V. We also have 
the following. 

Theorem 6.1: Suppose ¢JED (HN(S») for - T<s<t. 
Then U(t, - T)¢J can be written in the form 

N-I 1 
U(t, - T)t/J = L -(Q(t, - T»)k¢J + RN(t, - T)¢J, 

k=O k! 

(6.1 ) 

with the following representations for the remainder term: 

RN (t, - T)¢J = f dvO - V)N-I exp[vQ(t, - T)] 

X (Q(t, - T) )N ¢J 
(N-l)! ' 

( 6.2) 

and 

I
t IT, 

RN(t, - T)¢J = (- i)N _ T dTN'" _ T d71 

XH(7N)"'H(71 )U(71, - T)¢J. (6.3 ) 

Proof' It follows from a result of Hille and Phillips (Ref. 
11, p. 354) that (6.1) holds with the remainder term given 
by (6.2). The equality of the latter with (6.3) is a conse­
quence of the following result, which establishes a Fubini­
type theorem for the Feynman-Dyson operator calculus. 

Lemma 6.1: For any N = 1,2, ... , we have 

-!'[It 

H( 7)d7]N 
N. -T 

It ITN IT' = d7N d7N_ I '" d71 H(7N )···H(71)· 

-T -T -T 

Proof: Recall that the bounded operators 

H z (7) = [exp(zH(7»)-I]lz, z>o, 
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convergeasz!OtoH(7) onD(H( 7») uniformly in 70n com­
pact sets. We can therefore, without loss in generality, as­
sume that H ( 7) is bounded for each 7. The proof can then be 
completed by a bounded operator version of the usual inte­
gration by parts procedure for functions. 

In the remainder of this section we discuss the problem 
of approximating the various terms in the expansion (6.1). 
For this purpose we use the form (6.2) for the remainder 
term. 

Using the fact that Q(t, - T) generates the strongly c­
continuous unitary group U(t, - T), we find from the the­
ory of semi groups 11,41 that 

P
z 
(t, - T) = (exp[zQ(t, - T)] - I)/z, z>O, 

convergestoQ(t, - T) onD(Q(t, - T»)aszW. More gener­
ally, we have the following. 

Lemma 6.2: Fix some re{1,2, ... } and take 
lED ({Q(t, - T)}'). Then 

s-lim {Pz (t, - T) YI = {Q(t, - T) Y I· 
z10 

Proof: From p. 99 of Ref. 41 we have 

(P~ - Q')¢J 

=~ i (-1),-jl(~) 
r. j= I J 

X{~[eiZQ¢J- 'il (jZ;k Qk¢J] -Q'¢J}, 
(JZ) k=O k. 

so that 

I/(P; - Q')¢JII< sup II(euQ -I)Q't/JII, 
O<u<rz 

from which the proof readily follows. 
Let us now define the bounded operators 

Uz (t, - T) = exp[ Pz (t, - T)] 

N - I [Pz (t, - T) ] k 

= L +R~, 
k=O k! 

where 

R ~(t, - T) = f dv(l - V)N-I exp[vPz(t, - T)] 

[ Pz (t, - T) ] N 
X...!:..--"-------..:!-

(N - 1)! 
(6.4 ) 

The boundedness of these operators follows from the esti­
mates, 

I/{Pz(t, - T)}'II«2!z)', r= 1,2, ... , (6.5) 

which are, in turn, consequences of the fact that Q( t, - T) 
generates a contractive semigroup. 

Now we have the following Theorem. 
Theorem 6.2: 

(a) s-lim Uz (t, - T) = U(t, - T) , 
Z10 

(b) s-lim R ~(t, - T)¢J 
z10 
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Proo/" (a) follows from the fact that U(t, - T) is a 
strongly c-continuous unitary group on V and Hille's first 
exponential formula (see, e.g., Ref. 41, Theorem 1.2.2). 

To prove (b) we write, using (6.2) and (6.4), 

(R _Rz )A.= (dV(l-V)N-l [eVQQN_eVPzpN]A. 
N N 'f' Jo (N _ I)! z 'f' 

so that 

+ lIeVPZ(QN - P:)¢II] . (6.6) 

For the first term on the right-hand side of (6.6) we use the 
fact that, by Theorem 1.2.2 of Ref. 41, 

II (evQ - eVPZ)QN¢II--.O as ztO, 

for ¢ED(QN) uniformly with respect to vE[O,l]. The van­
ishing of the remaining term in (6.6) as z!O follows from 
Lemma 6.2 coupled with the estimate 

Ilexp[vPz(t, - T)]11<1, (6.7) 

which in turn follows from Hille's first exponential formula 
and the fact that U(t, - T) is unitary. II 

We see from (6.4) that R ~ is a bounded operator, and 
we find with the help of ( 6.5) and (6.7), 

IIR ~II« liN!) (2!Z)N. 

Now, using this estimate and Theorem 6.2, we obtain an 
estimate for the remainder term of the perturbation series: 

IIRN¢II<IIR~¢II + II(R N -R~)¢II 

(6.8 ) 

where, for N fixed and given € > 0, we choose Zo> ° suffi­
ciently small that 

II(RN-R~)¢II<€, ¢ED(QN) , 

for z <zoo However, it does not follow from the estimate 
( 6. 8) that R N¢ --> ° as N --. 00 because Zo cannot be chosen 
independently of N. Thus the perturbation series does not 
converge. 

It does follow from the above results, however, that the 
perturbation expansion is "asymptotic in the sense of Poin­
care." Compare the definition of this concept on p. 487 of 
Ref. 11 with Theorem 2.2.13 of Ref. 41. 

We can use techniques similar to those discussed in the 
present section to obtain results for the perturbation series 
for the scattering operator, since limT _ 00 U). [T,t ] 
=U[oo,t] and limT_ooU).[t,-T]=U[t,-oo]; 

S[ 00, - 00] = U[ oo,t] U[t, - 00]. 
We now make a few remarks concerning the conver­

gence of the perturbation expansions when the correspond­
ing semigroup is holomorphic. The semigroup that we have 
been considering is U(t, - T) = exp{Q(t, - T)}, which we 
now rewrite in the form 

U(t, - T) = exp[ 1"{Q(t, - T)/r}] 

in terms ofa parameter 1". We say that U(t, - T) is holomor-
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phic if, as a function of 1", it can be continued into a neighbor­
hood of unity in the complex 1"-plane (compare with Ref. 32, 
p. 254). It then follows from the general theory of semi­
groups that the perturbation series (6.1) converges. The 
proof is similar to that of Theorem 1.1.11 in Ref. 41. 

In conclusion, it is important to note that our only as­
sumptions are (1 ) H (1) = S R H (t,x) dx is the generator of a 
unitary group on 3Y' for each t [where H(t,x) is the field 
energy density on ]Rn]; (2) the set of operators {H(n ItE.!} is 
strongly continuous with common dense domain; and (3) 
3Y'is a separable Hilbert space. It could be argued that the 
assumption of a common dense domain for the Hamilto­
nians is too strong for any formulation of QED; however, 
this assumption is not necessary for our theory to apply. This 
will be taken up at a later time when we consider applications 
to nonlinear formulations. 

VII. CONCLUDING REMARKS 

In this paper we have used an algebraic approach to 
time-ordered operators based upon von Neumann's infinite 
tensor product Hilbert spaces to define path integrals which 
appear to include most cases of interest in mathematical 
physics. We have proved that there exists a one-to-one corre­
spondence between path integrals and semigroups which are 
integral operators defined by a kernel. The reproducing 
property of the kernel is a consequence of the semigroup 
property. 

The generality of our construction is intimately con­
nected with the fact that our tensor product Hilbert spaces 
are constructed using an abstract separable Hilbert space as 
a base. This allows application to many different physical 
problems according to different choices of this base Hilbert 
space. We will consider some of these applications in future 
work. 

We have shown that our treatment is a generalization of 
the customary approach to time-ordered operators and path 
integration by means of product integrals. Moreover, when 
Hamiltonians which are sums of two parts (in a certain well­
defined sense) are considered, our results do not depend 
upon the domains of the latter operators. 

We have also shown that our approach leads to unique 
solutions to the Cauchy problem for Schrodinger equations 
with time-dependent Hamiltonians. This is clearly of inter­
est for mathematics as well as physics, since one is concerned 
here with linear time-evolution equations. 

We have advanced the point of view that it is unnatural 
to try to force path integrals into a description by means of 
countably additive measures. The viewpoint has been ex­
pressed that the theory of integration, rather than measure 
theory, is the appropriate vehicle for a general formulation 
of path integration. Thus, although path integrals can be 
written in terms of countably additive measures in certain 
special cases, this is not the situation in general. 

We have also discussed perturbation expansions for 
time-evolution operators. It has been shown that these ex­
pansions generally do not converge, but are asymptotic in a 
certain well-defined sense. On the other hand, these series 
converge when the semigroups possess suitable holomorphy 
properties. It should also be noted that our approach shows 
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that the general belief expressed in Ref. 39, to the effect that 
the Dyson expansion can only hold with H(t) bounded, is 
not quite correct (see p. 283 of that reference). 
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A new uniqueness theorem is established for the inverse Sturm-Liouville problem. It is shown 
that the measurement of a particular eigenvalue for an infinite set of different boundary 
conditions is sufficient to determine the unknown potential. 

I. INTRODUCTION 

In this paper a new uniqueness theorem will be estab­
lished for the inverse Sturm-Liouville problem. We will 
show that the measurement of a particular set of eigenvalues 
is sufficient to determine the unknown potential. 

Specifically, let us consider the eigenvalue problem 

y"(x) +(-t-q(x»)y=O, O<x<l, 

yeO) =0, y'(1) +/3y(1) =0, 
(1.1 ) 

where q(x)EL 2(0,1) has to be determined in addition to 
y(x). 

In the typical formulation of the inverse Sturm-Liou­
ville problem one seeks to recover both q(x) and the con­
stant/3, by giving the eigenvalues Aj (q,/3),forj = 0,1,2, ... for 
( 1.1 ), together with another piece of spectral data. These 
data can take several forms, leading to many versions of the 
problem, some of which can be shown to be equivalent. 

In the Gelfand-Levitan formulation, I if Yj (x,q,Aj) de­
notes the jth eigenfunction of ( 1.1 ), then one gives, in addi­
tion to the eigenvaluesAj , the values of the norming constants 

( 1.2) 

Here II' . '11z denotes theL 2 (0,1) norm, and one usually gives 
the normalizationy; (O,q,Aj) = 1. 

Another possible set of norming constants that leads to a 
unique determination of both q(x) and /3 is 

- I { 1 j y; (l,q,Aj) } '-Pj- og (- ) , , J-0,1,2, ... , 
Yj (O,q,Aj) 

(1.3 ) 

as given by Dahlberg and Trubowitz. z (See also Levinson3 

and Isaacson-Trubowitz. 4 ) 

If the boundary condition atx = 1 is changed, say to the 
Dirichlet condition Y( 1) = 0, and the corresponding set of 
eigenvaluesA k (q), k = + ,1,2, ... , is also given, then at most 
one pair (q,f3) can satisfy this data. This is the classical two 
spectrum version of the inverse Sturm-Liouville problem 
studied by Borg.5 See also Refs. 6 and 7. We will use this last 
result in the proof of our theorem. 

Finally, if it is known a priori that q(x) is symmetric 
aboutthe midpoint of the interval, that is, q(x) = q(1 - x), 
then this information together with a knowledge of the 
eigenvalues Aj (q,/3) is sufficient to determine q(x) and /3.6.8 
Further information on these results may be obtained from 
the survey article, Ref. 9. 

Recently, other kinds of spectral data have been consid­
ered and uniqueness results have been established. In partic­
ular, it has been shown by McLaughlin, 10 that the potential 
q(x)EL 2(0,1) in the Sturm-Liouville problem 

y"+(A-q)y=O, y(O)=y(1)=O (1.4) 

is uniquely determined by knowledge of the position of one 
node (or zero) of each eigenfunction. 

In the result to be given here we suppose that we can 
measure a single eigenvalue, for example the second eigen­
value, for a fixed unknown potentialq(x) but be able to do so 
for a countable number of different boundary conditions. 
That is, in the notation above we suppose that for a fixedj we 
can measure A j (q,/3 k) for distinct /3 k , - 00 < /3 k < 00, 

k = 1,2, .... We establish that at most one potential q(x) is 
determined by these measurements. 

II. THE UNIQUENESS THEOREM 

In this section we will establish the result that at most 
one potential q(x) can be determined fromAj (q,/3k)' wherej 
is fixed and /3 k' k = 1,2, ... , are all distinct. 

We require two preliminary lemmas, which we shall 
state without proof. This first is a well-known oscillation 
theorem for the eigenvalues of a Sturm-Liouville problem; 
the second is a precise statement of the two spectrum inverse 
Sturm-Liouville problem mentioned in the Introduction. 

Lemma 1: Letq(x)EL z(O,l). Then 

Aj (q) <Aj (q,/3) <Aj+ I (q) (2.1) 

for all /3, - 00 </3 < 00. 

Lemma 2: If for two values of /3 in (1.1), say /31 and /3z, 
and for q I and q2EL z (0,1 ), the eigenvalues of problem (1.1) 
satisfy 

Aj (ql,/3l) =Aj (qz,/3I)' j=0,1,2, ... , 

Ak (ql,/32) = Ak (q2,/32)' k = 0,1,2, ... , 

then ql = qz a.e. 
The uniqueness theorem is as follows. 
Theorem: Letql (x) andqz(x)EL 2(0,1). Fix}, a positive 

integer. Suppose that /3 k for k = 1,2, ... are distinct real 
numbers and 

(2.2) 

then ql (x) = qz(x) a.e. 
Proof For each A we letyz(x,qj,A) be the solution of the 

initial value problem 

y"+(A-qj)y=O, y(O) =0, y'(O)=1. (2.3) 
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Then for each A we have the Sturm identity 

o =yz(x,ql,A){y;(x,qz,A) + (A - q2)Y2(X,q2,A)} 

- Y2(X,q2,A){Y;(X,ql,A) + (A - ql)YZ(X,ql,A)} 

= (ql - q2)Y2(X,ql,A)Y2(X,qZ,A) 

+ {Y2(X,ql,A)Y; (X,q2,A) - YZ(X,q2,A)y; (x,ql,A)}'. 
(2.4 ) 

We shall denote by Aj (qi) the eigenvalues of the prob­
lem (1.1) when homogeneous Dirichlet boundary condi­
tions are imposed atx = 1, that is'Y2( l,qi.Aj ) = O. 

We now use the simplified notation 

f.Lk =A/qt/3k ) =Aj (q2,{3k), k= 1,2, .... 

Setting A = f.L k in (2.3) and integrating from 0 to 1, we see 
that the term in brackets on the final line has value zero at 
x = 0 and x = 1 for each k = 1,2, ... , and we are left with 

f (ql - q2)Y2(X,qt>f.Lk )Y2(X,q2,f.Lk )dx = 0, k = 1,2, .... 

(2.5) 

It is now observed from Lemma 1 that the sequence 
{ f.L k } '; ~ I forms a bounded set on the real line and conse­
quently has at least one finite accumulation point. Further, 
since for fixed x, Y2 (X,qi,A) is an analytic function of A, we 
can show that 

F(A) = f (ql - q2)Yz(X,ql,A)Y2(X,q2,A)dx (2.6) 

is also an analytic function of A. However, since F(A) = 0 at 
an infinite set of values of A with a finite accumulation point, 
then 

(2.7) 

for all complex A. 
We now seek to show that all of the eigenvalues of ( 1.1 ) 

with 13 = 0 and all of the eigenvalues of ( 1.4) are the same 
for the function q(x) set equal to ql (x) or q2(X), that is, we 
will show that 

An (ql) =An (q2), n = 1,2, ... , 

Am (ql'O) = Am (q2'0), m = 0,1,2, .... 

(2.8) 

(2.9) 

From Lemma 2 we would then be able to conclude that 
ql = q2 a.e. 
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In order to prove (2.8) and (2.9), we return to the iden­
tity (2.4) and recall that when A=Am(ql'O), then 
Y2(I,ql,A m (ql,Q))¥O, whiley;(1,ql,Am (ql'O») = O. Integrat­
ing (2.4) from 0 to 1 when A = Am (ql,Q) and using (2.7), 
we must have 

y;(1,q2,A m (ql'O») = 0, m = 1,2, .... 

This implies that each Am (qpO) is an eigenvalue for (1.1) 

and (1.2) when (q,/3) is chosen to be (q2'0). From the 
asymptotic forms that Am (q2'0) must satisfy, it follows that 
(2.8) holds. 

Similarly set A = An (ql) in the identity (2.4) and note 
that Y2(I,q l .An (ql») = 0 while y;(1,q l .An (ql»)¥O. Then, 
again using (2.4) and integrating from 0 to 1, we must have 

y;(I,q2.An(ql») =0, n= 1,2, .... 

The proof is now complete. 
Remark: The uniqueness theorem also holds when 

j = 0, provided that we have the existence of an M, 
M> - 00 such that M < ,,1,0 (q;.13k ), for all k = 1,2, .... 
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A plausibility argument presented by the first two authors in an earlier paper [J. Math. Phys. 
26,3042 (1985)] concerning the existence of partially invariant solutions for some equations 
of the Fokker-Planck type is made precise by the explicit construction of one such solution. In 
the process a substantial simplification of Ovsiannikov's method for finding partially invariant 
solutions is achieved. In addition, the class of partially invariant solutions obtained by 
Ovsiannikov for the equations of transonic flow of a gas is enlarged. 

I. INTRODUCTION 

In a recent paper I a plausibility argument for the exis­
tence of a certain class of solutions for some equations of the 
Fokker-Planck type was presented. That argument is made 
precise in the present paper by the construction of one such 
solution, thereby showing that the class referred to is not 
empty. At the same time, the method of Ovsiannikov, used 
in that construction, is substantially simplified. Finally, the 
class of solutions of the same type as above, obtained by 
Ovsiannikov for the nonlinear equations of transonic flow of 
a gas, is enlarged. 

The notation and definitions used here are the same as 
those of Refs. 1 and 2, which in turn are the same as those of 
Ovsiannikov. 3

.4 The reader is referred to the work ofOvsian­
nikov3.4 for a full discussion of the ideas involved. 

The method used here is that of Ovsiannikov, which 
differs from the standard method of finding similarity solu­
tions in that it regards a partial differential equation as a 
system of first-order equations rather than a single higher­
order equation. To be specific, let us consider one of the 
equations discussed in some detail in Ref. 1, namely, the one­
dimensional heat equation 

au a2u 
(-oo<x<oo, t>O). (1) at ax2 

In Ovsiannikov's method one considers, instead of Eq. 
( 1 ), the equivalent system 

(2) 

and proceeds to construct its group of Lie symmetries. It can 
be shown3

.4 that Eq. (1) and the system (2) have the same 
group of Lie symmetries and that it is infinite dimensional. 
The infinite-dimensional component arises from the fact 
that the heat equation, like any other linear homogeneous 
equation, is invariant under translations in u by solutions of 
the equation. If one takes the quotient of the full group by 
this infinite-dimensional component due to translation, 
which forms a normal subgroup, one obtains a six-dimen-

sional group G whose infinitesimal generators are 

and 

a a 
X6=U-+V-. au av 

LetHbea subgroupofG. A solutionj(t,x) ofEq. (1) is 
said to be invariant under Hifthesurface u = j(t,x) is invar­
iant under H. Solutions that are invariant with respect to 
(w.r.t.) some subgroup of G are simply called invariant or 
similarity solutions. A solutionj(t,x) is said to be partially 
invariane.4 W.r. t. H if the surface u = j( f,X) is contained in 
some surface invariant under H. 

The invariant solutions of Eq. (1) can be found, and 
have been found,5 by the standard method. The question is, 
does Eq. (1) have partially invariant solutions w.r.t. some 
subgroup of G which are not invariant w.r. t. any subgroup of 
G, and if so, how does one construct them? It has been 
shown l that the standard method of finding similarity solu­
tions cannot be used to construct them even if they exist; the 
presence of the extra variable v in the system (2), the "super­
fluous variable" in Ovsiannikov's terminology, turns out to 
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be essential. The question raised is answered in the affirma­
tive in the present paper. 

At this stage, a criterion for checking whether a given 
solution/(t,x) is invariant or not w.r.t. a subgroup H would 
be useful. This is provided by the theorem on p. 31 of Ref. 3, 
which says that if X denotes the infinitesimal generator of H 
and if F(t,x,u) == U - l(t,x) , thenl(t,x) is an invariant solu­
tion w.r.t. H if and only if XF(t,x,u) = 0 whenever 
F(t,x,u) = o. 

II. EXAMPLES 

Let H denote the one-dimensional subgroup of G whose 
infinitesimal operator is aX! + (3X6' a,(3 #0. Then it has 
been shown! that solutions partially invariant w.r.t. Hare of 
the form 

(3) 

where A. = x and,u = ve -13t/a and/obeys the partial differ­
ential equation (POE) 

,u2/pp + 2,ulp/;.p - 2,u10p 

- 21 J J;.p + lifpp + I;J;.;. 

+ «(3la)ul! - «(3 la)ff~ = O. (4) 

It is in the derivation of this POE that Ovsiannikov's 
algorithm (as described in the example on p. 286 of Ref. 3) 
can be substantially simplified. Following that algorithm, 
Eq. (4) was derived in Ref. 1 by the imposition of the compa­
tibility criteria Vtx = Vxt and/p;. =I;.p and of the condition 
that U,V must satisfy the system (2). The calculations, 
though straightforward, are tedious and take about six pages 
when written in longhand. The easier (and quicker) method 
still involves assuming that U,V satisfy the system (2) and 
that I;.p = Ip;. but dispenses with the assumption that the 
superfluous variable v satisfies the compatibility condition 
Vxt = Vtx ; instead, it is assumed that Vxx = Vt. What this 
amounts to is a weakening of the assumption that U is thrice 
continuously differentiable, which implies that Vxt = Vtx ' to 
the assumption that U is twice continuously differentiable, 
which implies that Vxx = Vt • Interestingly, this weakening of 
the assumption reduces the work involved in deriving the 
POE for I by a factor of at least 6. This is true for any 
subgroup of G, but since Eq. (4) was derived earlier! using 
Ovsiannikov's algorithm, let us derive it using the easier 
method. 

We have U = ,j3t lal(A.,,u), where A. = x,,u = ve -l3t la, so 
that A.x=l, A.t=O, ,ux=vxe-l3tla,,ut=(Vt 
- v(3la)e- 13tla. So 

Ux =/pvx + 1;.,j3tla, 

Ut = /PVt - /pv«(3 la) + «(3la)l,j3tla, 

Uxx = (/P;. + Ippvxe-l3tla)vx + /pvxx 

+ (I;.;. + l;'pvxe-l3tla),j3tla. 

Use now of the conditions Ut = uxx and Vt = vxx as well 
as the relation Vx = (lilp )(v - /;. (vl,u») gives 

/pp (,u - /;. ) 2 + 21 P/;'P (,u - /;. ) + 10;. 

+ «(3 I a )/~ (,ulp - I) = 0, (5) 
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provided Ip # O. Equation (5) is just another form of Eq. 
(4). Although the above simplification is specific to the heat 
equation, for which the assumption Vt = Vxx is meaningful, it 
seems reasonable to believe that similar assumptions, appro­
priate to the equation under consideration, would lead to a 
simplification of the Ovsiannikov method. Of course one 
could use computer software such as MAPLE and MACSYMA 

to carry out these calculations, but even when such packages 
are used, shortcuts would be helpful in reducing the amount 
of computing time used. 

It is interesting to note a simple pattern that emerges in 
the case of the heat equation. For the subgroup with the 
generator aX! + (3X6, we have 

(6) 

where A = I p' B = /;. ,j3tla, C = «(3 la)l,j3tla - /pv«(3 la). 
Equations of the same form hold for different subgroups of 
G, with different A, B, and C. Use of the heat equation and 
the condition Vxx = Vt leads to the equation 

A(C-Bx) =Ax(v-B). 

This equation contains Eq. (4). 
Going back to Eq. (3), one way to find U is to solve Eq. 

(4) for I and use that solution in 

(7) 

and 

V =V -+- ---I;. +-JJ: ( 
1 (3) ,j3tla( (3 ) 

t I~ a r a P 
(8) 

and substitute the resulting quantities in Eq. (3). 
Two remarks concerning Eq. (4) are in order. First of 

all, since it is derived by a process of differentiation, Eq. (4) 
is necessary but not sufficient for U given by Eq. (3) to satisfy 
the system (2); it is conceivable-in fact it is easy to show­
that solutions of Eq. (4), which contain arbitrary functions, 
will not in general be such that (s.t.) u, given by Eq. (3), 
satisfies the system (2) unless the arbitrary functions are 
chosen appropriately. Thus one may regard Eqs. (3) and 
( 4) as a source for finding functions u, some of which turn 
out to be solutions ofEq. (2) as well. The second remark is 
that although Eq. (4) is substantially harder to solve than 
Eq. (2), it is not the general solution ofEq. (4) we are inter­
ested in but particular ones which lead to solutions of the 
specific form (3) ofEq. (2). In other words, the method of 
partially invariant solutions leads to the construction of trial 
solutions ofEq. (2). 

It is easy to check that 1(A.,,u) = ea
;' + c,u, where 

a2 = (3 I a and c is an arbitrary constant, is a solution of Eq. 
(5). Choosing c so that c # 0 and ac # I, one can construct 
the following solution of Eq. (1): 

U(t,X) =g(t,x) + h(t,x) + k(t,x), 

where 

and 

g(t,X) = (qla),j3tla + ax, 
h(t,x) = Aetlc'exlc, 

Sastri, Dunn, and Rao 

(9) 

( 10) 

(11 ) 

(12) 
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where A, B are arbitrary constants, and q = pl( lIc2 - fJ I 
a), withp = alc2 + fJ lac. 

Observe that each of g, h, k is a solution of Eq. (1); 
therefore so is g + h + k. Observe also that each of g, h, k is 
an invariant solution w.r.t. a subgroup of G consisting of 
simultaneous translations in t and x and stretching in the 
dependent variable. Nevertheless, we claim thatg + h + k is 
not an invariant solution w.r.t. any subgroup ofG other than 
the identity group. Assuming that this claim has been estab­
lished, one may ask, considering the simple nature of 
g + h + k, whether one cannot construct such noninvariant 
solutions by some ad hoc means using the standard ap­
proach. The answer to that is twofold. Our aim has been to 
show that the Ovsiannikov method yields, in a natural way, 
partially invariant solutions which are not invariant; the ex­
ample being presented here shows that. Second, using the 
simplified Ovsiannikov method, the authors have derived 
for several subgroups of G the PDE's that lead to partially 
invariant solutions; these will be listed later. 

It is sufficient to consider the action of G on the (t,x,u) 
space in order to check whether a given solution is invariant 
or not. Now any subgroup of G is generated by some linear 
combination of {XJ, 1<i<6. So, in view of the theorem 
mentioned earlier, it suffices to show that if 

F{t,x,u) = u - g{t,x) - h(t,x) - k(t,x), 

then for any constants CI'C2' •.. 'C6, the statement 

Ctl CiXi )F(t,X,U) = ° whenever F(t,x,u) = ° 
implies that Ci = ° for all i s.t. 1<i<6. Operating ~~~ ICiXi 
on F(t,x,u) and setting F(t,x,u) = ° after differentiation, 
one immediately finds that C2 = C3 = C5 = ° because of the 
linear independence of g, h, and k. One then obtains 

-a 
-llc 
lIc 

The determinant of the coefficient matrix is (2/ c) (fJ I 
a - lIc2), which is different from zero if c2=1=alfJ. Hence, 
for the choice of c, CI = C4 = C6 = 0. This proves that the 
solution given by Eq. (9) is noninvariant. 

We shall now list some examples which can be worked 
out in a similar manner. 

( 1) Generator: XI + aX4 + fJX6 ; 

Invariants: 1 I = X - at, 12 = ue - Pt, 

1 3 = ve - Pt, U = eP1(1i,f-L); 

where Ii = 1 I, f-L = 1\ andfsatisfies the PDE 

f;JAA + f-L2R 2fl-<I-< + 2f-LRfJAI-< 

- f! (fJf - alA - fJf-Lfp ) = 0, 

with R = 1 - fAIf-L. 
(2) Generator: X 2 + aXI + fJX6 ; 

Invariants: 1 I = UX - 2P, 12 = VX I - 2P, 

1 3 = x2/(a + t), U = x 2Pf(Ii,f-L); 

where Ii =1\f-L =12, and 
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(13) 

2f-Lf! + 2fJ(2fJ - 3 )jf~ + lif J~ (Ii - 2 + 8fJ) 

+ 41i YAA.f~ + R 2fl-<I' 

+ 4liRf JAI' - 2(1 - fJ) (1 - 2fJ)f-Lf! = 0, (14) 

with R = f-L - 2fJf - 2lifA . 
(3) Generator: aXI + fJX2 + rX4; 

Invariants: 1 I = U, 12 _ a + fJt 
- (fJx/2 + y)2 ' 

J3 = v2(a +fJt), U =f(Ii,f-L); 

where Ii = 1 2
, f-L = 1 3

, and 

2fJ 2li 3f;Ju -4fJfjili 3
/
2RfJAI-< + (2f-Lfl-<p +fl-<)R 2 

+ fJJ. (3fJli - 2)f J~ - 2fJf-Lf! = 0, (15) 

withR = 1 + (fJli 3
/
2Ifji)fA' 

(4) Generator: aX4 + fJX 5 + r X 6 ; 

Invariants: 1 I = t, 12 = vlu + fJxl2(a + fJt), 

1 3 = uel!(x,t), 

where g(x,t) = (x/(a + fJt) HfJxI4 - r), 

u = e - g(X,t)f(Ii,f-L); 

where Ii = 1 I, f-L = 1 2
, and 

f[ 4f-L2(a + fJli)2 + (a + fJJ.)(fJ - 8rf-L) + 2yZ] 

- 2(a + fJli )2f1-<1'L 2 - 2fJf-L(a + fJli)fl-< 

+ 2(a + fJli)2fA = 0, 

withL = (f If I' )(P - rl(a + fJli»). 

(16) 

In all the above examples, it is assumed thatfl' =1=0. IffI-< = 0, 
the solutions reduce to invariant ones. Observe that example 
1 is a more general case of the example discussed in detail 
earlier. Although Eqs. (13 )-(16) are very difficult to solve, 
special cases of them may be amenable to solution. For ex­
ample, iff depends only on f-L, Eq. (13) becomes 

p2/" (p) _ fJf'2(p)(f -Pf'(p») = 0, (17) 

while Eq. (14) becomes 

2pf'2(p) + 2fJ(2fJ - 3)jf'2(p) + (f-L - 2fJf)2f"(f-L) 

- 2 (1 - fJ) (1 - 2fJ)pf' 3 (f-L) = 0. (18) 

If fJ is chosen to be ! and if it is assumed that p - f =1= ° (the 
case p = fis not interesting), Eq. (18) becomes 

21'2 (p) + (p - f)/" (p) = 0. (19) 

Equations (17) and (19) are typical of the second-order, 
nonlinear ordinary differential equations (ODE's) one ob­
tains in attempting to construct partially invariant solutions. 
Rather than solve those equations, we shall sketch here the 
solution of a similar second-order ODE derived earlier2 by 
one of the authors in trying to enlarge the class of partially 
invariant solutions obtained by Ovsiannikov3

•
4 for the equa­

tions of the transonic flow of a gas. 
The equations are 

uUx = - Vy } 
_ ' x,YER. 

uy - Vx 
(20) 

It has been shown2 that solutions of Eq. (20) partially 
invariant w.r.t. a certain one-dimensional subgroup (pa-
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rametrized by a constant c) of the group of Lie symmetries of 
Eq. (20) are given by 

v = k(A,f-l) - e lny, (21) 

(A Iy)k;. + (ely) - (A Ix)k;.kfl 
Ux = (22) 

f-l+k; 

(Af-llx)k;. + (A Iy)k;.kfl + (ekflly) 
uy = 2 ' 

f-l+kfl 
(23) 

where A = xly, f-l = u, and k(A,f-l) satisfies a complicated, 
second-order nonlinear PDE. The PDE for k as well as Eqs. 
(22) and (23) are derived2 under the assumption that 

f-l + k; =10. 
Now the assumptions that e = 0 and that k depends 

only on f-llead 2 to the partially invariant solutions given by 

f-l + k ,2 (f-l) = 0, (24 ) 

which gives k(IL) = ± j( - f-l)3/2 + a l with a l arbitrary, 
and 

v = k(f-l), 

uy = + ( - U)I/2U". 

(25) 

(26) 

The solutions given by Eqs. (24)-(26) are the ones 
found on p. 293 of Ref. 3. 

Suppose now that k still depends only on f-l but that 
e=lO. Then one obtains2 additional partially invariant solu­
tions given by 

f-l + k '2 (f-l) + ek " (f-l) = 0, 

v = k(f-l) - e lny, 

Uy = u"k '(f-l). 

(27) 

(28) 

(29) 

Equations (27) and (29) are consequences of the PDE for k, 
derived under the assumption that f-l + k; =I O. Equation 
(27), which is similar to Eqs. (17) and (19), was derived in 
Ref. 2 but not solved there. We shall sketch its solution now. 
The transformation6 z = exp( (lie) f k' df-l) changes Eq. 
(27) into 

(30) 

whose solution can be expressed7 in terms of Bessel functions 
as follows: 

z(f-l) = .J,U[AJ1/3( (2/3e )f-l3/2) + BJ _1/3((2/3e )f-l3/2)] , 
(31) 

where A, B are arbitrary constants. Use of this solution and 
of the relation k(f-l) = e f (z'lz)df-l gives the desired result. 

III. CONCLUDING REMARKS 

Suppose that H is a subgroup of G. If the infinitesimal 
operator X of H does not contain a I au, then wheneverf( t,x) 
is an invariant solution w.r.t. H, so is f(t,x) + e, where e is 
an arbitrary constant. If, however, the operator X does con­
tain a I au, the claim is false in the sense that if/( t,x) is an H­
invariant solution, then/(t,x) + e will be an invariant solu­
tion not w.r.t. Hbut w.r.t. some subgroup of the full group 
which includes translations in u as well. For example, I let H 
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be the subgroup of G whose infinitesimal operator is 
X = a(a lat) + p(a lax) + yu(a lau). It is easy to check 
that/(t,x) = aee(a"+t)la', where a and e are nonzero arbi­
trary constants, is an H-invariant solution of Eq. (I) pro­
vided that y = ala2 + Pia. Now let b be an arbitrary con­
stant. Then/( t,x) = aee(a" + t)a' + b is an invariant solution 
w.r.t. the group H' whose infinitesimal generator is 
X = a(a lat) + p(a lax) + (yu + {j)(a lau), provided 
that y = al a2 + Pia as before and {j = - by. Observe that 
H' is not a subgroup of G, but of the full group, since it 
includes translations in u also. 

We remark that since the method of partially invariant 
solutions essentially provides trial solutions, one can some­
times bypass the PDE for J, which is a second-order equa­
tion, and actually work with the PDE for v such as Eq. (6), 
which is a first-order equation, by judiciously guessing the 
form off This is because the PDE for/is obtained by differ­
entiating Eq. (6). 

Observe that the Ovsiannikov method is quite general 
and applies to any PDE. Its simplification, as indicated ear­
lier, depends on the equation under consideration. Finally, 
as far as the authors are aware, there are no physically signif­
icant examples in which partially invariant solutions, as op­
posed to invariant solutions, play an essential role. True, 
Ovsiannikov considers3

,4 the transonic flow equations, but 
no specific problem with initiallboundary conditions is con­
sidered. It is our next goal to find such an example. 
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(Received 30 June 1986; accepted for publication 11 March 1987) 

The linear first-order boundary conditions that will lead to a stable (well-posed) problem for 
the telegraph equation in quarter space are established. 

I. INTRODUCTION 

We consider the telegraph equation with initial square 
integrable Cauchy data prescribed on t = 0, and then make 
use of a technique introduced by Hersh 1 to establish suitable 
linear first-order boundary data on x = ° which will ensure a 
stable solution in x,t > 0. It is found that instability may oc­
cur when GL = RC (together with some auxiliary condi­
tions) which is of some interest since under this condition 
minimum attenuation and distortionless transmission will 
take place. 

In Sec. II we give a brief summary of the procedure 
introduced by Hersh while in Sec. III we apply this theory to 
the problem under consideration, namely, 

C av +~+Gv=o, 
at ax 

L aI + av +RI=O, 
at ax 

(1) 

with suitable Cauchy data on t = ° and to-be-determined 
boundary conditions on x = 0. The constants C, G, L, and R 
are all positive and have their usual physical meaning. 

II. BOUNDARY CONDITIONS AND STABLE SOLUTIONS 

Following Hersh, we consider an arbitrary system of n 
linear differential equations, of any order, in m + 2 indepen­
dent variables, namely, 

P(D"Dx,Dy)U = 0, 

where 1< j<m, U is an n-vector, and Pan n X n matrix of 
differential polynomials with constant coefficients. We sup­
pose that P is correct in the sense of Petrovsky, i.e., for all 
reals and 1]j there exists a single fixed constant Mo such that 
all the roots 7 of det P( 7.is,i1]j) = ° satisfy Re 7 <Mo. It is 
well known that the associated Cauchy problem has a unique 
square integrable solution for all square integrable initial 
data if and only if Pis Petrovsky correct. 

We consider the following mixed initial-boundary-value 
problem: U is to satisfy PU = ° on t> 0, x > O'Yj unbounded. 
On t = 0, x > 0, square integrable Cauchy data are pre­
scribed, while on x = ° , t> 0, are given a k-vector F(t'Yj ) 
and a k X n matrix B(D"Dx ,Dy) of differential polynomials 
with constant coefficients, such that B U Ix = 0 = F. 

Our aim is to find all B for which the problem is correct­
ly set in L 2, determination of k being part of our task. The 
analysis is simplified by two assumptions: that the Cauchy 
data are all identically zero, and that the boundary data are 
all delta functions, which entails no loss of generality, as 

arbitrary data can be treated in the usual "Green's matrix" 
fashion. 

A solution of PU = ° is called an exponential solution if 
it is of the form 

exp [7t + i ~ nj yj ] L Cr,k Xr exp[Skx ], 

where the sum is over a number of terms <d, the number of 
roots Sk of det P( 7,S,i1]) = 0, i.e., the degree of sin det P; 
Cr,k is a set of constants and if S k has multiplicity m k' r runs 
from ° to m k - 1. For each 7,1] the set of exponential solu­
tions forms a vector space of dimension d, while those solu­
tions corresponding to S with real part negative form a sub­
space E -, with dimension d - . 

The set of n vectors U which satisfy both PU = ° in 
t,x> ° and the homogeneous boundary conditions B U = ° 
on x = 0, t> ° forms a vector space N. The pair B,N will be 
called unstable if N contains exponential solutions in E - for 
1] real and Re 7 arbitrarily large, since in this case a sequence 
of solutions can be chosen for which the values at any point 
where t> ° grow arbitrarily large even when the initial val­
ues are uniformly bounded. The original boundary value 
problem is then not well posed. 

If B,N is not unstable, it is called stable (a definition 
validated by the existence theorem soon to be stated). Stabil­
ity means that for some number MI it is true that 
{NnE -} =. rpforaU real 1] and Re7>M1• Let W( 7,i1]) bea 
matrix whose columns form a basis for E -, i.e., W is an 
n X d - matrix. We denote the k X d - matrix formed by 
B W I x = 0 as e r' + iT/Y B. It is not difficult to show that if one of 
the columns of W lies in N, then the function space spanned 
by the columns of B would have dimension less than d -. 
Thus stability amounts to possession of B of rank d - for all 
real 1] and Re 7> {M1,Mo}' In particular, it is clear that this 
is possible only if B, and therefore B, has at least d - rows, so 
that k must be >d - . 

We may now state the fundamental theorem established 
by Hersh: If B has d - rows and is stable, then there exists 
exactly one U such that PU = ° and e - M'U is a tempered 
distribution in t,x > 0; B U = 8I on x = 0, t> 0, and having 
zero Cauchy data on t = 0, x > 0. Here U is a distribution of 
finite order, and has the representation 

U = - i(21T) - m -I J:_+i~oo d7 J: 00 WB -I d1]I" 'd1]m' 

where W is a column basis for E -, and M> max (Mo,M1 ). 

To establish stability for any problem we therefore need only 
establish whether B is stable in the sense described above. 
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III. STABILITY OF THE TELEGRAPH EQUATION 

It is well known that the system (1) is Petrovsky cor­
rect, so that we may apply the procedure outlined in Sec. II. 
We rewrite (1) as 

P(D"Dx ) U = 0, 

where 

(
CDt + G Dx ) 

P(D"Dx ) = Dx LD
t 
+ R 

and U T is the vector (V,I) . It follows easily that 
det P( r,s) = 0 leads to 

CLr + (CR + GL)r + GR - S 2 = O. 

This equation obviously has only one root S, with negative 
real part, i.e., 

S, = - {CLr + (CR + GL)r+ GR}'/2, (2) 

so that the solution space E - is one dimensional, and we are 
led to the study of boundary conditions of the form 

aV+bI+e
av +d~=f(t) (3) ax ax 

on x = 0. We shall establish the following theorem. 
Theorem: The initial-boundary-value problem associat­

ed with (1), with suitable Cauchy data on t = ° and (3) 
prescribed on x = 0, will have unique, stable solutions in 
x,t> ° except in the cases where 

d[C +e{L =0 

and either 

or 

GL-RC=O, b[C +a{L =0, 

d 2(GL - RC) - 2L(be - ad) = 0. 

Proof' We rewrite (3) as 

BU=j, 

where B = (a + eDx,b + dDx )' A basis of E - is easily ob­
tained, viz., 

W = ( - S, )eTt + s,x, 
Cr+G 

from which follows 

BWlx~o = BeTt
, 

where 

B = - aS I - sie + bCr + bG + d(Cr + G)SI' 

On setting SI = p + iq, r = w + iv, it follows immediately 
from det B = ° that 

- ap - ep2 + eq2 + bCw + bG + dCwp 

- dCvq + dGp = 0, (4) 

- aq - 2pqe + bCv + dCwq + dCvp + dGq = O. (5) 

These two equations must be taken in conjunction with (2), 
which can be rewritten as 

p2 _ q2 _ CL(w2 
_ v2) - (CR + GL)w - GR = 0, (6) 

2pq - 2CLwv - (CR + GL)v = o. (7) 

Instability will occur iff we can find "suitable" solutions to 
the system (4 )-(7), viz., v, w, p, and q, which are such that 
p < 0 and w can be made arbitrarily large positive. 

From (5) 

q = (bCv + dCpv) [a + 2ep - dCw - dG] -I, 

and substitution into (7) leads to 

2p(bC + dCp)v[a + 2ep - dCw - dG] -I - 2CLwv 

- (CR + GL)v = O. (8) 

Obviously (8) can be satisfied only by v = 0 or by 

2pC(b + dp) - (a + 2ep - dCw - dG) 

X (2CLw + CR + GL) = O. (9) 

We first consider the simple case of v = 0: The system 
collapses, since from (7) it follows that q = 0 (since we de­
sirep<O). We need only consider (4) and (6): 

- ap - ep2 + bCw + bG + dCwp + dGp = 0, (4/) 

p2 _ CLw2 _ (CR + GL)w - GR = O. (6/) 

By eliminating w we obtain 

p 4C(d 2C - e2L) + p3[2C(bdC - aeL) 

+ (LG - CR)ed] + p2[C(b 2C - a2L) 

+ C(eb + ad) (GL - CR)] + Cab(GL - CR)p = o. 
(10) 

From (6/) it is obvious that w can be made arbitrarily large 
only ifp is, so that the restriction (10), which would ensure 
that p is finite, must fall away, i.e., all coefficients must be 
identically zero. This occurs iff 

d 2C-e2L=0, GL-CR=O, 
(11 ) 

b 2C - a2 L = 0, bdC - aeL = O. 

If these conditions are met, it follows without difficulty that 
the sought-after solution of the system is given by v = q = 0, 
p arbitrarily large negative and 

W= -p/~CL - GIC, 

where the conditions ( 11) reduce to 

dX +e{L =0, b[C +a{L =0, 

GL-CR=O. 
(12) 

We now turn to the other alternative in (8), viz., that 
v#Oand (9) holds. We used (5) and (7) to obtain (8), so let 
us now consider (4) and (6). On substituting q from (5) 
into (4), we obtain 

[a + 2ep - dCw - dG ]Z[ - ap - epz + bCw + bG + dCwp + dGp] 

+ eC 2v2(b + dp)z - dCV(b + dp) (a + 2ep - dCw - dG) = 0, 

while similarly (6) becomes 

(4") 

[p2 _ CL(w2 - v2) - (CR + GL)w - GR ] [a + 2ep - dCw - dG]2 - (b + dp)2(;2V2 = O. (6") 
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On eliminating v2 from these two equations we obtain 

[ - eC 2(b + dp)2 + dC 2(b + dp) (a + 2ep - dCw - dG)] [p2 - CLw2 - (CR + GL)w - GR ] 

- [ - ap - ep2 + bCw + bG + dCwp + dGp] [(b + dp)2C 2 - CL(a + 2ep - dCw - dG)2] = O. 

Obviously (13) and (9) have to be compatible for solutions to exist. For convenience we set 

W= 2w + (RC+ GL)C-IL -I, [3= CR - GL, 

so that (9) becomes 

dCLW 2 - (d[3 + 2aL + 4epL) W + 4p(b + dp) = 0, 

while (13) becomes 

!LC 3d 2(b + dp) W 3 + {!CL(b + db)( - 3adC + Cbe - 5edCp - 2d 2CL -1[3) - !C 2LD2(a + ep)p}W2 

+ {(b + dp) [(2e2LC - d 2C 2)p2 + p(2LaCe - C 2bd + 2edC[3) + !d 2C[32L -I + adC[3 + !LCa2 - ~c2b 2] 

+ LdCp(a + ep) (a + 2ep + ~d[3L -I)}W + {(b + dp) [2edCp 3 + p2(2ad + Cd 2[3pL -I - 2e2[3) 

+ p(abC - 2ae[3 + bdC[3L -I - ~ed[32L -1) _ !(ad + be)[32L -1 + ~(Cb 2 - a2L)[3L -I] 

- pea + ep)(a + 2ep + !d[3L -If} = O. 

We now subtract !C 2d(b + dp) W times (9') from (13'), arriving at 

_ !LC 2[2ed 2p2 + p(2ad 2 + d 3[3L -I) + bead - be + d 2[3L -I)] w 2 

+ [( 4LCe2d - 2d 3C 2)p3 + p2(~d 2Ce[3 + 5LaCde + 2LCe2b - 4d 2C 2b) 

+ p(2bCde[3 + 2abCeL - ~dc2b 2 + ¥-Ca 2d + ~ad 2C[3 + !d 3C[3 2L -1) 

+ (!bd 2C[32L -1 + adCb[3 + ~LCa2b _ !C 2b 3)] W 

+ [(2ed 2C - 4e3L)p4 + (2edCb + 2aCd 2 - 8Le2a _ 4e2d[3 + Cd 3[3L -1)p3 

+ ( - ed 2[3 2L -I + 2bCd 2[3L -I _ 5aed[3 _ 2e2b[3 + 3abCd _ 5a2eL )p2 

+ (abC - La3 + ~b 2dC[3L -I - 2aeb[3 _ ~a2d[3 _ edb[32L -1 _ ~ad2[32L -I)p 

- !(adb + eb 2)[32 + ~(b 3C - a2Lb)[3L -I] = o. 

The two equations (9') and (15) may be regarded as qua­
dratic equations in W, which we can rewrite, respectively, as 

aW2+aW+y=0, 

AW2 +BW+ C=O, 

(9") 

(15') 

where the symbols have the obvious meaning. It is well 
known that two such quadratic equations will have a com­
mon root iff 

(aC - yA)2 = (yB - aC)(aA - aB), (16) 

X [2b 2C - 2a2L - (ad + be)[3] 

X [aeL - Cbd + ed[3 ] = o. 
It is therefore necessary that 

d 2C- e2L = 0 

and either 

[3=0 

or 

2b 2C - 2a2L - (ad + be)[3 = 0 

or 

aeL - Cbd + ed[3 = O. 

(13) 

(14) 

(9') 

( 13') 

(15) 

(17) 

(18) 

(19) 

(20) 

(21) 

which, in this case, becomes an eighth degree polynomial in 
p. If it has roots they will be finite, and the corresponding 
values of W will be finite, contrary to our desire. Hence the 
only possibility that could lead to arbitrarily large W is that 
the condition ( 16) vanishes identically, i.e., every coefficient 
be zero. 

We shall assume (18), from which it follows that (20) can 
be rewritten as 

The construction of ( 16) is routine, but extremely labo­
rious. To reduce the calculations, let us first calculate only 
the coefficients of p8 and pO, leading to 

(ad + be)d -2[ - d 2[3 + 2L(be - ad)] = O. (22) 

For convenience we shall introduce the notation 

T= - d 2[3 + 2L(eb - ad). 

16c2d 2L(d 2C - e 2L)3p 8 + '" + !ab 3C 2L[3 On making use of ( 18) we can now write the terms of ( 16) as 

1479 

aA - aB = LC [deCTp2 + { - ~Cd 2[3(ad + 2be) - ~a2d 2LC - abCdeL + 3b 2e2CL}p 

+ !Cb{ - [3d(ad + be) + 2b( - aeL + Cbd)}], 

yB - aC = 4edCTp4 + [ - bd 2e2[3 2 + (20d 2bCe - 2bad 2C)[3 + 44abCdeL _ 18LCe2b 2 - 2bLCa2d 2]p3 

+ [ - ed 3L -1[33 - (2bde2 + qad 2e)[32 + (14b 2Cde + 5abe2L - 21 2aedL)[3 + 12ab 2CeL 
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+ 14a2bCdL - 14a3eL 2 _ lOdb 3C 2 _ 2e2b 3d ]p2 + [ _ (ed 2b _ !ad 3)L -1/33 

+ (~b 2e2 - 5abde - ~a2d2)/32 + (8ab 2Cd - 4a3dL + 2b 2Ce - 6a2beL)/3 

+ 4a2b 2CL _ 2C 2b 4 _ 2a4L 2]p + !(a/3 + 2aL)/3bL -I [ - (ad + be)/3 + 2(b 2C - a2L)], 

aC - yA = CL [2e2Tp3 + { - d 3e/3 2L -I - 5aed 2/3 + 2bde2/3 + 6abCd 2 - 5a2deL - Cb 2de}p2 

+ {2ab 2Cd - La3d - Cb 3e + ~b 2e2/3 - 2aebd/3 - ~a2d 2/3 - !ad 3 L -1/3 2 

- e2dbL -1/3 2 }p -! /3bL -I [ - (ad + be)/3 + 2(b 2C - a2L)]]. 

Making use of (23) we may now determine (16), which can be shown to be 

4C 2Le2 (Le2 _ d 2C) T'7J6 + 2C 3edT 3p5 + T [ ... ]p4 + T [ ... ]p3 + T [ ... ]p2 

+ T ["']p + !ab 3C 2L/3 [aeL - Cbd + ed/3] (ae + bd)d -2T = O. 

(23) 

(24) 

Obviously a necessary and sufficient condition for (24), and 
hence (16), to vanish identically is (18) and 

positive, and instability will occur. This means that (18) 
should be written as 

T=O. 

From (9") and (15') it then follows that 

W = (aC - yA) (rA - aB)-I, 

and if T = 0 in (23) this expression reduces to 

W = 2ped -IC -I, 

so that from (14) 

W=pC-Ied -I - (RC + GL)(2CL)-I. 

(25) 

(26) 

Hence we have the final condition, viz., ed -I < 0, so that for 
arbitrary large negative P we can make Warbitrarily large 
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d.jC + e{r = 0, (18') 

and the theorem is proved. 
[We remark that the condition (25) could be more ele­

gantly written as 

dG.,fi + Re.jC + 2b.jC + 2a{r = 0.] 

JR. Hersh, "Boundary conditions for the equations of evolution," Arch. 
Rat. Mech. Anal. 16,243 (1964). 
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The three-dimensional Schrodinger equation inverse scattering problem is solved using an 
orthogonalization approach. The plane waves propagating in free space are orthogonalized 
with respect to an inner product defined in terms of a Jost operator. The resulting integral 
equation is identical to the generalized Gel'fand-Levitan equation of Newton, although the 
present derivation is simpler and more physical than that of Newton. Newton's generalized 
Marchenko equation is derived from the defining integral equation for the Jost operator. These 
integral equations are shown to be solved by fast algorithms derived directly from the 
properties of their solutions. This paper thus presents a simple interpretation of Newton's two 
integral equations, two fast algorithms for solving these integral equations, and relations 
between the various approaches. This is a generalization of previously obtained results, which 
are also reviewed here, for the one-dimensional inverse scattering problem. 

I. INTRODUCTION 
The inverse scattering problem for the Schrodinger 

equation in three dimensions with a time-independent, local, 
non-spherically-symmetric potential has a wide variety of 
applications. For example, the inverse seismic problem of 
reconstructing the density and wave speed of an inhomogen­
eous isotropic acoustic medium from surface measurements 
of the medium response to a harmonic excitation can be for­
mulated as a Schrodinger equation inverse scattering prob­
lem, as was done by eoen et al. 1 

A major breakthrough in obtaining an exact solution to 
the three-dimensional Schrodinger equation inverse scatter­
ing problem was made by Newton. 2 In Ref. 2 Newton pre­
sented generalized versions of two integral equations ob­
tained for the one-dimensional inverse problem by 
Marchenk03 and Gel'fand and Levitan.4 These generalized 
Marchenko and Gel'fand-Levitan integral equations recon­
struct the scattered field in the vicinity of the scattering po­
tential from far-field data, just as their one-dimensional 
namesakes do (for details of the one-dimensional problem 
integral equations, see Refs. 5 and 6). The scattering poten­
tial is then recovered from the scattered field using an equa­
tion Newton calls the "miracle" equation. This completes 
the solution of the inverse scattering problem. In Ref. 1 this 
procedure was applied to the inverse seismic problem noted 
above. 

Recently it has been noted that the derivation of the 
generalized Gel'fand-Levitan integral equation in Ref. 2 re­
lies implicitly on the existence of a so-called "regular" solu­
tion. It was not firmly established in Ref. 2 that this regular 
solution is always well defined. However, this does not inva­
lidate the results of Ref. 2; it merely limits their applicability 
to situations for which the regular solution does exist. In this 
paper the inverse scattering problem is restricted to situa­
tions in which the regular solution exists and is well defined; 
this is expected to cover most physical inverse scattering 
problems. Since a major goal of this paper is to underscore 
ways in which one-dimensional results generalize to three 
dimensions, this is an acceptable limitation. 

Although Ref. 2 is a highly significant contribution to 
inverse scattering theory, the derivations contained therein 
shed little insight into the actual mechanism of the inversion 
process. Several recent papers have presented much simpler 
derivations of Newton's Marchenko integral equation. In 
Ref. 7 the frequency-domain Schrodinger equation was 
transformed into a time-domain plasma wave equation, and 
the interpretation of various frequency-domain properties 
(e.g., analyticity in the upper half-plane) as time-domain 
properties (e.g., causality) lended some physical insight into 
the inversion process. Newton's Marchenko integral equa­
tion was derived in Ref. 8 using a representation theorem, 
and was derived in Ref. 9 using a generalized Radon trans­
form; both of these derivations are much simpler than New­
ton's derivation. However, there are no such simpler deriva­
tions as yet for Newton's generalized Gel'fand-Levitan 
integral equation. 

For the one-dimensional inverse problem the integral 
equation procedures of Refs. 3-6 are known to have differen­
tial counterparts, which are called layer stripping algorithms 
(in the seismic literature they are known as "downward con­
tinuation" algorithms). These algorithms may be derived by 
exploiting the Toeplitz or Hankel structure of the kernel of 
integral equations 10; however, derivations that are more 
physical and insightful result if basic physical principles 
such as causality are exploited. 11 Since they exploit the in­
herent structure of the inverse scattering problem, which 
manifests itself in the structure of the kernel of the integral 
equation, these algorithms require significantly fewer com­
putations than would solving the integral equations; hence 
they are referred to as "fast" algorithms. An important point 
is that these differential, layer stripping algorithms are inti­
mately related to the integral equation procedures; these re­
lations are discussed in Ref. 11. 

Layer stripping algorithms for the three-dimensional 
Schrodinger equation inverse scattering problem have been 
proposed in Refs. 9 and 12. Although the numerical perfor­
mance of these algorithms is unknown at present, their com­
putational complexity is significantly less than that of the 
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integral equation procedures of Newton. A relation between 
the algorithm of Ref. 9 and Newton's Marchenko integral 
equation procedure was presented in Ref. 9; this relation 
involved a generalized Radon transform. However, this rela­
tion did not extend to Newton's generalized Gel'fand-Levi­
tan integral equation, and a differential fast algorithm for 
this integral equation has not been obtained previously. 

In this paper Newton's generalized Gel'fand-Levitan 
integral equation is rederived by treating the inverse scatter­
ing problem as an orthogonalization problem. A Gram­
Schmidt orthonormalization is performed on the free-space 
form of the wave field, which is a probing plane wave in a 
given direction of incidence. The orthogonalization is per­
formed with respect to an inner product defined in terms of a 
multidimensional Jost operator, and the associated orthogo­
nality principle results in Newton's generalized Gel'fand­
Levitan integral equation. This is the first derivation of this 
equation other than that of Ref. 2. Newton's generalized 
Marchenko integral equation is also derived from the inte­
gral equation defining the Jost operator. 

Two differential fast algorithms that also solve these in­
tegral equations are given. One of these algorithms is the 
algorithm of Ref. 12; the other is a generalized Levinson-like 
algorithm that is new, although it bears some resemblance to 
a fast algorithm derived in Ref. 13 for the problem of com­
puting the filter for the linear, least-squares estimate of a 
homogeneous, anisotropic random field. 

This paper thus provides a unified derivation of two 
multidimensional integral equations and two multidimen­
sional fast algorithms, all of which solve the inverse scatter­
ing problem for the three-dimensional Schrodinger equa­
tion. It is thus a generalization of results for the 
one-dimensional inverse problem presented in Refs. 11 and 
14, and illustrates how all of these procedures are connected. 

The paper is organized as follows. Results for one di­
mension are quickly summarized in Sec. II, which contains 
some results from Refs. 11 and 14. The new results for three 
dimensions are contained in Sec. III, and the ways in which 
the one-dimensional results generalize to three dimensions 
are emphasized. The main results of Sec. III are Newton's 
generalized Gel'fand-Levitan and Marchenko integral 
equations. In Sec. IV the differential, layer-stripping algo­
rithms are presented and related to the integral equations of 
Sec. III. Some connections between multidimensional in­
verse scattering and linear, least-squares estimation of ho­
mogeneous, anisotropic random fields are also noted. Final­
ly, Sec. V concludes by summarizing the results of the paper 
and noting directions in which further research is needed. 

II. THE ONE-DIMENSIONAL PROBLEM 

This section derives the Gel'fand-Levitan and Mar­
chenko integral equations for the one-dimensional inverse 
scattering problem using an orthogonalization procedure, 
following Ref. 14. It also derives differential fast algorithms 
that solve the inverse scattering problem and require fewer 
computations than would solving the integral equations. 
The purpose of this section is to review these concepts in a 
simple setting before proceeding to the more complex three­
dimensional inverse problem, and to demonstrate how the 
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concepts for the one-dimensional case generalize to the 
three-dimensional case. 

A. The fundamental solutions 

The one-dimensional inverse scattering problem consid­
ered in this section is as follows. The wave field u (x,k) satis­
fies the Schrodinger equation 

(~ + k 2 - V(X»)u(x,k) = 0, 
dx2 

(2.1 ) 

where the scattering potential V(x) is real valued, smooth, 
and has compact support. Two different initial conditions 
for this differential equation will be considered, resulting in 
two different solutions. These correspond to two different 
inverse scattering problems: the reflection problem and the 
regular problem. The names of these problems come from 
the names of their solutions, as will be explained shortly. 

The time-domain version of the Schrodinger equation 
(2.1) is the plasma wave equation 

---- Vex) u(x,t) =0. (a2 a2 )v 
ax2 at 2 

(2.2) 

Solutions of (2.2) are related to solutions of (2.1) by a Four­
ier transform. In the sequel we will switch freely from the 
time domain to the frequency domain and back again. 

First, some solutions to the reflection problem are de­
fined. The wave field u (x,k) is split into two waves traveling 
in the + x and - x directions, and two different reflection 
problems (probing from - 00 and + 00) are considered. 
This results in four solutions, which are then arranged in a 
2 X 2 matrix IIJ (x,k) and termed the Jost solution. The com­
ponents of the Jost solution lIJ(x,k) = [ljJ(x,k, +), 
ljJ(x,k, - )] T to (2.1) are defined by their behavior at ± 00. 

Specifically, 

ljJ(x,k+) = [e- ikx , RL(k)eikx]T as x ..... - 00, (2.3a) 

ljJ(x,k,+) = [T(k)e- ikx , O)T as x ..... 00 , (2.3b) 

ljJ(x,k,-) = [0, T(k)eikx]T as x ..... - 00, 

ljJ(x,k, -) = [RR(k)e-ikX, eikx]T as x ..... 00 • 

(2.3c) 

(2.3d) 

Physically, the solution ljJ(x,k, + ) results from a prob­
lem in which the scattering potential is probed from the left, 
in the + x direction, resulting in a transmitted wave 
T(k)e- ikx and a reflected wave RL (k)eikx. The solution 
ljJ(x,k, - ) results from a problem in which probing takes 
place from the right, in the - x direction. Here R L (k) and 
RR (k) are the reflection coefficients for the two problems, 
and T(k) is the transmission coefficient, which by reciproc­
ity is the same for both problems. The first component of 
each solution is the rightward traveling wave, and the second 
component is the leftward traveling wave. The situation is 
illustrated in Fig. 1. Note that the complete Jost solution 
IIJ (x,k) is thus a 2 X 2 matrix. Since the data for these prob­
lems consists of the reflection coefficient RL (k) or RR (k), 
the inverse scattering problem that results in the Jost solu­
tion lIJ(x,k) is termed the reflection problem. Note that given 
either RL (k) or RR (k) it is possible to reconstruct the other 
reflection coefficient and T(k); see Ref. 6. 

Next, some solutions to the regular problem are defined. 
The wave field u (x,k) is again split into two waves traveling 
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(a) - Jkx 

e (incident) 
A - lkx 

T (K), (transmitted) 

'" lk)( 

RL( K) e (reflected) o 

(b) o 
flo _ lkx 

RR(K), (reflected) 

e 'k, (incident) 
A ikx 
T (K) e (transmitted) 

FIG. 1. (a) The reflection problem for an impulsive plane wave incident 
from the left. (b) The reflection problem for an impulsive plane wave inci­
dent from the right. 

in the + x and - x directions; however, the boundary con­
ditions are changed. Instead of specifying the behavior of the 
wave field at ± 00, the behavior is specified at the origin 
x = 0. Since each wave must be initialized, this again results 
in a 2 X 2 matrix. The regular solution <I>(x,k) 
= [<\I (x,k, + ) ,<\I (x,k, - )] T to (2.1) is defined by the ini-

tial conditions 

<I>(O,k) = 12 , ~ <I> (O,k) = diag[ik, - ik]. (2.4) 
dx 

In the time domain, this corresponds to introducing an im­
pulse at the origin x = 0. Thus in the time domain the regu­
lar solution is actually a noncausal impulse response relating 
the field at the origin to the field at x. This is discussed in 
more detail in Ref. 15. The term "regular solution" was in­
troduced by Newton in Ref. 2, and has become standard; 
hence we use it here. The inverse scattering problem result­
ing in the regular solution <I> (x,k) is termed the regular prob­
lem, and it is illustrated in Fig. 2. 

Since the reflection and regular solutions are linearly 
independent, they are related by a Jostfunction J(k), which 
is also a 2X2 matrix. We have 

<I>(x,k) = l.JI(x,k)J(k) 

and at x = ° we also have 

I.JI(O,k) = <I>(0,k)J-1(k) =J-1(k). 

(2.5 ) 

(2.6) 

Since the total field u (x,k) is the sum of the leftgoing and 
rightgoing waves at x, we have 

u(O,k) = [1,l]J- 1(k) . (2.7) 

All ofthese equations generalize directly to the three-dimen­
sional case, as we shall see in Sec. III. 

Since the one-dimensional problem is defined on the en­
tire real line, and the potential Vex) has compact support, 
we may without loss of generality restrict its support to the 
half-linex;;;.O. Then the Jost solution condition at - 00 may 
be replaced by a similar condition at x = 0. Equations (2.3) 
and (2.6) then yield 

_I [1 
J (k) = RL(k) (2.8) 

This explicit representation of the Jost function will not be 
available in the three-dimensional case, since that problem is 
radial, i.e., defined on \x\;;;.O. 
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e -
Scattering 

Medium 

FIG. 2. The regular problem. For the I-D problem: 
an impulsive boundary condition at x = O. For the 
3-D problem: an impulsive boundary condition on 
the plane e,'x = O. 

I 
x=o 

B. Orthogonalization 

It is well known that the Jost solutions l.JI(x,k) are or­
thonormal on the real line with respect to the usual L 2 matrix 
inner product, i.e., that 

- l.JI(x,k)l.JI(y,k)H dk = 8(x - y) , 1 Joo 
21T - 00 

(2.9) 

where the superscript H denotes Hermitian transpose. This 
naturally suggests that the reconstruction of the field result­
ing from a scattering problem might be regarded as an ortho­
gonalization procedure. However, such a procedure would 
clearly have to start from a point and proceed outward, and 
for the Jost solutions there is no clear place to start. The 
regular solutions <I>(x,k) would be an ideal candidate for 
such a procedure, since they are formed starting at x = ° and 
propagate outward in the ± x directions, but they are not 
orthonormal. But the regular solutions are orthonormal 
with respect to the inner product with weighting matrix 
(JH J) -1 (k), since 

_1_ Joo <I>(x,k)(J H J) -I (k)<I>(y,k)H dk 
21T - 00 

= - l.JI(x,k)l.JI(y,k)H dk = 8(x - y) . 1 Joo 
21T - 00 

(2.10) 

Note that 

H -1 [1 
(J J) (k) = RL (k) 

R 't(k)] 
1 ' 

(2.11 ) 

which follows from (2.8) and the conservation of energy 
relation 

(2.12 ) 

This suggests that the solutions <I> (x,k) may be constructed 
from the scattering data from the left, R L (k), as follows. 

The quantities to be orthogonalized are, in the time do­
main, the free-space leftgoing and rightgoing impulsive 
plane waves resulting from the impulse introduced at the 
origin. In the frequency domain, these waves have the form 
e ± ikx, and arranging them into a 2 X 2 matrix as was done 
with the reflection and regular solutions results in the free­
space solutions 

E(X,k)=[e-o
ikx 

e~x]' (2.13) 

In the absence of a scattering potential these would consti­
tute the regular solution to the Schrodinger equation (2.1), 
so that we would have <I> (x,k) = E(x,k). 
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Since there is a scattering potential, the solution <I> (x,k) 
is formed byorthogonalizing E(x,k) in increasing Ixi. This is 
done by projecting E(x,k) onto the subspace of already­
orthogonalized <I>(x,k), which is span{<I>(y,k), Iyl 
< Ixl} = span{E(y,k), Iyl < Ixl}. The projection onto a sub­
space is a linear combination of the elements of the subspace; 
here it takes the form 

.9'{E(x,k)} = - f:x M(x,y)E(y,k)dy, (2.14 ) 

where M(x,y) is a matrix kernel to be specified momentar­
ily. Note that the linear combination has been taken over the 
elements of span{E(y,k) , Iyl < Ixl}, rather than 
span{<I>(y,k), Iyl < Ixl}; since the orthogonalization of a 
subspace does not change its span these two subs paces are 
equal, and the projection can be taken to be a linear combina­
tion of the elements of either subspace. 

The error E(x,k) - .9'{E(x,k)} is then orthogonal to 
the above subspace, and we take the error to be <I> (x,k). We 
now recognize M(x,t) to be the smooth part of the inverse 
Fourier transform of <I> (x,k), 

<I>(x,k) = diag[e ~ ikx,eikx ] + f:x M(x,t)e ~ ikt dt, 

(2.15 ) 

so that M(x,t) is the scattered part of the regular solution to 
the plasma wave equation (2.2), which is the Schrodinger 
equation in the time domain. 

Writing out the condition that the error <I> (x,k) be or­
thogonal toE(y,k) with respect to the inner product defined 
in (2.9) for Iy I < Ix I results in the following integral equation 
for the scattered field M(x,t): 

where 

(2.17) 

is the inverse Fourier transform of RL (k). Note that R (t) is 
a causal function, which accounts for the lower limit of the 
integral in (2.16). The centrosymmetry of (2.16) implies 
that M(x,t) is a centrosymmetric matrix, i.e., that 

MII(x,t) =M22 (x,t) , M I2 (X,t) =M21 (x,t) (2.18) 

[note that this also follows on purely physical grounds from 
the definition of <I> (x,k) ]. This implies that the scattered 
field Us (x,t), which is the sum of the waves traveling in the 
± x directions, i.e., 

Us (x,!) = Mil (x,t) + M21 (x,t) , 

satisfies the Gel 'land-Levitan integral equation 

R(x+t) + Us (x,t) 

+ f: tUS (x,y)R(y + t)dy, -x<t<x. 

(2.19) 

(2.20) 

Equation (2.20) is a Gel'fand-Levitan equation since 
the unknown scattered field Us (x,t) arising from a regular 
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problem has finite support - x<t<x, resulting in a finite 
interval of integration. 

The Marchenko equation for this problem has the same 
form, except that the range of validity is changed to t'>x. 
This follows since it has been assumed that the potential 
Vex) has support on the half-line x,>O. Thus there is no 
difference between the regular and reflection problems, so 
that the only difference between the regular and reflection 
(Jost) solutions is their supports, which are complementary. 

The half-line assumption was necessary in order to ob­
tain an explicit representation of the inverse Jost function 
J ~ I (k). In the three-dimensional case an explicit represen­
tation of J ~ I (k) will not be available, and the distinction 
between the two integral equations will become important. 
This distinction is also important in the one-dimensional in­
verse problem on thefull (real) line. 

For both the regular and Jost solutions, the potential 
V(x) may be obtained from the jump in the scattered field at 
the wave front, as follows. The solution to the plasma wave 
equation (2.2) can be written as 

u(x,t) = D(t - x) + Us (x,t) 1 (t - x) (2.21a) 

for the reflection problem, and 

u(x,t) =D(t-x) +us (x,t)(I(t+x) -l(t-x)) 
(2.21b) 

for the regular problem, where Us (x,t) is the smooth part of 
the scattered field and 1 ( .) is the unit step or Heaviside 
funciton. Inserting (2.21) in (2.2) and equating orders of 
singularities yields 16 

Vex) = + 2~us (x,x) , (2.22) 
- dx 

where the + applies for the regular problem and the - for 
the reflection problem. Equation (2.22) in conjunction with 
the integral equation (2.20) completes the solution of the 
inverse scattering problem. 

C. Fast algorithms 

An alternative to solving the integral equation (2.20) is 
to propagate the scattered field Us (x,t) for all t recursively in 
x, obtaining V(x) from (2.22) as we go. This is the essence of 
a layer stripping algorithm, which recursively reconstructs 
the scattered field and potential and strips away their effects. 
However, the layer stripping algorithms for the regular and 
reflection problems, although superficially similar in ap­
pearance, are actually quite different. The difference is due 
to the complementary nature of the support of the scattered 
fields for the two problems, as illustrated in Figs. 3 and 4. 
The regular solution in the time domain, which is 
diag[b(t - x),b(t + x)] + M(x,t), has support in t in the 
interval [ - x,x]. The reflection solution in the time domain 
has support in t in the interval [x,oo] for the problem in 
which probing takes place from the left, and has support in t 
in the interval [ - 00, - x] for probing from the right. This 
produces a major difference in the manner in which (2.22) is 
implemented in the algorithms. 

A fast algorithm that recursively reconstructs the po­
tential and scattered field for the reflection problem is as 
follows. 11 
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(a) 

(b) 
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FIG. 3. (a) Recursion pattern for updating m(x,t) in the fast algorithm for 
the r~gular problem. (b) Recursion pattern for updating n(x,t) in the fast 
algonthm for the regular problem. 

(I) Initialize the algorithm with 

U(O,t) =R(t) , q(O,t) = 2~R(t) . 
dt 

(2.23 ) 

(2) Propagate the following equations recursively in x 
and t, for t>x: 

(~ + :J u (x,f) = q(x,t) , 

(~ -:J q(x,t) = V(X)U(X,f) , 

Vex) = - 2q(x,x) . 

(2.24a) 

(2.24b) 

(2.24c) 

The recursion pattern for this algorithm is illustrated in 
Fig. 4. Note that this amounts to successively truncating the 
potential-at each recursion, the region to the left of x has 
been replaced by free space [V(y) = ° for y < x]. Thus the 
algorithm is successively reconstructing the potential and 
then stripping away its effects; hence the name "layer strip­
ping" algorithm. 

A fast algorithm that recursively reconstructs the po­
tential and scattered field for the regular problem is as fol­
lows. For convenience let the scalars m (x,t) and n (x,t) con­
stitute the first column of the matrix M(x,t) of (2.14), i.e., 
m (x,t) = Mll (x,t) and n (x,t) = M21 (x,t). Then proceed as 
follows. 

( 1) Initialize the algorithm with 

m(O,t) = n(O,t) = 0. (2.25 ) 
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(a) 

FIG. 4. (a) Recursion pattern for updating U (x,t) in the fast algorithm for 
the r~flectIon problem. (b) Recursion pattern for updating q(x,t) in the fast 
algorithm for the reflection problem . 

(2) Propagate the following equations recursively in x 
and t, for - x < t <x: 

(~ + :Jm(x,t) = n(x,t) , (2.26a) 

(~ - :In(x,t) = V(x)m(x,t) , 

m(x,t= -x) =0, 

Vex) = 2n(x,x) 

d 
= - 4 -R(2x) - 2R(2x)m(x x) 

dt ' 

J
x d 

+ m(x,y) -R(x + y)dy 
-x dt 

+Jx R(x+y){n(x,y) -~R(x+y) 
-x dt 

(2.26b) 

(2.26c) 

-Jx m(x,z) ~R(Z+Y)dZ}dY, (2.26d) 
_y dy 

wher~ (2.26d) follows from applying (2.26a) to the integral 
equatiOn (2.20). 

The recursion pattern for this algorithm is illustrated in 
Fig. 3. Note that for the regular problem the support in t of 
m (X,f) and n (X,f) is the interval [ - X,X], so that the data 
R (t) enters into the algorithm not in the initialization, but in 
t?e computation of vex) at each recursion. Thus this algo­
nthm solves a boundary value problem, while the reflection 
problem algorithm solves an initial value problem. This is 
why the additional computation of (2.26d) is necessary for 
the regular problem algorithm, but not for the reflection 
problem algorithm. 

Let the region where Vex) has support be discretized 
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into N subintervals. Then each of these algorithms requires 
O(N) multiplication-and-add operations at each recursion, 
for a total of O(N 2) operations to reconstruct V(x). Solution 
of the integral equations by Gaussian elimination requires 
O(N 3

) operations to reconstruct V(x). The fast algorithms 
require fewer computations because they exploit the causal 
structure of the inverse scattering problem. Both of these 
algorithms have their three-dimensional problem counter­
parts, which are given in Sec. IV. 

It should be noted that other differential fast algorithms 
exist; see Ref. 11. In particular, the more familar continuous­
parameter fast Cholesky and Krein-Levinson algorithms 
can be derived by reformulating the Schrodinger equation as 
a two-component wave system parametrized by a reflectivity 
function. Details are given in Ref. 11. 

In this section the Gel'fand-Levitan integral equation 
has been derived by considering the inverse scattering prob­
lem as an orthogonalization problem with respect to the in­
ner product defined in (2.10). This result has appeared pre­
viously in Refs. 14 and 17; it has been reviewed here in order 
to make apparent the ways in which this approach general­
izes to the three-dimensional problem. In the next section 
the three-dimensional problem is treated using a similar ap­
proach, and generalized Gel'fand-Levitan and Marchenko 
integral equations identical to those of Ref. 2 are obtained. 

III. THE THREE-DIMENSIONAL PROBLEM 

In this section the main results of this paper are present­
ed. The generalized Gel'fand-Levitan and Marchenko inte­
gral equations derived in Ref. 2 are here derived using an 
orthogonalization procedure similar to that used above for 
the one-dimensional problem. This is a much simpler deriva­
tion than the one used in Ref. 2, and it clarifies the difference 
between the solutions of the two integral equations. It also 
illustrates how the one-dimensional results presented above 
generalize to three dimensions. 

A" The fundamental solutions 

The inverse scattering problem considered in this sec­
tion is as follows. The wave field u (x,k) satisfies the Schro­
dinger equation 

(J:l+k 2 -V(x))u(x,k)=O, (3.1) 

where xElR3 and the potential Vex) is real valued, smooth, 
and has compact support. It is also assumed that Vex) does 
not induce bound states; a sufficient condition for this is for 
Vex) to be non-negative. It should be noted that bound 
states are treated in Ref. 2; we omit them in the present 
derivation for simplicity and to emphasize the parallels with 
the one-dimensional problem. The time-domain version of 
(3.1) is again the plasma wave equation 7,8 

(J:l - :t22 
- Vex) )U(X,t) = 0, (3.2) 

where solutions to (3.1) and (3.2) are related by a Fourier 
transform. As before, we will switch freely from the time 
domain to the frequency domain, and back again. 

As in the one-dimensional problem, two different sets of 
boundary conditions are specified, resulting in two different 
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solutions. To emphasize the parallels with the one-dimen­
sional problem, we use the same notation as in Sec. II. 

Let !f;(x,k,ej ) be the solution to (3.1) with boundary 
condition 

!f;(x,k,ej ) = e - jke;,x + (e - jk Ix l/41Tlxl)A (k,es,ej ) 

+O(lxl- 2
), (3.3) 

where the scattering amplitude is defined by 

A(k,es,ej ) = - f e-jke'YV(y)!f;(y,k,ej)dy (3.4) 

and ej and es are unit vectors. The solutions !f;(x,k,ej ) can be 
considered as a generalizaton of the one-dimensional Jost 
solutions (as in Ref. 2), with the ensemble of directions {e j } 

replacing the directions ± x. These solutions also result 
from a reflection problem in which an incident impulsive 
plane wave in the direction e j is used to probe the scattering 
potential, and the data consists of the far-field reflection re­
sponse in the form of the scattering amplitUde. Equations 
(3.3) and (3.4) have their time-domain counterparts that 
specify solutions to the plasma wave equation (3.2); see 
Refs. 7-9. Note that in the present formulation the factor of 
41T is incorporated in (3.3) instead of (3.4), as in Refs. 7-9. 

Let ifJ(x,k,ej ) be the solution to (3.2) that is an entire 
analytic function of k, is of exponential order lej"xl, and has 
a value of 1 along the plane ej"x = O. More specifically, 
ifJ (x,k,ej ) is specified by the boundary conditions 

ifJ(x,k,ej ) = 1; VifJ(x,k,ej ) =ikej for ej"x=O; 
(3.5 ) 

ifJ (x,k,ej ) is thus a generalization of the regular solution 
(2.4) to three dimensions. It is also the regular solution re­
ferred to in Ref. 2. 

In Ref. 17 it was pointed out that the regular solution 
defined in Ref. 2 cannot be guaranteed to exist. This is be­
cause the regular solution in Ref. 2 was defined by a Jost 
operator [Eq. (3.6) below; compare to (2.5) for the one­
dimensional problem], and thus it cannot be guaranteed to 
be of exponential order I ej"x I. This implies that the Povsner­
Levitan relation (7.3) used in Ref. 2 may be incorrect. Here, 
however, we assume that this regular solution exists. 

It should be noted that the existence of the regular solu­
tion in general is still an unsolved problem. However, the 
corrections made to the results of Ref. 2 in Refs. 18 and 19 
obfuscate an already complicated inverse scattering proce­
dure still further, and as noted in Ref. 18, the results of Ref. 2 
are "probably correct" in any case. In the sequel we simply 
restrict our attention to situations in which it does exist. 

We further assume that ifJ(x,k,e j ) - e - jke;,x is square 
integrable in k. Then, using the Paley-Wiener theorem, as in 
Ref. 2, it follows that ¢(x,t,ej ) = Y - l{ifJ(x,k,ej )} has sup­
port in t in the interval [ - ej "x,ej"x] (compare this to the 
one-dimensional support interval [ - x,x] ). Thus ifJ (x,k,ej ) 
has the Povsner-Levitan representation [compare with 
(7.3) in Ref. 2 and (2.14) above] 

ifJ(x,k,ej ) =e-jke;,x_ [':,x m(x,t,ej)e-iktdt (3.6) 

[the impulse in the - ei"x direction is included in 
ifJ(x,k, - ej )] so that m (x,t,ej ) is the non impulsive part of 

Andrew E. Yagle 1486 



                                                                                                                                    

the regular solution '/p(x,t,ei ). Note that in the time domain, 
the solutions '/p(x,t,ei ) and ¢(x,t,ei ) have complementary 
support in that the former has support in t on the interval 
[ - ei"X,ei"x], while the latter has support in t on the inter­
val [ei"x, 00 ]. 

The solutions t/J(x,k,ei ) and ¢(x,k,ei ) are related by a 
Jost operator J(k). This is an operator on the space L 2(S2) 
(S2 is the unit sphere) with kernel J(k,e l ,e2 ). The 2X2 
matrix multiplication (2.5) becomes 

¢(x,k,ei ) = ( t/J(x,k,es )J(k,es,ei )des . (3.7) 
Js' 

The Jost operator has inverse2 J -I (k) with a kernel defined 
as above. Setting x = ° results in 

t/J(O,k,ei ) = ( ¢(O,k,es)J -I (k,es,ei )des Js' 
(3.8) 

where the effect of the operator 1 is a generalization of pre­
multiplication by the vector [1,1] in (2.7). This confirms 
that the Jost operator defined here matches the one defined 
in Ref. 2. 

In Sec. II the potential was required to have support in 
the half-space x > 0, allowing an explicit representation 
(2.8) of the Jost function to be determined. Unfortunately, 
this will not work for the three-dimensional problem, since 
the present problem is defined over all of JR3. It is noted in 
Ref. 2 that the Jost operator satisfies 

J( - k) = QS(k)J(k)Q, (3.9) 

where S(k) is the scattering operator with kernel 

S(k,es,ei ) -1= - (kI21Ti)A(k,es,ei ) (3.10) 

and Q is the operator such that QA (k,es ,ei ) 

= A (k, - es,ei ). In Ref. 2 the relation (3.9) leads to a Mar­
chenko integral equation for the kernel J( k,es ,e i ). We now 
derive a similar equation for the kernel J -J (k,es ,e i ). 

From (3.9) we have that 

J-I( -k) =QJ-1(k)SH(k)Q, (3.11) 

where the well-known unitarity of the scattering operator 
S(k) has been used. Repeating the derivation of Ref. 2 (p. 
1707) for (3.11) instead of (3.9) leads to a Marchenko inte­
gral equation for the kernel J - 1 (k,es ,e i ), as follows. Since 
both t/J and ¢ contain impulses in the time domain, J - J does 
also, and J - 1 (k) - 1 is square integrable (see Ref. 2). 
Therefore we may write 

J-1(k,es,ei ) = 1 + f'" L(t,es,ei)e-iktdt (3.12) 

and, following Ref. 2, this leads to the following Marchenko 
integral equation for L (t,es ,ei ): 

L(t,es,ei ) = G(t, - es,ei ) 

+ ("" ( L( 1', - es,e')G(t + 1',e',ei )de' d1', Jo JS2 
(3.13 ) 

where G(t,eues ) is defined by 
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1 I"" k ~ k G(t,eieS ) = - (S( ,es, - e i ) - lIe d 
21T - "" 

= _I_I"" ikA (k,es' - ei )eikt dk 
4r - "" 

(3.14 ) 

(note the transposition of ei and es caused by the Hermitian 
operator). 

It is indeed unfortunate that the solution of the general­
ized Gel'fand-Levitan equation requires the prior solution 
of this Marchenko equation in order to obtain the inverse 
J ost operator kernel J - 1 (k,es ,e i ), but there is no other 
known way to obtain this kernel. However, in Sec. III C 
below it will be shown that the generalized Marchenko equa­
tion for the scattered field resulting from a reflection prob­
lem can be derived from (3.13) and (3.14). 

B" Orthonormalization 

It is well known that in the absence of bound states the 
solutions t/J(x,k,ei ) are orthonormal, in that 

_1_ ("" ( t/J(x,k,e)t/J* (y,k,e)k 2 de dk 
(21T)3 Jo Js' 

= 8(x - y) . (3.15 ) 

As in the one-dimensional case, the solutions {t/J(x,k,ei )} 
are inappropriate candidates for the result of an orthogonali­
zation procedure, since they are initiated in the far field. The 
solutions {¢(x,k,ei )} are ideal candidates for such a proce­
dure, since they are generated in increasing lei "xl in the time 
domain, and from (3.6) and (3.15) they are orthonormal 
with respect to the inner product 

(3.16 ) 

However, the region {yEJR3
: - ei"x<;ei"y<;ei"x} in 

which the orthogonalization takes place is still not compact, 
so a further transformation is necessary. Since the time-do­
main solution '/p(x,t,ei ) is only defined for t>O, we may re­
gard its smooth part m (x,t,ei ) as the Radon transform of a 
function h(x,y) (Ref. 2): 

3P{h(x,y)} = f h(x,y)8(t- ei"y)dy 

=m(x,t,ei)sgn[ei"x] . (3.17) 

Note that the support of h(x,y) in y is the interior of the 
sphere of radius Ixl: {Iyl < Ixl}. This is the triangularity 
property that makes an integral equation procedure possi­
ble; we see here that this property follows from time causal­
ity. Using the projection-slice property of the Radon trans­
form, the Fourier transform relation (3.6) becomes 

¢(x,k,ei ) = e - ike;,x - f h(x,y)e - ike;,y dy 

= Y{8(x - y) - h(x,y)}. (3.18 ) 

From this point on the argument matches that given in 
Sec. II for the one-dimensional problem. The free-space so-
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lutions {e - iketx} are orthogonalized in increasing Ixl. The 

projection of e - iker
x on span{l,b(y,k,ei ), Iyl < Ixl} 

= span{e - ike,y, Iyl < Ixl} takes the form [compare to 
(2.14) 1 

9 = i h(x,y)e - ikerY dy. 
Iyl <Ixl 

(3.19 ) 

The reason that the kernel of the projection (3.19) is 
h (x,y) is as follows. As in the one-dimensional case, we take 
the error 

- ikerx ClJ - ikerx i h ( ) - ikerY d e - v- = e - x,y e y 
Iyl < Ixl 

= l,b(x,k,ei ) (3.20) 

to be the regular solution at x, since by the orthogonality 
principle the error is orthogonal to this subspace, and thus 
may be used to expand it. Comparing (3.18) and (3.20) 
proves that the kernel of the projection (3.19) is precisely 
h (x,y). The kernel h (x,y) should be compared with the ma­
trix kernelM(x,y) in the projection (2.14). The difference is 
that h(x,y) is the inverse Radon transform of the smooth 
part of the regular solution in the time domain, while M(x,y) 
is simply the smooth part of the regular solution in the time 
domain. 

We now derive a generalized Gel'fand-Levitan integral 
equation identical to that of Ref. 2. For convenience the no­
tation of Ref. 2 is adopted. Writing out the condition that the 
error l,b (x,k,ei ) be orthogonal to the subspace element 

e - ikery for Iyl <: lxi, with respect to the inner product defined 
by (3.16), results in 

ho(x,y) = h(x,y) + r h(x,z)ho(z,y)dz, (3.21) 
Jizi < Ixl 

which is Eq. (8.4) in Ref. 2. Here 

ho(x,y) = _1-3 100 r ( M(k,e l ,e2 ) 

(21T) 0 Js' JS2 
X e - ik(e,'x - e2'y) k 2 del de

2 
dk 

(3.22) 

where M(k,e l,e2) = (JH J) -I - I)(k,el,e2 ) is the pertur­
bation of the spectral function (J H J) -I away from its free­
space representation. Equations (3.21) and (3.22) should 
be compared to the one-dimensional problem Eqs. (2.16) 
and (2.17). 

The key fact here is the triangularity ofh(x,y) in (3.21). 
This follows from the support of the regular solution, al­
though it has also been established rigorously. 19 Taking the 
partial inverse Radon transform l9 of (3.21), and using 
(3.17) and the projection-slice theorem results in the gener­
alized Gel 'fand-Levitan integral equation2 

sgn [e;"x] m (x,t,ei ) 

= ( M(t+ei"x,e"ei)de, - ( Jle,x

l 

sgn[es"x] 
JS2 JS2 - le,xl 

Xm(x,r,es )M(t + r,e"e i )dr des, 

where M(t, - e"ei ) = Y-1{M(k,es,ei )}. 
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(3.23 ) 

Once the integral equation (3.23) has been solved, the 
potential V(x) is then recovered from m (x,t,e;) using the 
miracle2 or fundamental identity7 

Vex) =2e;"Vm(x,t=e i "x,e;), (3.24) 

which is the three-dimensional analog of (2.22) and is de­
rived in the same way. Note the sign change in (3.24) as 
compared to the equation in Refs. 2 and 7; this is due to the 
use of the regular solution instead of if! ( x,k,e; ). In Refs. 18 
and 19 the gradient ofthejump in the scattered field must be 
used in (3.24), since the regular solution as defined in those 
papers is not known to satisfy m (x,t,ei ) = 0 for t> e;"x. 
However, in the present case this anticausality follows from 
the support of the regular solution. 

As in the one-dimensional case, the generalized 
Gel'fand-Levitan equation has a finite interval of integra­
tion, which is an advantage over the generalized Marchenko 
integral equation to be derived next. However, it is necessary 
to solve the Marchenko equation (3.13) for the generalized 
Jost function J -I (k,e l ,e2 ) first, which is most inconve­
nient. 

C" Generalized Marchenko equation 

In the one-dimensional case the inverse Jost function 
was related to the reflection problem scattered field at the 
origin by (2.7). Since the scattered field was known at the 
origin, an explicit representation of J -I could be found. For 
the three-dimensional case, the reflection problem scattered 
field is not known at the origin, and J - I must be found from 
the integral equation (3.13). However, the integral equation 
(3.13) can be transformed into an integral equation for the 
scattered field at the origin, and then into an integral equa­
tion for the reflection problem scattered field anywhere, us­
ing an observation made in Ref. 2. This integral equation is 
identical to the generalized Marchenko equation of Ref. 2. 

Integrating (3.13) with respect to es over the unit 
sphere S 2 and using (3.8) and (3.12) results in 

Us (O,t,e;) = ( G(t,es,ei )des JS2 

+ 100 

( G(t + r,e',e i )us (O,t, - e')de' dr, 
o JS2 

(3.25 ) 

where Us (O,t,e;) is the scattered field at the origin for the 
reflection problem with probing impUlsive plane wave in the 
direction ei . This integral equation is equivalent to the gener­
alized Marchenko equation of Ref. 2 with x = 0, since it is 
identical to (4.14) of Ref. 7 with x = 0. Here G (t,e; ,es ) is 
the time derivative of the inverse Fourier transform of the 
scattering amplitUde A (k,es ,ei ) [note the transposition of ei 

and es ' and compare with (4.11) of Ref. 7]. 
We now make use of an observation made in Ref. 2. If 

the potential V( x) is shifted by a translation x', becoming 
Vex - x'), then the solution if! (x,k,ei ) becomes 
if!(x - x',k,ei)e - iker

x
' and thus the scattering amplitude 

A(k b A(k -ik(e -e·)·x' Th C ,e; ,es ) ecomes ,e i ,es )e' '. erelore to 
compute the scattered field Us (x',t,ei ) at x' resulting from a 
potential V(x), we compute the field at the origin x = ° [us­
ing (3.25)] resulting from a shifted potential V( x - x'). 
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This merely requires that we replace the scattering ampli­
tude, and hence G(t,e;.es ), with its shifted version. This 
yields 

G(t,e;.es'x) 

- (2 )-2Joo ik(t-<e,-ej)'x)'kA(k )dk - - 1T e I ,es ,ei 
- 00 

and the integral equation (3.25) is modified to 

Us (x,t,ei ) = r G(t,es,e;.x)des 
JS2 

(3.26) 

+ rool G(t+r,e',e;.x)us(x,t,-e')de'dr, Jo S2 

(3.27) 

where 

(3.28) 

is simply the delayed scattered field. Equations (3.26) and 
(3.27) are identical to (4.11) and (4.14) of Ref. 7, which in 
turn are equivalent to the generalized Marchenko integral 
equation of Ref. 2. 

It has been shown that the generalized Gel'fand-Levi­
tan integral equation of Ref. 2 can be interpreted as an or­
thogonality condition for the construction of the solutions 
rp(x,k,ei ) with respect to the inner product (3.16). The con­
struction of the inverse Jost operator requires the solution of 
a Marchenko equation, and this equation can be extended to 
the generalized Marchenko integral equation of Ref. 2. This 
shows the relation between the two integral equations, and 
how this relation is a generalization of the relation that exists 
between them in one dimension. 

IV. FAST ALGORITHMS FOR THE THREE­
DIMENSIONAL INVERSE SCATTERING PROBLEM 

In this section differential, layer stripping fast algo­
rithms for solving the three-dimensional inverse scattering 
problem are presented. These algorithms require fewer com­
putations than solving the integral equations presented 
above, but they reconstruct Vex), t/J(x,t,ei ), and rp(x,t,ei ) 
just as the integral equations do. They are also generaliza­
tions of the algorithms presented in Sec. II. 

A. The reflection problem 

A major distinction between the one-dimensional and 
three-dimensional reflection problems is that for the one­
dimensional problem near-field and far-field data are identi­
cal (save for a time shift), while for the three-dimensional 
problem the extrapolation of the near-field scattered field 
from the far-field scattering amplitude is a nontrivial prob­
lem. For the reflection problem differential algorithms it is 
assumed that the scattered field is observed in the near field. 
Since in many inverse scattering problems (e.g., inverse seis­
mic problems) data are actually taken in the near field, this 
assumption is not only tenable, but realistic. 

A differential algorithm for solving the reflection prob­
lem is as follows. 12 For convenience let Z = ei'x be the axis 
normal to the incident impulsive plane wave, and let y be the 

1489 J. Math. Phys., Vol. 28, No.7, July 1987 

two directions perpendicular to z, so that any function/(x) 
of x can be written as a function/(z,y) of Z and y. 

(1) Initialize the algorithm on the plane z = ei'x = 0 
with observations of the scattered field and its derivative on 
this plane. 

(2) Propagate the following equations recursively in 
z = ei'x and t, for r>z and for all y: 

(~ +~) u(z,y,t) = q(z,y,t) , 
az at 

( 4.1a) 

(~ - ~)q(Z,y,t) = (V(x) - t::.y )u(z,y,t) , 
az at 

(4.1b) 

Vex) = - 2q(z,y,t = z) , ( 4.1c) 

where t::.y is the Laplacian operator with respect to y, which 
is also the transverse Laplacian operator with respect to x. 
The recursion patterns for this algorithm are the same as for 
its one-dimensional counterpart, and are illustrated in Fig. 4. 

Note that (4.1c) follows using the same argument used 
to derive (3.24) (see Ref. 12) and is comparable to (2.22). 
Also note that this algorithm requires O(N 6

) operations to 
reconstruct V(x), while the solution of the generalized Mar­
chenko integral equation requires O(N 12) operations. Some 
details on ways to implement this algorithm numerically are 
given in Ref. 12. 

The computational simplicity of this algorithm as com­
pared to the solution of the generalized Marchenko integral 
equation (and the algorithm for the regular problem given 
below) results from the inherent causal structure of the re­
flection problem, which is fully exploited by this algorithm. 
Instead of attempting to reconstruct the scattered field all at 
once in one huge operation, the algorithm recursively recon­
structs both the scattered field and the potential as the wave 
front penetrates the region where Vex) has support. It then 
strips away the effects of the reconstructed region, reducing 
the size of the problem and obviating the need to store infor­
mation about the reconstructed region to process the data 
associated with the unknown region. Another important fea­
ture is the use of near-field data, which avoids the coupling 
between the scattered fields associated with different ei that 
makes the generalized Marchenko equation so computation­
ally intensive to solve. 

B. The regular problem 

The regular problem lacks the causal structure of the 
reflection problem, which is why it is harder to solve using 
either the generalized Gel'fand-Levitan equation or a differ­
ential algorithm. Two different differential algorithms for 
the regular problem are presented. The second algorithm is 
similar to an algorithm proposed for estimation of random 
fields in Ref. 13, illustrating some connections between in­
verse scattering in three dimensions and estimation of ran­
dom fields. This generalizes the connections between these 
two topics that exists in one dimension (e.g., Ref. 20). 

A new differential algorithm for solving the regular 
problem is as follows. 

(1) Initialize the algorithm on the plane z = ei'x = 0 
using 

m(z = O,y,t = 0) = n(z = O,y,t = 0) = O. (4.2) 

Andrew E. Yagle 1489 



                                                                                                                                    

(2) Propagate the following equations recursively in Z 

and t, for - z<,t<z and for all y: 

(~ + ~)m(z,y,t) = n(z,y,t) , (4.3a) 
az at 

(~ - ~)n(z,y,t) = (V(x) - aylm(z,y,t) , (4.3b) 
az at 

m(z,y,t= -z) =0, 

Vex) = 2n (Z,y,t = z) 

(4.3c) 

(4.3d) 

obtained from (3.23). The recursion patterns for this algo­
rithm are the same as for its one-dimensional counterpart, 
and are illustrated in Fig. 3. Note that n(z,y,t = z) for the 
regular problem must be obtained from the values of 
n (z,y,t #-z) using the integral equation (3.23). This is analo­
gous to (2.26d) for the one-dimensional problem, for which 
n(x,t = x) is obtained from the integral equation (2.20). 

Aside from the computation of (4.3d), a major problem 
with this algorithm is that the region in which the computa­
tions are to be carried out has infinite extent in y. This can be 
avoided by using the inverse Radon transform, as in (3.15), 
which maps the region in which computations are per­
formed into the interior of a sphere. Taking the inverse Ra­
don transform of the Schrodinger equation (3.1) in the time 
domain and using (3.18) results in 

(ax - ay )h(x,y) = V(x)h(x,y) , (4.4) 

where ax is again the Laplacian operator with respect to x. 
An equation similar to (4.4) was encountered in the prob­
lem of deriving a fast algorithm for the linear least-squares 
estimation of a homogeneous random field, 13 and a variation 
of the algorithm presented in Ref. 13 is useful here. 

Another differential algorithm for solving the regular 
problem is as follows. 

( 1) Initialize the algorithm at the origin using 

h(O,O) =g(O,O) = O. (4.5 ) 

(2) Propagate the following equations recursively in 
r = Ixl and s = Iyl, for O<s<r: 

(:r + !)h(x,y) = g(x,y) , (4.6a) 

(: - !)g(x,y) = H(x,y) , (4.6b) 

H(x,y) = V(x)h(x,y) + (a~ - a~ )h(x,y) , (4.6c) 

h(x,O) obtained from ~h(x,y = 0) = 0, (4.6d) as 
Vex) = - 2g(x,lyl = Ixl)lr (4.6e) 

is obtained from (3.21). 
Here a~ is the transverse radial Laplacian operator in 

spherical coordinates, which is 

a 0 = _1_ ~(sin ()~) + 1 ~ . (4.7) 
x r sin () a(} a(} r sin2 ¢' a¢'2 

The quantity h(x,y) being computed in this algorithm is 
actually rsh(x,y), where h(x,y) is defined in (3.20) as the 
inverse Radon transform of the scattered field m (x,t,e;). 
Multiplication by rs = Ixl Iyl is a normalization that results 
in better numerical behavior near the origin. 
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FIG. 5. (a) Recursion pattern for updating h(r,s) in the fast algorithm for 
the 3-D regular problem. (b) Recursion pattern for updating g(r,s) in the 
fast algorithm for the 3-D regular problem. 

The recursion pattern for this algorithm is illustrated in 
Fig. 5. Note that since the radii rands are both non-negative, 
the recursion pattern differs from the previous algorithm in 
that s is required to be non-negative. The only other signifi­
cant difference is that computations need only be performed 
over the interior of the sphere of radius r, rather than over 
the infinite slab - e;"x<t<e;"x. This is a considerable ad­
vantage over the two preceding algorithms, both of which 
require computations over an infinite region in y. However, 
(4.6e) still requires a considerable amount of computation 
at each recursion, although now the simpler integral equa­
tion (3.21) is used to compute g(x, Ixl) from values of 
g (x,y). This computation is absent in the reflection problem 
algorithm, since this problem has a causal structure that is 
more easily exploited. 

The amount of computation required by the above algo­
rithm for the regular problem is O(N 8) operations. This is a 
significant reduction from the O(N 12) operations required 
to solve the generalized Gel'fand-Levitan integral equation. 
Note that the ratio of the exponents of the orders of compu­
tations required for the integral equation procedure to the 
differential procedure is the same in both one and three di­
mensions, viz., ¥ = ~. Also note that the layer stripping algo­
rithm for the reflection problem requires only O(N 6

) com­
putations. This is because the layer stripping reflection 
problem algorithm is initialized using near-field data, while 
the regular problem procedures all use far-field data in the 
form of the scattering amplitude [in order to compute the 
Jost function J(k)]. 

This algorithm is quite similar to the algorithm given in 
Ref. 13 for computation of the optimal filter for the linear, 
least-squares estimation of a homogeneous random field. 
Since the integral equation (3.21) looks much like a multidi­
mensional Wiener-Hopf equation, this is not surprising. The 
form of (3.21) suggests that the well-known connection 
between inverse scattering and linear least-squares estima­
tion that exists in one dimension20 extends to higher dimen­
sions. Details of this connection are given in Ref. 21 for iso-
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tropic random fields and spherically symmetric potentials, 
and in Ref. 22 for a more general class of random fields and 
nonspherically symmetric potentials. 

v. CONCLUSION 

This paper has presented a unified treatment of various 
differential imd integral equation procedures for solving 
three-dimensional inverse scattering problems. The relation 
between the generalized Gel'fand-Levitan and Marchenko 
integral equations of Ref. 2 has been explored by noting that 
the former can be interpreted as an orthogonality principle 
with respect to an inner product defined in terms of a weight­
ing function computed using an integral equation equivalent 
to the latter. The problems solved by the two integral equa­
tions, and the resulting scattering solutions, are complemen­
tary in their support. This is emphasized by the differential 
counterparts to the integral equation procedures, which re­
quire less computation since they directly exploit the causal 
structure of the inverse scattering problem. 

An important feature of this presentation is the empha­
sis on how results for the one-dimensional inverse problem 
generalize to three dimensions. The parallels between Secs. 
II and III are remarkable, considering the greater complex­
ity of the three-dimensional problem. These strong parallels 
in the derivations of both the integral equation procedures 
and their differential, fast algorithm counterparts suggest 
that the approach taken in this paper may be particularly 
insightful for further research. 

Several topics developed in this paper require further 
research. The most important one is the connection between 
multidimensional inverse scattering and linear least-squares 
estimation of random fields. A useful starting point would be 
the characterization of the class of covariance functions that 
can be put in the form of (3.22). Connections between other 
exact inverse problem procedures and those of Ref. 2 should 
also be explored, in the spirit of Ref. 9; this could result in 
further insights and more fast algorithms. Finally, the nu­
merical performances of all of these procedures need to be 
investigated. 
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It is proved that, in the context of a conformal causal structure, (a) any acceleration field 
decomposes uniquely into the sum of an affine structure that is compatible with the conformal 
structure and an n-force, and (b) any directing field, such that the n-force of the 
corresponding family of acceleration fields is due to tensor fields and is orthogonal to the 
n-velocity, uniquely decomposes into a projective structure that is compatible with the 
conformal structure and an (n - 1 )-force. Moreover, if there are no second clock effects and 
variable rest masses do not exist, there exists a unique pseudo-Riemannian metric on space­
time that determines the unique standard of no acceleration for all massive monopoles. It 
follows from this that a non-null result for the Eotvos experiment entails the existence of afifth 
force rather than a violation of the universality offree fall. 

I. INTRODUCTION 

We prove that the conformal causal structure of space­
time reduces to a Weyl structure provided that there exists 
on space-time either an acceleration field A ~ (xi,r; ) or a di­
recting field :=:~ (Xi,S f) such that the n-force of the corre­
sponding family of acceleration fields is due to tensor fields 
and is orthogonal to the n-velocity. Moreover, the Weyl 
structure and hence its affine and projective structures are 
unique unless there are second clock effects or variable rest 
masses or both. To put the significance of these results in 
perspective, we briefly outline some of our previous results. 

According to the principle of the universality offree fall 
(UFF), the motions of all neutral monopole particles are 
governed by one common path structure. In a previous pa­
per, 1 we formulated this principle as follows. 

UFF: The set of all actually existing equation of motion 
structures for massive monopoles constitutes a one-param­
eter family of directing fields of the form 

:=:~(Xi,sf) = Wa(xi,sf) + (Q Im)lFa(xi,sf), (1) 

where Wis a specific directing field and Q 1m is the electro­
magnetic charge to mass ratio. The principle UFF does not 
require that the universal equation of motion structure 
wa (Xi,S f) be geodesic, that is, cubic2

•
3 in the variables sf, 

denoting the three-velocity. However, if the special theory of 
relativity is valid in every sufficiently small region of space­
time, then at every point of space-time the first-order part of 
the microsymmetry (invariance) group of the field W must 
contain a subgroup that is isomorphic to the Lorentz group. 
In our paper,l we proved that any second-order equation of 
motion structure, either an acceleration field A ~ (xi,r; ) or a 
directing field :=:~ (Xi,S f), that satisfies this microsymmetry 
condition and is C 1 in its velocity variables (Y; or sf), must 
be geodesic. Hence the field W that governs the motion of all 
neutral monopoles must be a projective structure. A 

theorem proved by Ehlers, Pirani, and Schild (EPS) 4 asserts 
that any projective structure that is causally compatible with 
the conformal structure of space-time determines a reduc­
tion of the conformal structure to a Weyl structure; that is, 
the two structures jointly determine a unique symmetric lin­
ear connection on space-time. A weaker theorem proved by 
Wey15,6 asserts that the conformal and projective structures 
determined by a given Weyl structure, in turn, uniquely de­
termine that Weyl structure. See also Ref. 7, Sec. 8. 

In Sec. II, we discuss the additional constraints on phys­
ical acceleration and directing fields due to the fact that the 
n-velocity of material particles must be future timelike, and 
define the concepts of n-force and (n - 1 )-force. The de­
composition theorems for acceleration and directing fields 
are presented in Secs. III and IV, respectively. The signifi­
cance of our results for the constructive axiomatics of the 
general theory of relativity (GTR) is noted in Sec. V. Final­
ly, in Sec. VI, we discuss the implications that our results 
have for the interpretation of the Eotvos experiment and for 
the existence of a fifth force. 

II. PHYSICAL ACCELERATION AND DIRECTING FIELDS 

Let M denote the space-time manifold and let y: IR -+ M 
be a curve in M such that y(O) = p. Then the k-jetj~y is the 
k th-order curve element determined by y at pEM. The set of 
such elements at pEM for all curves through p is denoted by 
Jk(Ro,Mp )' The space of all curve elements forms an asso­
ciated fiber bundle 

j'k(M) = (Jk(Ro,M),1Tk,M,Jk(Ro,1R3),G ~), (2) 

where J k (Ro,R~ ) is the typical fiber and G ~ is the Lie group 
of k-jets j~ f of diffeomorphisms f Rn 

-+ Rn such that 
f( 0) = O. The natural projections 
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(3) 

are defined by truncating the I-jets. An acceleration field is a 
map A: J I (Ro,M) --+J 2(Ro,M) such that 

(4) 

Denote by (Xi'YI ) and (Xi,";,Yz ) the coordinates of}! rand 
}~ r with respect to some local chart (U,x) p' Then the field A 
is determined locally by 

A (Xi,"; ) = (A ~ (Xi,"; ),A ; (Xi,"; ),A ~ (Xi,"; ») 

=(Xi,";,A~(Xi,";»). (5) 

The corresponding second-order equation of motion for the 
curve r: R --+ M is 

(6) 

The causal structure of space-time is determined by a confor­
mal structure that determines an equivalence class of pseu­
do-Riemannian metrics up to an arbitrary, possibly noninte­
grable choice of gauge. 

(7) 

Curve elements of world lines that describe the motion of 
physical particles must satisfy the condition that the n-veloc­
ity"; be timelike and future pointing; that is, 

gij";r~>O and r1>0. (8) 

The open subbundle of /k(M) defined by this condition 
will be denoted by yt"k(M). A physical acceleration field is 
thus defined by a mapA: H I(M) --+H2(M) such that (4) is 
satisfied. 

Given two elements (Xi,"; ,YZA) and (Xi,"; ,YzB) of 
H2(M), one can form the geometric object (Xi,"; ,aYz), 
where 

aYz = YzB - YzA' (9) 

Under a change of space-time coordinates"; and a Yz trans­
form in the same way; however, under a change of param­
eter, they transform according to 

(10) 

and 

(11 ) 

The bundle of geometric objects (Xi,"; ,aYz ) will be denoted 
by Y (M). An n-force is determined by a map F: 
HI (M) --+F(M) such that 

~'OF=idH" 

where 

~'(xi,r';,aYz) = (xi,r';). 

(12) 

(13 ) 

If f1,: R --+ R is a diffeomorphism such that f1, (0) = 0, then G ~ 
is the Lie group of k-jets}~f1, of such diffeomorphisms. This 
group acts on the fibers of Hk(M) in a natural way. The 
equivalence classes determined by this group action are the 
elements ofthe bundle ~ k (M) = yt"k (M) I G ~ of k th-order 
path elements with total space Dk(M). If the space-time co­
ordinates are Xi = (t,xG) , where t is the timelike coordinate, 
then a k th-order path element is described by 
(t,xG,s ~ "",5 %), where the coordinate 5 ~ corresponds to the 
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r th derivativeofxG with respect to t. The elements ofDk(M) 
satisfy the condition 

(14) 

wherexo = t. 
A physical directing field is defined by a map 2: 

DI(M) --+D2(M) such that 

~; 02 = ido' . (15) 

Such a field is locally described by 

2(xi,sn = (xi.s~,2~(xi,sn) (16) 

and determines the second-order equation of motion 

d;!2
G 

(t) = 2~(t,sG(t), d;t
G 

(t») (17) 

for the path t--+ (t,s G(t»). 
Given two elements (Xi,S ~,s ~A) and (Xi,S ~,s ~B) of 

D2(M), one can form the geometric object (x',s~,as~), 
where 

(18) 

Under a change of space-time coordinates, 5 ~ and as ~ 
transform according to 

t~ = (1'g +1'psf)/(1'g +1'~sn (19) 

and 

_ 1'G af;-{3(1' o + 1'0 f;-P) _ 1'0 af;-{3(1'G + 1'Gf;-P) as G = {3 ~ 2 0 P~ I {3 ~ 2 0 . P~ I 

2 (xg +x~sn3 
(20) 

The total space of the bundle of geometric objects 
(Xi,S f ,as ~) will be denoted by IF (M). An (n - 1) -force is 
determined by a map IF: DI(M) --+IF(M) such that 

~'OF=idD" (21) 

Although a curve structure need not determine a path 
structure, to every path structure there corresponds a family 
of curve structures (Ref. 1, Theorem 3.1). 

Theorem 1: An acceleration field A determines a direct­
ing field 2 iff A is of the form 

A ~ (Xi,"; ) = P(xi,";)"; + I~ (Xi,";), (22) 

where I ~ (Xi'Yl ) is orthogonal to 1"1 and 

(23) 

In much of the following analysis, the variables Xi play 
the role of spectators. Functional dependence on these vari­
ables will be suppressed and indicated derivatives are with 
respect to the variables"; unless explicitly stated otherwise. 

It is useful to have a concrete example in mind. Consider 
the acceleration field defined by 

A ~ (,,; ) = (grs ~ y; ) 1!
2Tj, r~' + Tj,j, r~'rjt 

+ (grs~Y; )-1/2Tj,j2I,r~'r~2rji' + 

+ (g '/'''') - (k - 2)/2T' . r j, .. 'rjk. 
,"sfirt 11"'Jk 1 1 

(24) 

This field is homogeneous of degree 2 in the variables"; and 
therefore determines a directing field. Under a change of 

R. A. Coleman and H. Korte 1493 



                                                                                                                                    

coordinates, - Tj,j, transforms like a symmetric linear con­
nection and the other coefficients transform like tensor 
fields. The usual family of electromagnetic acceleration 
fields is the special case in which 

(25) 

where r i 
. is the symmetric linear connection determined 

Jlh 

by the space-time metricgij' and 

Tj, =fLFj" (26) 

whereFi, is the electromagnetic field tensor andfL = Q 1m is 
the specific charge. 

For the acceleration field (24) with TJ,j2 = - rj,j2 the 
n-force is clearly 

Fi(rl)=A~(r;) +rJ,j2r~'r~2. (27) 

In order to rule out variable rest masses, the n-force must be 
orthogonal to the n-velocity, 

gabr'tFb(r;) = o. (28) 

It is easy to satisfy this condition by requiring that the fields 
Tij,. -j, (for r=/= 2) have the symmetry obtained by antisym­
metrizing on the first two indices and then symmetrizing on 
the last r indices. This symmetry condition also guarantees 
that 

F~a(r;)=o, 

and therefore that 

A~.a(r;)= -2rkr1, 

where r k = r~k' 

(29) 

(30) 

Even if the n-force has a more general form than that 
given by (24) and (27), it must still satisfy the orthogonality 
condition (28) because this condition is necessary (but not 
sufficient) for rest masses to be constant. 

III. THE DECOMPOSITION OF PHYSICAL 
ACCELERATION FIELDS 

In this section, it is shown that the conformal structure 
of space-time and an acceleration field together determine a 
symmetric linear connection and hence determine the free 
fall and force components of the acceleration field. The anal­
ysis does not apply to every mathematically conceivable ac­
celeration field, but it does apply to a very large class of 
acceleration fields that includes all acceleration fields with 
force terms due to tensor fields. 

At each space-time point, a conformal structure deter­
mines a pseudo-Riemannian metric up to an arbitrary, possi­
bly nonintegrable choice of gauge 

(31) 

and an equivalence class of symmetric linear connections, 
such that the conformal structure is preserved under the par­
allel transport of each of these connections, namely, 

rik =K5k + (lln)(8irk +8~rj -gjkgirC), (32) 

where the trace of the connection r k is arbitrary. 
Remark: The geometric object determined by the r k 

may reasonably be called a "volume connection" since the 
r k determine a principal connection on the bundle of vol­
ume elements. • 
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The conformal connection coefficients are given by 

2K Jk = tr(grj.k + grk.j - gjk.r) 

- (lin) (8i<J?k +8~<J?j -gjkgir<J?r), (33) 

where 

<J?k = grsgrs.k , (34) 

and the indicated derivatives are with respect to the sup­
pressed variables Xi. As the standard representative of the 
equivalence class (31), we choose 9'ij (Xi), such that det 
(9'ij (Xi») = - 1. Let CC r; ) transform as r k r1 does under a 
change of local coordinates; that is, 

C(Y';)=ccr;)-Xs-lrX~kr~. (35) 

In view of the structure of (32), it is reasonable to require 
that the field that governs free motion be of the form 

B~(r;)= -Kikr~r1- (2In)r;C. k (r;)r1 

(36) 

Such a field gives the correct equations of motion for light 
rays and transforms in the same way as an acceleration field 
A ~ (r; ) does; namely, 

A~(ji;)=X5A~(r;)+Xikr~r1. (37) 

A general acceleration field may then be written as the sum 
of the field (36) and an n-force, 

(38) 

One obtains from (36), (38), and the orthogonality condi­
tion (28) the equation 

C k Cr;)r1 = _n[gabr'tKJkr~r1 +pcr;)], (39) 
. gpq r':71 

where 

(40) 

Theorem 2: Given an acceleration field A ~ (r; ), define 

[ 

,'p K b j.J< ] 
CCr;)= -n gabfl jkrlrl +E(r;) , 

gpqr':ri 
(41) 

where 

E(r;) = SCYI) + t p(Ar;) dA 
Jo A 

(42) 

and S: H I (M) -+ R satisfies 

S(Ar;) =S(Y;). (43) 

If the integral in (42) exists, then the acceleration field 
B ~ (Y; ) determined by (36), (41), and (42) determines an 
n-force given by 

Fi( Y; ) =A ~ (Y; ) - B ~ (Y; ), 

which satisfies the orthogonality condition 

gabr'tFb(Y; ) = o. 

(44) 

(45) 

Proof: It must be shown that (41) is the most general 
solution of (39). Since 

(46) 
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it follows that 

~C(A~) = _ n[gabt1KJkY~ r1 
dA gpqt:r'f 

P(,1.~) ] 
+ A . 

(47) 

Define 

(48) 

Then, 

~E(,1."i) = P(,1.~) 
dA f1 A' 

(49) 

and 

. LA P(p~) 
E(Ar'I) = const + dp, 

o p 
(50) 

where const may depend on the direction from which ~ -+ 0; 
that is, const may be a function that satisfies (43) and hence 
satisfies the homogeneous equation 

r1 S,k (~ ) = o. (51) 

Note that S( r';) contributes to the field B ~ (~) only if 
S,k (~ ) #0. Hence, the general solution ofEq. (39) is given 
by (48), where 

. . LI P(A~) 
E(r'I) =S(r'I) + dA. 

o A 
(52) 

Finally, note that the field P(~ ) transforms according to 

P(r;) =P(~) + gabt1XJky~r1 (53) 
gpq t: r'f 

Since 

S(r;)=S(~) 

and 

fJ... gab,1.t1XJkAy~,1.r1 d,1. = gab t1XJk yjl r1 

o A gpqAt:,1.r'f gpq~r'f 

(54) 

(55) 

it follows that E (~ ) obeys the same transformation law that 
P(~) obeys. • 

Remark: For the class of acceleration fields (24) that 
satisfies (28), 

(56) 

Moreover, the field B ~ (~) will in this case be an affine 
structure provided that S( ~ ) is chosen to be zero in which 
caseE(~) =P(~). • 

The acceleration field B ~ (~) is not uniquely deter­
mined by the condition that the n-force be orthogonal to the 
n-velocity. However, if this field governs force-free motion 
and therefore represents the inertial structure of space-time, 
which is an aspect of the geometry of space-time in the gen­
eral theory of relativity, then it must satisfy additional con­
straints. The essential features of the special theory of rela­
tivity are incorporated into the general theory of relativity by 
the requirement that at each point pEM, the microsymmetry 
groupl,2 of the space-time metric is isomorphic to the Lor­
entz group, SO (1 ,n - 1). A consequence of this require­
ment is that derivative geometric structures, such as the 
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conformal, affine, and projective structures, have microsym­
metry groups at eachpEM, the first-order part of which con­
tains a subgroup that is isomorphic to the group 
SO(1,n-l). 

Definition: A space-time geometric structure field is 
compatible with the special theory of relativity iff its micro­
symmetry group at each pointpEM has a first-order part that 
contains a subgroup that is isomorphic to the group 
SO(1,n - 1). • 

In a previous paper, I we proved the following result. 
Theorem 3: If an acceleration field B ~ (~ ) is compati­

ble with the special theory of relativity, then it is geodesic. 
Remark: Our proof requires that B ~ (~ ) be C I on its 

domain of definition (8) and that 

lim B ~,k (A ~ ) = o. 
,1-0 

(57) 

These conditions are satisfied by the directing field (24). • 

Ifit is required that the field B ~ (~ ) in the decomposi­
tion Theorem 2 above represent the geometric inertial field, 
then it must be compatible with the special theory of relativi­
ty; consequently, by Theorem 3, it must be geodesic. It fol­
lows that C,k (r'1 ) can not depend on the variables ~, that 
S (~ ) can not depend on the variables Y; (and therefore 
may be set to zero without affecting the decomposition), and 
that P( YI ) must be homogeneous of degree 1 in the variables 
Y; . With this additional restriction on the class of accelera­
tion fields, we have the following result. 

Theorem 4: Let A ~ (~ ) be an acceleration field such 
that the right-hand side of (39) is linear in the variables ~ . 
Then, this acceleration field together with the conformal 
causal structure of space-time uniquely determines a sym­
metric linear connection that is compatible with the confor­
mal structure and an n-force that is orthogonal to the n­
velocity y'; . 

IV. THE DECOMPOSITION OF PHYSICAL DIRECTING 
FIELDS 

It has been noted in Theorem 1 of Sec. II that a directing 
field E determines only a family of acceleration fields. Since 
the term proportional to Y; is arbitrary, the field P(Xi,~ ) 
given by (40) is not known; consequently, the method used 
in Theorem 2 of Sec. III to define C(~ ) is not applicable in 
the directing field case. However, the analysis can be modi­
fied, for an important class of directing fields .to be described 
below, to yield a unique decomposition of a directing field 
into the sum of a projective structure II and an (n - 1) -force 
F. 

According to Theorem 1 of Sec. II, the field I~ (Xi,~ ), 
which satisfies 

gij~I~ (Xi,~) = 0, (58) 

may be used as the standard representative of the equiv­
alence class of acceleration fields determined by the direct­
ing field E. However, the transformation law of the field 
I~ (x,~ ) is rather complicated and it is preferable to use the 
field 

\II~ (~) =I~ (~ ) - (lI(n + 1 )]I~.a (~)~, (59) 

which satisfies 
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(60) 

as the standard representative. Under a change of local co­
ordinates, the field 'I' transforms according to 

qiUY'i) = xa'l'~ (r; ) + {X s- ItXjk - [l/(n + 1)] 

X (bjX s- IrX~k + b~X s- IrX~j )}y~ ~]. (61) 

This transformation law directly corresponds to the well­
known transformation law for the coefficients of a projective 
structure. 

A projective structure II determines an equivalence 
class of symmetric linear connections that are compatible 
with the projective structure. These symmetric linear con­
nections are given by 

rjk = IIjk + [l/(n + 1)](bJrk +b~rj)' (62) 

where the trace of the connection r k is arbitrary. From (32) 
and (62), it follows that a conformal structure determines 
an equivalence class of projective structures given by 

IIJk =KJk + [l/n(n + 1)](bJrk +b~rj) 

- (l/n)gjklTr' (63) 

It is straightforward to show that 

C(y'; )_n(n + 1) [gab11(KJkY~~ + 'I'~(r; »)] (64) 

n - 1 gpqr1Y1. 
transforms according to (35). The expression (63) moti­
vates the requirement that the field that governs force-free 
motion be of the form 

X~ (r; ) == - K Jk Y ~ ~ - [2/ n (n + I)] r; C.k (r; ) ~ 

+ (l/n)(gjkY~~)l'C.r(r;). (65) 

The field X~ (y; ) has the same transformation law (61) as 
'I'~ (r; ) does. One can readily show that the n-force defined 
by 

p"(r;) =='I'~ (r;) - X~ (r;) 

satisfies the orthogonality condition 

gab11Fb(r;) = O. 

(66) 

(67) 

Unfortunately, the decomposition (66) is not unique. 
The projective transformation 

q,~ (r;) = 'I'~ (r;) + [l/(n + 1)]r;w(r;), (68) 

where w: H I (M) -+ Rand 

(69) 

does not change the directing field a, which is given by 

3~ (sf) = [y?'I'~ (y; ) - J1'1'~ (r; ) ]/(y? )3. (70) 

One finds, however, that 

(71) 

x~ (r; ) = X~ (r; ) - [2/ (n - 1)( n + 1)] r; w (r; ) 

+ [l/(n -l)](gjky~~)girw.r(r;) (72) 

and 

pi(r;) =Fi(r;) + [l/(n -1)]r;w(r;) 

- [l/(n -l)](gjkY~~)lrw.r(r;). (73) 

The terms proportional to r; do not affect the decomposi-
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tion of the directing field a, but the terms proportional to 
lrw,r (Y; ) do. Fortunately, this arbitrariness in the decom­
position of a directing field can be eliminated for a large and 
important class of directing fields, namely, the class of di­
recting fields given by 

3~(sf) = [/1A ~(r;) - J1A ~ (r;) ]1(/1 )3, (74) 

where 

A ~ (r; ) = (9'rs Y; Y; ) 1/2 YJ, y~, + TJ,j2 y~,yjI' 

+ (9'rsY;Y; )-I/2YJ,j,j,dy~'y1' + 

+ ( ""-') - (k-2)/2Yi . yj, .. 'yjk 9' rs r I r I j, . "1k I I , 

(75) 

the 9'ij are the conformal coefficients and the Yij,j, .. oj, for 
r# 2 are tensor densities of appropriate weight that have first 
been antisymmetrized on the first two indices and then sym­
metrized on the last r indices. Directing fields that do not 
belong to this class are matematically conceivable; however, 
they do not seem plausible from a physical point of view. The 
following theorem summarizes the above discussion. 

Theorem 5: Let a be a directing field given by (74) and 
(75). This directing field uniquely determines and is unique­
ly determined by the standard representative 'I'~ (r; ), which 
satisfies (60). If C(r;) given by (64) is linear in the vari­
ables r;, then the field 'I'~ (r; ) has the unique decomposi­
tion 

(76) 

where the projective structure standard representative X is 
given by (65) and satisfies 

X~.a (y'; ) = 0, (77) 

and the n-force p"( r; ) satisfies the conditions (67) and 

(78) 

To the decomposition (76), there corresponds the unique 
decomposition 

(79) 

where II is the projective structure corresponding to X and F 
is the (n - 1 )-force corresponding to the n-force F. 

Remark: Note that for the class of directing fields con­
sidered, the condition (78) that ensures the uniqueness of 
the decomposition (79) is a consequence of the orthogonali­
ty condition (67). Also, the field C( Y; ) will fail to be linear 
in the variables r; only if the projective part of the directing 
field is incompatible4 with the conformal structure. • 

V. THE CONSTRUCTIVE AXIOMATICS OF GTR 

Ehlers, Pirani, and Schild have proposed a set of con­
structive axioms for the general theory ofrelativity.4 One of 
their axioms, the projective axiom, asserts the existence of a 
path structure &' J' the members of which are the possible 
world line paths of "freely falling" particles. They were, 
however, unable to provide an effective and noncircular pro­
cedure for measuring the geodesic directing field II which 
uniquely determines and is uniquely determined by the path 
structure &' J' We presented the solution to this difficulty in 
a terse form in Ref. 2 and in greater detail in Ref. 8. Our 
solution provides noncircular, empirical procedures for the 

R. A. Coleman and H. Korte 1496 



                                                                                                                                    

identification of monopoles, for the separation of monopole 
particles into distinct classes each of which corresponds to a 
particular path structure, for the measurement of these path 
structures and for the testing of a given path structure for 
geodesicity. Thus our results show that the projective axiom 
of EPS is directly testable and hence truly constructive pro­
vided that there exists a class of neutral monopoles governed 
by the projective structure of space-time. In our more de­
tailed presentation (Ref. 8, p. 171), we show that the projec­
tive structure of space-time can be measured by measuring 
the directing fields of electrically charged monopoles for at 
least two distinct charge to mass ratios. 

Theorem 5 of Sec. IV greatly simplifies the problem of 
measuring the projective structure of space-time. One need 
only measure the directing field E corresponding to anyone 
kind of monopole particle regardless of the type of charge (s ) 
this kind of particle may have. Thus, rather than having to 
measure the projective structure as part of a general para­
metric (charge to mass ratio) analysis of the family of direct­
ing fields, one can separately decompose each directing field 
into the sum of the projective structure and an (n - 1 )-force 
field. The parametric structure of the family offorce fields so 
obtained may then be analyzed as a separate problem. 

VI. IMPLICATIONS FOR THE EOTVOS EXPERIMENT 
AND THE FIFTH FORCE 

Our results radically modify the interpretation of the 
Eotvos experiment. The traditional view is that a null result 
for this experiment establishes the principle of the universal­
ity of free fall. But, the analysis of Sec. IV shows that the 
equation of motion structure of a massive monopole unique­
ly decomposes into the sum of an (n - 1) -force and a geo­
desic directing field or projective structure that is causally 
compatible with the conformal structure of space-time. Thus 
one of the two following possibilities holds: (1) the equation 
of motion structures of monopole particles all have the same 
projective component; or (2) there are at least two distinct 
projective structures which are the projective components of 
an equation of motion structure for some monopole parti­
cles. 

If case ( 1) holds, there exists a unique projective struc­
ture on space-time that is compatible with the conformal 
structure of space-time and hence there exists a unique Weyl 
structure on space-time. Moreover, if there is no second 
clock effect, the Weyl structure reduces to a Riemannian 
structure. 

In connection with the second possibility, note that if r 
is an affine structure that is causally compatible with the 
conformal structure of space-time, then any other such af­
fine structure is a member of the one-parameter (A) family 
of acceleration fields given by 

A ~ (r; ) = - r)k Y ~ 11 + AS )k Y jl 11 , ( 80) 

where S)k is a tensor field of the form 

S)k = (lin )(8)llJk + 8~llJj - gjkg
ir 

llJ r ), (81) 

where llJ k is a covector field. Every acceleration field in the 
family given by (80) and (81) determines a distinct Weyl 
structure. If S)k 7"0 and does not have the form (81), the 
equation of motion determined by the field (80) for A 7" ° has 
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solution curves that "break the light barrier." 1,4 

Possibility (2) asserts that there exist at least two 
members of the family given by (80) and (81). Note also 
that the family is determined by any two of its members. 
There are three cases to consider. First, if none of these Weyl 
structures reduces to a Riemannian structure, then no mem­
ber of the family (80) is in any way singled out, and hence 
there is no natural zero point for the parameter A and no 
reason to decompose the affine structures into a particular 
affine structure and an n-force. Moreover, in this case there 
is a second clock effect for each A. Second, if one of the sym­
metric linear connections satisfies 

r j .k - rk,j = 0, (82) 

but 

llJj,k -llJk,j7"O, (83) 

then the connection r;k is Riemannian and determines the 
natural zero point for the parameter A, It is then natural to 
decompose the other members of the family into this Rie­
mannian affine structure and an n-force. Such a one-param­
eter family of acceleration fields cannot be ruled out by sim­
ply demanding Lorentz microcovariance any more than the 
one-parameter family (25) and (26) of electromagnetic ac­
celeration fields can be so ruled out. Unlike the electromag­
netic case, however, the rest mass of any of the monopoles 
for which A 7" ° varies as judged by the standard provided by 
the Riemannian metric. The rate of change of the rest mass is 
proportional to 

(84) 

Thus the phenomenon of variable rest mass exists unless llJ k 

vanishes identically in which case the Riemannian metric is 
unique. Finally, if ( 82) holds and 

llJj,k - llJk,j = ° (85) 

as well, then there is again no natural zero point for the 
parameter A. All of the Weyl structures are, in this case, 
Riemannian structures. The phenomenon of variable rest 
mass still occurs in a mutual form unless llJk = rp,k vanishes 
identically. 

Thus if there is no second clock effect and there are no 
variable rest masses, and if, moreover, the result of the Eot­
vos experiment is not null, then case (1) holds and there 
necessarily exists a fifth force because there exist at least two 
nonelectromagnetic equation of motion structures at most 
one of which can be purely geodesic. Whether or not one 
would choose to call such a fifth force "gravitational" de­
pends on the details of the model proposed. In any case, the 
principle UFF, the existence of a universal standard of no 
acceleration, is not in question. 

Remark: Our work is clearly relevant to Shiff's conjec­
ture, which states that the principle UFF entails the Einstein 
equivalence principle. See Lightman and Lee9 and Ni. 10 • 

Moreover, the recent reanalysis II of the experimental 
results of EotvQs, Pekar, and Fekete l2 (EPF) indicate that 
the result of the Eotvos experiment is not null. They suggest 
that there may be an additional, intermediate range, vector 
coupling to hypercharge. Such a coupling could also account 
for some other subtle effects in theK 0 - K 0 system; however, 
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a coupling to baryon number, which is conserved, would 
also account for the EPF data. Moffat13 has recently pointed 
out that his theory of gravitation can also account for the 
EPF data. All of these proposals are in agreement with case 
(1 ). 
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The canonical Hamiltonian structure of the equations of fluid dynamics obtained in the 
Boussinesq approximation are considered. New variational formulations of these equations are 
proposed and it is found that, as in the case of the KdV equation and the equations governing 
long waves in shallow water, they are degenerate Lagrangian systems. Therefore, in order to 
cast these equations into canonical form it is again necessary to use Dirac's theory of 
constraints. It is found that there are primary and secondary constraints which are second 
class and it is possible to construct the Hamiltonian in terms of canonical variables. Among the 
examples of Boussinesq equations that are discussed are the equations of Whitham-Broer­
Kaup which Kupershmidt has recently expressed in symmetric form and shown to admit tri­
Hamiltonian structure. 

I. INTRODUCTION 

The equations governing the propagation oflong waves 
in shallow water consist of a pair of coupled first-order par­
tial differential equations which can be interpreted as a 
Hamiltonian system in several different ways. First, Luke's 
variational principle I for these equations was cast into ca­
nonical form by Zakharov/ Broer,3 and Miles.4 But with 
this approach it was not possible to obtain an explicit expres­
sion for the exact Hamiltonian in terms of canonical vari­
ables. Recently a new formulationS of these equations in 
terms of potentials led to the construction of the requisite 
Hamiltonian through the use of Dirac's theory of con­
straints.6.7 Dirac's theory plays a crucial role for casting an 
overwhelming majority of the equations of fluid dynamics 
into canonical form because they turn out to be degenerate 
Lagrangian systems. In particular, the Hamiltonian for the 
KdV equation8 was obtained by an application of Dirac's 
theory of constraints and in this paper we shall show that it 
can be used to cast the Boussinesq equations into canonical 
form as well. An alternative approach to the Hamiltonian 
structure of fluid equations is based on the Poisson bracket 
Gardner9 has introduced for the KdV equation which, as 
Macfarlane,1O Bergvelt and DeKerf,lI and Lund 12 have 
shown, is equivalent to the Dirac bracket. This generalized 
Hamiltonian formalism has led to interesting new develop­
ments such as the theory of bi-Hamiltonian structure 
through the work of Lenard,13 Olver,14 Magri, IS Gel'fand 
and Dorfman,16 and Fokas and Fuchssteiner,17 but it has 
some strange features from the vantage point offield theory. 
It does not, for example, employ the full set of canonical 
variables. The gap between these two approaches is bridged 
by Dirac's theory of constraints. Most recently Olverl8 has 
clarified this relationship by giving a proof of Darboux's 
theorem for first-order Hamiltonian operators. 

The prototype of a field theory where all these structures 
emerge is the theory oflong surface waves in shallow water. 
It will be of interest to find out which properties of this sys­
tem of equations are stable in the sense that they survive in an 
appropriately generalized form when the equations are 
modified to take into account new effects. To this end we 
shall now consider the theory of dispersive waves in shallow 
water which are grouped together under the title of "Bous-

sinesq equations." We shall briefly discuss the variety of flu­
id equations which are obtained in the Boussinesq approxi­
mation and choose two sets of equations on which we shall 
concentrate our attention for the rest of this paper. Among 
them are the equations of Whitham, 19 Broer,20 and Kaup21 
(hereafter to be referred to as WBK). Recently Kuper­
shmidt22 has found a transformation whereby these equa­
tions assume a symmetric form. Kupershmidt's equations 
admit tri-Hamiltonian structure. 22 We shall construct new 
variational principles for these equations and find that they 
are degenerate Lagrangian systems. Applying Dirac's the­
ory we obtain primary and secondary constraints all of 
which are second class and construct Dirac's total Hamil­
tonian which yields the canonical formulation of these Bous­
sinesq equations. All of the equations of fluid dynamics in 
the Boussinesq approximation can be cast into canonical 
form using Dirac's theory of constraints, but Kupershmidt's 
equations occupy a privileged position among them because 
only in this case does the rich structure of the shallow water 
equations survive intact in every respect. 

II. BOUSSINESQ EQUATIONS 

We refer to Whitham,23 Bona and Smith,24 and Olver25 

for complete discussions of the issues in the Boussinesq ap­
proximation. The choice of equations of motion for a fluid in 
this approximation may be summarized in the following two 
points. The horizontal velocity field u is a function of the 
depth y as well as being a function of f,x while the surface 
elevation h depends only on f,x. In place of y we shall use e 
which is normalized so that the undisturbed depth is given 
by e = 1. The form of the dispersive terms in the equations of 
motion changes depending on the choice of e. The second 
ambiguity stems from the fact that we are making an approx­
imation which is not disturbed by adding to the terms of 
second order, second derivatives in either t or x of the first­
order terms. This gives rise to 12 free parameters after fixing 
the depth e. There are physical and mathematical criteria for 
cutting down these possibilities. First of all we shall require 
that the equations of motion must be derivable from a vari­
ational principle. If we were to allow time derivatives of an 
order higher than the first which we find in the limit of zero 
dispersion, then the character of these equations changes 
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drastically as far as the initial-value problem is concerned. 
This is a particularly important point as we are primarly 
interested in the Hamiltonian formulation of these equa­
tions. Thus we shall further require that the Cauchy data for 
these equations should essentially be the same as that of the 
shallow water theory. This eliminates equations which con­
tain second- or higher-order time derivatives in dispersive 
terms. Physically the most important criterion for the selec­
tion of an equation is its dispersion relation. The require­
ments above leave room for equations which are physically 
interesting. 

The first set of Boussinesq equations we shall consider 
corresponds to the choice (j = ° (Ref. 26) 

h, + (hu)x = 0, (2.1a) 

(2.1b) 

where sUbscripts will denote partial derivatives and after the 
second one we shall indicate the number of derivatives by a 
numerical prefix. The shallow water equations on a flat bot­
tom are obtained when the constant v is set equal to zero. A 
variant of Eq. (2.1a) where h3x is replaced by hxtt is dis­
cussed in Ref. 27. Next we shall consider the WBK equations 
which are given by 

u, + uUx + hx + vUxx = 0, (2.2a) 

h, + hux + uhx + uU3x - vhxx = 0, (2.2b) 

where V,U are constants. By a change of variables22 Kuper­
shmidt has written these equations as 

U, + uUx + hx + vUxx = 0, (2.2a) 

h, + hux + uhx + uU3x - vhxx = 0, (2.2b) 

which is the form we shall use in this paper. Our knowledge 
of Eqs. (2.3) is much better than that of Eqs. (2.1) so that we 
shall not need to refer to the limit of zero dispersion and 
consequently an arbitrary constant coefficient of the disper­
sive terms has been scaled out. 

We shall start with a reformulation of these equations in 
terms of potentials. For this purpose note that Eqs. (2.1) are 
the conditions for the one-forms, 

a = h dx - hu dt, 

OJ = u dx - (!u2 + h + vhxx )dt, 

to be closed 

da = 0, dOJ = 0. 

Therefore, using Poincare's lemma we have locally 

(2.4a) 

(2.4b) 

(2.5) 

a = dlJl, OJ = deI>, (2.6) 

where IJI and eI> are scalar potentials. In terms of compo­
nents, Eqs. (2.5) and (2.6) yield the relations 

(2.7) 
IJIx = h, IJI, = - uh, 

between the phenomenological fields u,h and the potentials 
eI>, IJI. The integrability conditions of Eqs. (2.7) yield the 
original equations of motion, and their compatibility re­
quires that 

IJI, + eI>x IJI x = 0, 

eI>, + !eI>x 2 + IJIx + vlJl3x = 0, 
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(2.8a) 

(2.8b) 

which are nonlinear partial differential equations satisfied 
by the potentials. Equations (2.1) can be derived from an 
action principle 

8J = 0, 1= J .? dx dt, 

where 

.?l=eI>,lJIx +eI>xlJl, +eI>/lJIx +1JI/-vlJlxx
2 (2.9) 

is the Lagrangian density. 
The introduction of potentials for Kupershmidt's equa­

tions follows along similar lines. The closed one-forms are 
now given by 

a = u dx - (!u2 + h - ~ux )dt, 

OJ = h dx - (uh + !hx )dt, 

and the potentials satisfy 

(2. lOa) 

(2. lOb) 

eI>, + ~eI>x 2 + IJIx - !eI>xx = 0, (2.11a) 

IJI, + eI> x IJI x + ! IJI xx = 0. (2.11 b) 

The elimination of IJI from these equations results in Kaup's 
equation21 

eI>tt + 2eI>x eI>x, + (eI>, + ~eI>x 2)eI>xx - eI>4x = ° (2.12a) 

for which there is a companion28 

IJIx 21J1tt - 2lJ1xlJl,lJIx, + (IJI/ - 21J1,lJIx + 1JI/)lJIxx 

+ 31J1 xx 2 - 21J1 x IJI xx 1J13x + IJI x 21J14x = 0. (2.12b) 

Kaup was led to Eq. (2.12a) by seeking an equation for 
which he could formulate and solve the inverse scattering 
problem where the AKNS potentials depend linearly on the 
eigenvalue. Kaup's results can be used to solve Eq. (2.12b) 
as well. Finally, 

.?2= eI>,lJIx +1JI,eI>x +eI>/lJIx +1JI/-lJIx/ (2.13) 

is the Lagrangian for Kupershmidt's equations. 

III. CANONICAL FORMULATION OF BOUSSINESQ 
EQUATIONS 

For passing to a Hamiltonian formulation of Eqs. (2.1) 
we shall start with an alternative form of the Lagrangian 
(2.9) which depends at most on the first derivatives of all the 
fields. This can be accomplished by introducing another po­
tential Y. We can readily verify that the Euler-Lagrange 
equations for 

.? 3 = eI>, IJI x + IJI, eI>x + <P/IJI x 

- 2KYx IJIx - 2YlJlx + Ey2 + (1 + E)lJIx 2, 

E=sgn(v), K=lvI1l2, 

yield Eqs. (2.1) together with 

Y = ElJlx - EKlJlxx , 

which serves as the definition ofY. 

(3.1 ) 

(3.2) 

The Lagrangian (3.1) is degenerate. That is, the canoni­
cal momenta 

TI<I> = IJIx ' TI", = eI>x' TIy = 0, (3.3) 

cannot be inverted for the velocities and we need to use Dir­
ac's theory of constraints in order to cast this system into 
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canonical form. Therefore we introduce 

C] = IT", - \{Ix' C2 = IT\)I - ct>x, C3 = ITy, (3.4) 

as primary constraints. Using the canonical Poisson brack­
ets { , } between the potentials and their conjugate momenta 
we find that 

{C1 (x),C2(x')} = - 20" (x - x'), (3.5) 

is the only non vanishing one among the Poisson brackets of 
the constraints. The primary constraints are therefore sec­
ond class. The total Hamiltonian 

H= f£"dX, £"=£"0+£"', 

will be given by 

£"0 = IT",ct>t + IT\)I\{It + ITy Y t - .!f3' 

£'" = liC1 + uC2 + {3C3, 

(3.6a) 

(3.6b) 

(3.6c) 

where Ii, u, and {3 are Lagrange multipliers. These multipli­
ers will be determined from the requirement that the Poisson 
bracket of the Hamiltonian with each one of the constraints 
should vanish. But we find that 

{C3,H} = 2(EY - \{I" + K\{I ",,) 

cannot be set equal to zero because it is independent of the 
multipliers. Therefore we introduce a secondary constraint 

X=2(EY-\{I" +K\{Ixx) (3.7) 

and modify Eq. (3.6c), 

£'" = liC1 + uC2 + {3C3 + f.LX, (3.6c') 

where f.L is another multiplier. The Poisson brackets of the 
secondary constraint with the primary constraints are given 
by 

{X,C1} =0, 

{x,C2} = - 20" (x - x') + 2K0"" (x - x'), (3.8) 

{X,CJ = 2EO(X - x'), 

and now we must check to see if there are any tertiary con­
straints. It turns out that there are no further constraints in 
this problem because with the choice 

U= -ct>x\{l", 

f.L = Y - E\{I" + EK\{I xx , 

{3 = - E ( ct> x \{I x ) x + EK ( ct>" \{I x ) xx' 
(3.9) 

Ii = - !ct>x 2 - \{Ix - V\{l3x' 

the Poisson brackets of the Hamiltonian with C1, C2, C3, and 
X all vanish. FromEqs. (3.4), (3.6a), (3.6b), (3.6c'), (3.7), 
and (3.9) we find the total Hamiltonian density 

£"= -ct>/\{Ix +2KYx\{lx +2Y\{Ix _Ey2 _ (1 + E) \{Ix 2 

- (IT", - \{I,,) (!ct>" 2 + \{Ix + V\{l3x) 

- (IT\)I - ct>x)ct>x\{lx + ITyE[<I>x\{lx -K(<I>,,\{Ix),,]x 

+ 2E(Y - E\{Ix + EK\{Ixx)2, 

which can be simplified to the form 

£" = !<I>x 2\{1" + E\{Ix 2 + v\{l"" 2 + Ey2 - 2Y\{I" 

(3.lOa) 

+ 2KY\{I "" - IT", (!ct>" 2 + \{Ix + V\{l3,,) - ct>" \{Ix IT\)I 

(3.lOb) 
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by discarding a divergence. The fact that the constraints are 
second class enables us to use them in order to further sim­
plify the Hamiltonian. First eliminating all reference to Y 
from Eqs. (3.2) and (3.3c) we find 

£"=!<I>/\{Ix - (!<I>x 2 +\{Ix +V\{l3x)IT", -<I>x\{lxIT'I'. 
(3.lOc) 

Finally using Eqs. (3.3a) and (3.3b) we can express the 
Hamiltonian in terms of the potentials and from Eqs. (2.7) 
we obtain 

(3.lOd) 

where we have again discarded a divergence. As we shall 
reconfirm later, this is the energy density for Eqs. (2.1). 

We shall now turn to a discussion of the generalized 
Hamiltonian structure of Eqs. (2.1). The phase space con­
sists of the set (u,h) of infinitely differentiable functions and 
E = (Eu ,Eh ) will denote the variational derivative with re­
spect to the variable indicated by its subscript. If A,B are two 
smooth functions of these variables, the Poisson bracket is 
defined by 

[A,B ] = f E(A )JE(B)dx, (3.lla) 

where 

J= _(0 D) D=~ 
DO' ax' 

(3.llb) 

is the Hamiltonian operator. With this definition of the Pois­
son bracket, Jacobi's identity is satisfied. The Hamiltonian 
function is given by an integral over the density (3.lOd) so 
that for z standing for u or h, Hamilton's equations 

Zt = [z,H] (3.12) 

reduce to Eqs. (2.1). An integral of motion P will satisfy 

[P,H] = 0, (3.13a) 

which reduces to the following condition on P: 

Eu [Eu (P)] - hEh [Eh (P)] + vEu {[ Eu (P)] ",,} = 0, 

(3.13b) 

generalizing the result of Benney29 for shallow water waves. 
Equations (2.1) are already in the form of a pair of con­

servation laws but they admit two further ones correspond­
ing to the conservation of momentum and energy 

(uh)t + (u2h +!h 2 + vhh"" - ~vh/)x = 0, 

(!u2h + !h 2 + vhh"" + ~vh" 2)t 

+ (!u3h + uh 2 + vhh"" - vhh"t)" = 0, 

(3.14 ) 

respectively. We can read off P from these equations and 
verify that it satisfies Eq. (3.13b) in each case. In particular, 
the conserved quantity for the latter of Eqs. (3.14) is the 
Hamiltonian (3 .lOd). Furthermore, setting v = 0 we obtain 
Benney's conserved quantities. Correspondence with the 
well-known results in the limit of vanishing dispersion shows 
that there are no further conservation laws for this system. 
In order to see this let us consider a possible fifth conserva­
tion law. Such a correspondence principle will require that 
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this conservation law must be of the form 

qu3h+uh 2 +/), + (ju4h+~U2h2+jh3+g)x =0, 
(3.15a) 

wheref,gmay depend on u, h, h", h" hxx , .... and vanish in the 
limit v-D. Then we find 

/, +g" =v(u2h+h 2)h3x (3.15b) 

and using Eqs. (2.1) repeatedly this can be cast into the form 

/, +gx 

= v(hxh,), + v(u2hhxx + hx (uh), + h 2hxx - ~h/)x 

- vhhxhxx + v2hhxx h 3x ; (3.15c) 

the first two groups of terms on the right-hand side of Eq. 
(3.15c) are of the desired form but it is not possible to write 
either one of the last two terms as a total divergence. It will 
be sufficient to prove this only for one of them, say hhxhxx . 
In order to express this term as a divergence we consider all 
possible divergences which can result in such an expression. 
Thus we write 

hhxhxx = a(hh/)x + /3(h 2hxx )x + r(h 2hx )xx' 
(3.16 ) 

where a, /3, and r are constants which must be chosen so as 
to make this an identity. Note that it is unnecessary to in­
clude (h 3)3x in Eq. (3.16) since it reduces to the last term 
above. From the coefficients of all linearly independent func­
tions in Eq. (3.16) we obtain a system oflinear equations for 
a, /3, and y. This system of equations has no solution, which 
makes it impossible to express hhxhxx as a total divergence. 
Therefore there is no fifth conservation law for Eqs. (2.1) 
which reduces to Benney's result in the limit of zero disper­
sion. 

IV. THE CANONICAL FORMULATION OF 
KUPERSHMIDT'S EQUATIONS 

Kupershmidt's equations, given by Eq. (2.3), may be 
derived from a variational principle with the Lagrangian 
density, 

.2'4 = <I>,'I'x + 'I',<I>x + <l>x 2'1'x + 'l'x 2 + rr=x 
- !=T" + Yx'l'x + =x<l>x. (4.1) 

Here Y and = have been introduced to avoid terms with 
higher-order derivatives. Using the following definitions for 
Y and = which are obtained as the Euler-Lagrange equa­
tions corresponding to Eq. (4.1), 

(4.2) 

the other two equations of motion reduce to Eq. (2.1). Since 
we cannot eliminate velocities in terms of momenta, the con­
straint equations are 

C[ = IIq, - 'l'x, C3 = IIy , 

C2 = II", - <l>x, C4 = II=:. 
(4.3) 

The only nonzero Poisson bracket between the constraints 
turns out to be 

(4.4 ) 
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The total Hamiltonian density consists of 

JY'o = IIq, <1>, + II", '1', + IIy Y, + II:;: =, - .2'4' 

JY" = aCt + /3C2 + oC3 + I1C4 , 

(4.5a) 

(4.5b) 

where a, /3, 0, and 11 are Lagrange multipliers. When we 
calculate the Poisson bracket of each one of the constraints 
with the total Hamiltonian, we find that 

{C3,H} = =x - 'l'xx =Xa' 

{C4 ,H} = - Y x - <l>xx =Xb' 
( 4.6) 

cannot be set equal to zero by any choice of multipliers. 
Therefore, X a and X b are secondary constraints, whose non­
vanishing Poisson brackets with the primary constraints are 

{Xa(x),C2 (x')} = -oxx(x-x'), 

{Xa (x),C4 (x')} = Ox (x - x'), 

hb(X),C1(X/)} = -oxx(x-x/), 

{Xb (x),C3 (x/)} = - Ox (x - x'). 

(4.7) 

We incorporate these secondary constraints into the Hamil­
tonian through 

where v and 7" are again multipliers. Finally we see that with 
the following choice for the six multipliers: 

a= -!(<I>x 2 + 2'1'x +Yx ), 

/3= - ~(=x + 2'1'x<l>x), 

11=/3", 

v=<I>" +Y, 

(4.8) 

the Poisson bracket of H T with each one of the constraints 
vanishes. Using Eqs. (4.3), (4.5a), (4.5b/), (4.6), and (4.8) 
we find the total Hamiltonian density for Kupershmidt's 
equation is 

HT = !<I>" 2'1'x - IIq, (!<I>x 2 + 'l'x - !<I>xx) 

- II", (<I>x 'l'x + !'I'xx), (4.9a) 

where we have eliminated the auxiliary potentials = and Y. 
Once again, since the constraints are second class, this 
expression can be reduced to one involving only the poten­
tials which through Eqs. (4.3) becomes 

(4.9b) 

In the framework of the generalized Hamiltonian for­
malism where the Poisson bracket is defined according to 
Eqs. (3.11) we find that the Hamiltonian is given by Eqs. 
( 4. 9b). We have also the conserved momentum density 

9 0 = uh, (4. lOa) 

and Eqs. (2.3) admit an infinite family of conserved quanti­
ties P k = f 9 k dx with 

9 1 = JY'T (4. lOb) 
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satisfying 

Eu [Eu (P)] - hEh [Eh (P)] 

- H Eh {[ Eu (P) ]x} + Eu {[ Eh (P) ]x}] = 0, (4.11) 

which reduce to Benney's results in the limit of zero disper­
sion. The existence of these conserved quantities is best un­
derstood in terms of the tri-Hamiltonian structure of Eqs. 
(2.3). Kupershmidt22 found that in addition to the Hamilto­
nian operator (3.11 b) (which will henceforth be denoted J 1 ) 

there exist two further operators such that 

J1E(Pk ) = J1E(Pk + I _ I ), 1=2,3; k = 0,1,2, ... , 
( 4.12) 

and repeated applications of the recursion operator DI2 
where 

Dij=~Jj-1 

and22 

(
2D 

J2 = uD+D2 
Du _D2) 

hD+Dh 

(4.13 ) 

(4.14 ) 

yields infinitely many conserved quantities starting with Po· 
Here D 13 generates the same conserved quantities in steps of 
two. The equations of gas dynamics in 1 + 1 dimensions ex­
hibit a similar symplectic structure.31 

Kupershmidt's equation is ofPainleve type II. This can 
be established from an analysis of the invariance properties 
of Eqs. (2.3) which enables us to reduce them to ordinary 
differential equations. We shall use the formalism of Laksh­
manan and Kaliappan32 and start by writing Eqs. (2.3) in 
the form 

H1(u,h,hx, ... )=ut +uux +hx -!uxx =0, 

H 2(u,h,hx ,''') =h, + uhx + hux + !hxx = 0, 

and furthermore let 

u = O(x,t), h = A(X,t) 

(4.15) 

( 4.16) 

be a solution of this system. If these equations are invariant 
under the infinitesimal transformations 

x = x + E{;(x,t,u,h), 

t = t + er(x,t,u,h), 

u = u + E1](x,t,u,h), 

h = h + Eu(x,t,u,h), 

where E is an infinitesimal parameter, then 

XH11 u = /1(x,1) = 0, XH2 ! u = /1(x,1) = 0, 
h = A(X,') h = A(X,1) 

where 

a a a a 
X={;-+1'-+1]-+u-

ax at au ah 

a a + {1]J-+ {uJ- ... 
au, ah, 

( 4.17) 

(4.18 ) 

with h,},{u,}, ... denoting the first-order changes in the de-
rivatives of u"h" ... . In terms of 0,..1,1],1', the explicit expres-
sions for the higher extensions {1]J,{u,} can be obtained by 
using Eqs. (4.17) and a typical extension is 

1503 

{uJ = u, + A, (Uh - 'T,) + 0, (uu - 'Tu A,) 

- {;,A x - {;hA,Ax - (;uO,Ax - 'Th A/. 
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From Eqs. (4.18) we get 

{1],} + 1]0x + O{1]x} + {ux } - H1]xx} = 0, 

{uJ + O{ux } + uOx + A{1]x} + 1]Ax + !{uxx} = 0, 
( 4.19) 

into which we must substitute extensions. Equations (4.19) 
are algebraic equations for the variables 0,..1 and their deriva­
tives. Since these variables are linearly independent we re­
quire that their coefficients which depend on 1],{;,'T,U must 
vanish separately. This leads to 

{; = at + b, 1] = a, 'T = c, U = 0, (4.20) 

where a, b, and c are arbitrary constants. Then from 

dx dt du dh 

{; 
we find 

c dx = (at + b)dt, 

a dt =cdu, 

a dx = (at + b)du, 

u = const, 

which can be integrated readily. 

( 4.21) 

(4.22a) 

(4.22b) 

(4.22c) 

(4.22d) 

Integrating Eq. (4.22a) we obtain the invariant variable 

(at + b)/c)2 - 2ax/c = const=t, 

and from Eqs. (4.22b) and (4.22c) we find 

t - const = (u - (at + b)/C)2, 

which suggests that we define 

get) =u - (at + b)/c 

(4.23 ) 

(4.24) 

as an invariant function. Finally we shall take the right-hand 
side ofEq. (4.2ld) asj(t) and change from the variables 
(u,h,x,t) to (J(t), get), t)· In this way we can write Eqs. 
( 4.1 5) as a pair of coupled ordinary differential equations 
forjandg, 

gg' + f' + (a/c)g" = !, 
gf' + jg' - (a/c)!" = 0, 

(4.25) 

where the prime denotes differentiation with respect to t· 
These equations can be decoupled to yield a second-order 
equation and letting 

g= (a2/2c2 )1/6w, 

Z = - (2c2/a2
) 1/3(!t + C2 ), 

we find that it is Painleve 1133 

w" = w3 + 2zw + J.L, 

where 

J.L = (2e1a) 1/6. 
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APPENDIX: KUPERSHMIDT'S TRANSFORMATION 

The transformation Kupershmidt has found to pass 
from Eqs. (2.2) to (2.3) is best understood by an examina­
tion of the Hamiltonian structure of these equations. Equa­
tions (2.2) are Hamilton's equations (3.12) for the Hamil­
tonian function 

1I = If/h + lh 2 - lOU 2 + vu h 2 2 2 x x (AI) 

with the Poisson bracket defined according to Eqs. (3.11). 
Kupershmidt's transformation 

u = u, h = h + YU x 

applied to Eq. (Al) yields 

(A2) 

H = !u2h +!h 2 + !(r - a)ux 2 + (v + y)uxh (A3) 

up to a divergence. The choice 

r = a, J1 = v + y = v ± 11 a = ! (A4) 

gives the Hamiltonian function of Kupershmidt's equations. 
We note that there is a restriction on a, namely a must be 
positive for the Hamiltonian (A3) to be real. This corre­
sponds to a negative definite contribution in the original 
Hamiltonian (AI) but the total Hamiltonian is positive. 
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The method of characteristics is applied to the Dirac wave equation in the presence of an 
external field. The retarded Green's function for the minimal coupling to an external 
electromagnetic field is calculated explicitly, and a general coupling is discussed. 

I. INTRODUCTION 

In studying the wave properties of the Dirac equation, it 
is customary to convert it to the Klein-Gordon type of equa­
tion by squaring it. 1 However, we feel that this method does 
not reveal the hidden structure of the Dirac equation. There­
fore, in this paper we apply the method of characteristics 
directly to the Dirac equation and calculate the retarded 
Green's function. In so doing, we establish an existence 
theorem since the necessary and sufficient condition for the 
existence of the solution is the existence of the fundamental 
solution or the Green's function. 2 

We begin by considering the minimal coupling to an 
electromagnetic field where we expand the solution in the 
neighborhood of the characteristic surface and show that the 
terms can be calculated to any order. Finally, we apply the 
same method to analyze a general interaction. Our notation 
is that of Bjorken and Drell. 3 

II. THE MINIMAL COUPLING 

Consider the Dirac particle minimally coupled to an ex­
ternal electromagnetic field, 

(i/J - m) if; = 0 , ( 2.1 ) 

where D J.L is defined as a J.L - ieAI' ,AI' is the electromagnet­
ic potential, if; is a Dirac spinor, and /J=.y J.L DJ.L' The spinor 
indices are suppressed. 

As we mentioned in the Introduction, to study Eq. (2.1) 
it is sufficient to analyze the solution of 

(i/J - m)S(x,y) = 04(X - y) , (2.2) 

which is the equation for the Green's function. In particular, 
we are interested in the retarded solution, i.e., 

(2.3 ) 

For convenience, we choose our origin at y. 
If Eq. (2.2) is a hyperbolic partial differential equation, 

it has to accept a solution in the following form4,s: 

o m 

Sex) = 2: 2: On(Uj )En(x) 
n=Nj=1 

(2.4) 

Uj = 0 are the characteristic surfaces, on (Uj ) is the nth de­
rivative of the Dirac delta function, and O(Uj ) is the step 
function. 

Upon substitution of (2.4) into (2.2) and separation of 
coefficients of different singular terms, we find 

in·yE N = 0, 

in'yE N- 1 + (i/J - m)E N = 0, 

in'yG o + (i/J - m)E o = o\r) , 

in-yG 1 + (i/J - m)G o = 0, 

(2.5) 

Here a J.L U = nJ.L is defined as the normal vector to the char­
acteristic surface, U = O. 

Consider the first equation in (2.5), i.e., 

in-yE N = 0, (2.6) 

where EN is a 4 X 4 matrix and, for it to exist, n . y has to be a 
singular matrix for which the necessary condition is 

detlin-YI = - (n2
)2 = 0 . (2.7) 

This implies that there is a twofold degenerate characteristic 
surface which is the light cone. Unlike higher spin (s;;. 1) 
equations, there is no ill effect. The reason, of course, is that 
there are no constraints, and the characteristic matrix does 
not depend on the external field. 6, 

7 

The solution to Eq. (2.6) has the following form: 
2 

EN = 2: r'o",N, (2.8) 
s= 1 

where the r' are two linearly independent right-hand solu­
tions of the characteristic matrix, n' y, and are given by 

rl = n-ye1 and ~ = n·ye2
• (2.9) 

Here e1 and e2 are defined as 

(2.10) 

and the o",N are unknown spinors to be determined later. 
There are two linearly independent left-hand solution spin­
ors given by 

11=e1Tn'y and 12=e2T n-y. (2.11) 

Here T indicates the transpose. 
If we multiply the second equation in (2.5) by a left 

vector, IS', and use the anticommutation relation 

{/J,n'Y} = 2n-a+ (a'n) -2ieA'n, 

we find 

no(2n-a + a'n - 2ieA 'n)o"',N = 0, 

(2.12 ) 

(2.13 ) 
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which within a constant, determines O"'.N. Since we are inter­
ested in the future cone, U = t - r, Eq. (2.13) becomes an 
ordinary differential equation along the bicharacteristics. 
Therefore, O"',N has the following form: 

O",N = (1!r)eie~cs,N , (2.14 ) 

where r is the radius vector measured from the origin, ¢ is 
given by 

¢ = LA' n dr' , (2.15) 

and the constant C s,N is determined from the initial condi­
tion. 

Now, substituting Eq. (2.14) into the second equation 
in (2.5), and following the same procedure, we find 

2 2 

EN-I = I r'O",N-I - i(it> + m) I f!,O",N. (2.16) 
s=1 s=1 

Since Eqs. (2.5) are singular, it is not always possible to 
determine EN - 1 as is the case with the Rarita-Schwinger 
equation.s 

The equation determining EN - 1 is given by 
2 

in-yE N- 2 - n-y(it> + m) I esO",N-I 
5= 1 

2 

- i(it> - m) (it> + m) I esO",N 
s=1 

+ i[2n-a + (a· n) - 2ieA· n] Ieo-"N - 1 = 0 or 03 (r) . 

(2.17) 

Contracting Eq. (2.17) with /" yields 

ino(2n-a + a'n - 2ieA-n)0"'·N-I 

= 0 or /,'03(r). (2.18 ) 

By (J"·F we mean (J"pv Fpv' Fpv = apAv - avAp, and 
(J"pv = (i/2) []I" ,yV]. To remove the singularity from both 
sides of Eq. (2.18), we have to choose C s,N to be equal to 
- (i/417'no)l s , This completely determines EN, i.e., 

. 2 • 

EN = __ 1_ I r'ISeie~ = __ 1_ n 'yeie~ . 
417'r s = 1 417'r 

(2.19) 

It also determines N, which is equal to 1, i.e., the expansion 
begins with the first derivative of the delta function. 

Having obtained E', we go back to the equation deter­
mining EO, namely, 

in·yEO + (it> - m)(eie~/417'r)( - in-y) = O. (2.20) 

Solving for EO, we get 
2 eie~ 

EO = I r'O"'O - (it> + m) -. (2.21) 
s=1 417'r 

To determine 0",0, we consider the next equation in (2.5), 
i.e., 

(2.22) 
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Multiplying it by a left vector IS', we obtain 

0",0 = _1_' _ fSeie~ ~ 
817'no r 

r . ( e) eie~ 
X Jo r' e-/e~ D2 + m 2 - T(J"'F ---;:;-dr'. 

Therefore, EO is given by 

EO = (eie~/r) n-yJo(r) - (it> + m)(eie~/417'r) , 

where 

(2.23 ) 

(2.24) 

JO(r) = _1_' f' r'e-ie~(D2 + m 2 _ ~(J"'F) eie~ dr'. 
817' Jo 2 r' 

Now it is clear that all the terms in expansion (2.4) can be 
determined. For example, we can write the nth term as fol­
lows: 

G n = (eie~ Ir)n-ygn(r) _ i(it> + m )(eie~ Ir)gn - 1 (r) 

(2.25) 

and 

(2.26) 

withgn (0) = O. 
Thus we have established the existence of the solution 

explicitly and shown that the Dirac equation in the presence 
of an external electromagnetic field is hyperbolic without 
relying on the wave properties of the Klein-Gordon equa­
tion. 

III. A GENERAL INTERACTION 

In this section, we shall use the same method to discuss a 
general interaction. The equation we are concerned with is 

(ii + B(x»)S(x) = 04(X) , (3.1 ) 

where B(x) is a general 4 X 4 matrix that can be written as 
follows: 

B(x) = a(x) + rb(x) + yPcP (x) 

+ryILdp(x) +~(J"IL'1ILv(X). 

We assume that the coefficients are smooth functions of x, 
and thatJILv is an antisymmetric tensor. 

For Eq. (3.1) to be hyperbolic, it has to admit a solution 
in the form of Eq. (2.4). The leading singular term, as in the 
previous case, is the coefficient of 0' (u), and we write it as 

i~ 2 

EI =~ I r'O",I, 
r s= 1 

(3.2) 

where ¢ is S~c'n dr', the r' are right-hand solutions of the 
characteristic matrix, n' y, and r is the position vector. 

The next term, EO, is determined from 

(3.3 ) 

which can be written as 
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_ ei.p 2 

in·yEO - n'YUb- B) - L e'er"\ 
r s= \ 

ei.p 2 

+ i[2n·J + (J'n) - 2in-c] - L e'er"\ 
r s= 1 

ei.p 2 

+ 2(yn'd + yIn) - L e'er',1 = o. (3.4) 
r s= 1 

Here R(x) is defined as a(x) + yb(x) - yP-cp- (x) 
- yyP-dp- (x) +! uP-'Ip-v' 

Equations that determine er',1 are ordinary differential 
equations along bicharacteristic lines, and are given by 

2 

Is'L L eSer',1 = 0, 
s= 1 

where L is defined as 

2i.!!....+2(yn·d+yIn) . 
dr 

Using Eq. (3.5), we can write (3.4) as 

(3.5) 

in-yEO - n'y [ (ib + M) stl e'er',1 + stl aSer',I] = 0, 

(3.6) 

with 

and 

M = - R(x) + (2/no) [n-d - (fn)3Y] , 

a l = - (2ilno)(fn) +ye2
, 

a 2 = - (2ilno)(fn)_yel
, 

where the (fn) ± are defined as (fn) 1 ± i(fnh 
Factoring the singular matrix, n -y, we can solve for EO, 

ei.p 2 2 
EO = - L rer"o - iUb + M) L e'er',1 + L aSer',1 . 

r s=1 s=1 

(3.7) 

Continuing to the next term, we find that GO satisfies 

- i(ib + B) Ub + M) L e'u',1 

(3.8) 
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This equation forces us to assign the following value to er',1 at 
r=O: 

er',1 = - (i/41Tno)/s. 

With the above initial condition and the differential equa­
tion, (3.5), the er',1 are uniquely determined. 

Multiplying Eq. (3.8) by /" yields 
2 

Is'L L eSer"o = _IS' Ub + B) Ub + M) L eSer',1 
5= 1 

+ (ib + B) L aSer',1 , (3.9) 

which determines er"o uniquely when the condition, 
u"o (0) = 0 is imposed. We choose this initial condition to 
avoid any extra delta singularities. 

Therefore, in general, we can write 
ei.p 2 

Gn = - L (rer',n + on.ser',n-I) 
r s= 1 

(3.10) 

and relate er',n to er',n - 1 by 

(3.11 ) 

where on,s is a known operator and AS's is a known matrix. 
The above analysis shows that even in the case of a general 
interaction, the Dirac equation preserves its hyperbolicity, 
and that the Green's function can be calculated to any order. 
The analysis strongly supports the existence theorem for the 
Dirac equation in the presence of an external field. 

I A. S. Wightman, "Relativistic wave equations as singular hyperbolic sys­
tems," in Proceedings o/the Symposium on Pure Mathematics (Am. Math. 
Soc., Providence, RI, 1973), Vol. XXIII. 

2 A. S. Wightman, in Aspects o/Quantum Theory, edited by A. Salam and E. 
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3J. Bjorken and S. DrelI, Relativistic Quantum Fields (McGraw-Hili, New 
York, 1965). 

"T. Darkhosh, J. Math. Phys. 20,1466 (1979). 
5D. Zwanziger, in Invariant Wave Equations, proceedings of the "Ettore 
Majorana" International School of Mathematical Phyiscs, Erice, Italy, 
1977, Lecture Notes in Physics, Vol. 73, edited by G. Velo and A. S. Wight­
man (Springer, New York, 1978), p. 160. 
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For particles of spin ~ a class of distributions closely related to Wigner's is introduced on 
dynamical grounds. It is found that they may be refined to give correct expectation values of 
higher powers of spin components, but depart somewhat from a criterion that has been used in 
characterizing the Wigner distribution. For a special choice amongst this class, a more subtle 
refinement is possible satisfying this criterion exactly. This requires, however, a dubious 
distinction at every point between positive spin about a direction and negative spin about the 
reverse direction. 

I. INTRODUCTION: RELATION OF THIS PAPER TO 
PREVIOUS EXTENSIONS 

The Wigner1 distribution, expressible for a single parti­
cle as 

w(x,p) = w[¢(x) 1 

= (21T) -3 J ¢*( x - + Ily )e -i
P

'
Y¢( x + + ny )dy , 

(1) 

is a density that, like a probability density function, inte­
grates to 1 over the whole space on which it is defined, pro­
vided the wave function ¢ is normalized. Through it several 
aspects of quantum mechanics--expectations of an impor­
tant class of functions of x and p, also certain dynamical 
features 1.2-can be expressed in an essentially classical man­
ner, and without recourse to the orthodox operator formal­
ism. 

Stratonovich3 introduced a distribution over spin direc­
tion that succeeds in treating in a comparable way expecta­
tions of spin components. However, when higher powers are 
treated by his formalism essentially nonclassical features ap­
pear which amount to a partial retention of the operator 
formalism, discussed in Sec. V. Some more recent formula­
tions4

•
5 incorporating spin ~ into the Wigner distribution ig­

nore his distribution over spin direction but take up his ob­
servation that spin and space aspects can be treated more or 
less independently-in his language the kernel of the com­
bined representations is the product of the separate kernels. 
These formulations can consequently be described as direct 
products of a Wigner treatment of spatial features with an 
orthodox operator treatment of spin. While this is useful for 
some purposes the present paper is concerned rather with 
replacing as completely as possible the operator formalism 
by a density one. Of recent work that of Scully6 perhaps 
comes closest to this aim, but has some unsatisfactory fea­
tures. An amended form of his approach, given in the Ap­
pendix, turns out to be in agreement with the body of this 
paper. 

This paper also differs from the four others referred to in 
the previous paragraph by first considering dynamical 
aspects of proposed distributions. 

11_ A PROPOSED EXTENSION, AND DYNAMICAL 
ASPECTS THEREOF 

Given a spinor wave function with components ¢+, ¢­
with respect to Oxyz, and an orthonormal triad with third 
member e, denote its spin-up component with respect to the 
triad by tPe. The dependence on the other members of the 
triad is omitted; it affects ¢e only by a multiplying constant 
of modulus unity, which is unimportant here. At a point 
where ¢+ and ¢- are not both zero, the direction e such that 
¢ _ e vanishes will be called the principal spin direction at the 
point. 

The extension discussed first can be written as 

(2) 

where the constant has been chosen to make the integral of/ 
over all x, p, e, equal to 1. 

Dynamical aspects of the density functions wand/can 
be conveniently discussed using language appropriate to a 
material substratum underlying the particle. What may be 
called Wigner's dynamical principle! says that in the evolu­
tion of the distribution for a free particle satisfying Schro­
dinger's equation every portion of the substratum moves 
classically, without interaction with any other portion. 
Knowing that Wigner's principle holds for w, one easily sees 
that it holds for/also; for the Schrodinger equation satisfied 
by the spinor wave function of a free particle of spin! implies 
that, for each e, ¢e satisfies that for a spin less particle of the 
same mass. That/satisfies this dynamical principle, has an 
isotropic definition, and seems to be the simplest distribution 
over x, p, e with these properties, is what has led the author 
to study this distribution further. 

A second dynamical principle,2 weaker but more widely 
applicable, governs the evolution of w: Weaker, because it 
does not forbid interaction between portions of the substra­
tum in different regions of phase space provided they are in 
the same region of configuration space and conserve materi­
al and momentum; more widely applicable, because it is not 
limited to the free particle. For a particle of mass m subject to 
a force field F the portion of substratum occupying dx dp is 
considered to have mass mw dx dp, momentum pw dx dp, 
etc., and to be subject to an external force Fw dx dp, as well 
as possibly to actions from portions with different p but in 
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the same interval dx of configuration space. In a field deriv­
able from a scalar potential, classical evolution of w is now to 
be understood as involving such local interaction that (1) 
continues to hold with suitably varying tP; the second dy­
namical principle asserts this evolution to be in accordance 
with Schrodinger's equation. 

For forces independent of spin the extension to/ of this 
second principle is straightforward, so attention focuses on 
motion in a magnetic field H of an electrically neutral parti­
cle of spin ~ and magnetic moment yfz/2. [Neutrality is as­
sumed for convenience here because Lorentz force would 
otherwise demand a modification2 to formula (l) for w.] 
We suppose the spin angular momentum and magnetic mo­
ment of the portion of substratum occupying dx dp de = dO 
to be Sfzj e dO and ySfz e dO, respectively, where S is a num­
ber discussed below. The force and moment acting on this 
portion are ySfz/e·VH dO and ySfzje 1\ H dO. The author 
found that with curl H = ° the classical interactive evolu­
tion of / (now also requiring conservation of spin angular 
momentum in local interaction), such that (2) continues to 
hold, is indeed in agreement with the spinor Schrodinger 
equation in a magnetic field. In the special case of a uniform 
magnetic field the motion turns out to be classical also in the 
original Wignerian sense, i.e., without interaction between 
portions of the substratum. 

III. A REFINEMENT OF fTO GIVE CORRECT 
EXPECTATIONS 

Equating any component of the total spin SSe/ dO to its 
expected value as ordinarily calculated from the spinor wave 
function requires S = ~, a surprise perhaps, but scarcely a 
difficulty. More serious is the failure of corresponding equal­
ities for higher powers of spin components. Consider, for 
example, a case where tP+ = tP(x), and tP- = ° everywhere, 
i.e., one of positive, and definite, spin about the z direction. 

Then tPe = tPcos(e/2), whence, by (1) and (2),jis 
(21T)-1 cos2(e /2) w[tPL leading to 

I/ dx dp = 1 + cos e . 
41T 

(3) 

Then the natural way to obtain (sz ") from/is to evaluate 

f (S cos e) "I dO = f ~; cos" e( 1 + cos e) sin e de d¢ 

= {S" / (n + 1), n even, 
S"/(n + 2), n odd. 

This agrees with the correct result (~)" only when n = ° or 1. 
A clue to removing this discrepancy is afforded by the more 
general result for (sa "), where Sa is the spin component in a 
direction making angle a with the z axis. One finds that for 
every a the discrepancy is by just the same factors, viz., 
3n/(n + 1) for n even, 3n/(n + 2) for n odd, as in thea = ° 
case above. This suggests that we might replace/by a distri­
bution F over x, p, e, and spin intensity s, of the specially 
simple form lex, p, e)g(s). In that case S(s cos e)" 
xF dx dp ds, with ds = S2 sin e ds de d¢, factorizes as 
Scos" Of dOSs" + 2g(s)ds. Now equating this product to 
(sz ") in the above tP- = ° case gives 
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2n I sn + 2g(s)ds = {n + 1, n even, 
n + 2, n odd. 

(4) 

The intended range for s here was [0,00 )-but then (4) has 
no solution. Over ( - 00,00), however, one can apply the 
two-sided Laplace transform to find g, thus arriving, provi­
sionally, at 

F(x,p,e,s) = -1T-
1W[tPe] 

X{8'(s-P +8(s-!) +8(s+!)}. 

To limit s to (0,00) we can treat spin -! about e as spin ~ 
about - e and so replace the product w[ tPe ]8(s + !) occur­
ring above by w[ tP -e ]8(s - !). This gives 

-1TF =w[tPe]8'(s-~) 

+ {w[tPe] +w[tP_e]}8(s-p. (5) 

This refinement of/ to F to include spin intensity as well as 
spin direction does not affect essentially the arguments that 
the two dynamical principles are satisfied, though the gener­
alized functions make precise formulation of these principles 
more difficult. 

IV. THE WIGNER-o' CONNELL PROBLEM FOR f and F, 
AND THE STRATONOVICH DISTRIBUTION 

Though satisfactory dynamically, and in the case of F 
probabilistically also,f and F may be criticized in relation to 
what may be called, on account of its importance in their 
joint paper,? the Wigner-O'Connell property. This property 
concerns the integral, over the distribution space, of the 
product of distributions corresponding to two states; it as­
serts that this integral is proportional to the transition prob­
ability between the states. But for / and F the integral is in 
fact proportional to A + B, where, using (u,v) for 
Su*(x)v(x)dx and lu,vl 2 for I (u,v) 1

2, 

A = I (tPt ,tP2+ ) + (tPl- ,tP2- W 
and 

B = ItPl+ ,tP2+ 12 + ItPl- ,tP2-1 2 + ItPt ,tP2-1 2 + ItPl- ,tP2+ 12. 

For the property to apply unmodified, B would have to be 
absent. Features of A + B are that it vanishes if and only if 
the spinor wave functions are "strongly orthogonal," i.e., 
each component of the first is spatially orthogonal to each 
component of the second; that it attains its maximum 2 if and 
only ifthe states are not only identical but also have definite 
spin; and that it has value 1 for the orthogonal (but not 
strongly orthogonal) case when the states have identical 
space factors and definite but opposite spins (e.g., tPl+ = tP, 
tPl- = 0, tP2+ = 0, tP2- = tP). In the case of F, of course, the 
product to be integrated does not strictly exist; however, 
using for the 8 function any of the usual smooth approxima­
tions, and for 8' its derivative, makes the terms involving 
S {8' (s - !) Fds swamp the others, leading in the limit to 
proportionality (by an "infinite constant") to A + B. 

Many properties of/ex, p, e) apply just as well, or with 
slight changes, to /,1. = A/ + (1 - A)]; where 1 is obtained 
from/at any x, p by averaging over e. Some examples follow. 

(i) The two dynamical principles are satisfied, with 
S = 3/(U) in the second. 
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(ii) If we integrate F" over p at a given x, we get a simple 
distribution over e which is symmetrical about the principal 
direction of spin at x and which has the same shape for every 
x. In particular, where the principal axis is in the ± z direc­
tion, the density of this distribution is proportional to 
1 ± A cos (). 

(iii) The Wigner-O'Connell integral is proportional to 
a linear combination of A and B. 

(iv) The right expectations for powers of spin compo­
nents can be obtained by refiningj"' toF A via/AgA(s)-with 
the difference, important in the discussion below, that in the 
general case, as opposed to theA = 1 case above, 8' (s + p as 
well as 8'(s - p appears ingA(s). 

The case A = y3 is if special interest. Then/A is the 
expression, though not in the formalism Stratonovich3 used, 
for his distribution. And, as we shall see,fA, though not FA, 
then satisfies the Wigner-O'Connell property. It should be 
said that in Stratonovich's approach S ( = y3/2) was in 
effect chosen before A and in no sense represents a kind of 
spin intensity differing from! as might be said of the value 
S = ~ associated earlier with the A = 1 case. Here y3 ap­
pears in the coefficient of cos () in the function representing 
Sz because of certain orthonormality conditions which make 
use of the equality of the integrals of (y3 cos ())2 and of 1 
over the sphere. From (ii) above one can see that in the case 
of spatially similar states of definite but opposite spin re­
ferred to earlier, and which make A = ° and B = 1, the 
Wigner-O'Connell integral for/has as a factor the integral 
of (1 + y3 cos ()) (1 - y3 cos ()) over the sphere, and 
hence vanishes. This implies that in the linear combination 
referred to in (iii) above, B must be absent, so Stratonovich's 
distribution satisfies the Wigner-O'Connell property. 

On the other hand, in FA, obtained from/AgA(s) by re­
casting negative values of s as positive ones associated with 
the opposite direction, 8' (s - ~) multiplies a linear combina­
tion of/A (x, p, e) and/A(x, p, - e), compared with/A (x, p, 
e) only in the earlier A = 1 case. This complication becomes 
important when two such distributions are multiplied, and 
prevents the simple Wigner-O'Connell property for/v3 be­
ing carried over to F v

3. Indeed, if one accepts the grounds 
for adopting FA rather than/A, the Wigner-O'Connell ap­
proach favors F rather than F v3, for, though neither satisfies 
the desired property, F leads to a simpler modification of it. 

V. INTUITIVE AND OTHER ASPECTS IN 
STRATONOVICH'S FORMALISM AND THE PRESENT 
TREATMENT 

The problem solved earlier through replacing / by F 
does not arise in Stratonovich's formalism which does not 
require cosn 

() to appear in the function associated with Sz n. 

Though the association of ~ sin () cos cp,! sin () sin cp, ! cos () 
withsx , SY' Sz was suggested by "the direct physical meaning 
of the concept 'spin,' " he remains free within his formalism 
to obtain correct values for expectations by associating with 
Sz n the expressions (!) n cos () or (~) n when n is odd or even, 
which comes close to direct use of the operator equality 
Sz 2 = !. There is precedent of a sort for this in the Wigner 
distribution already in the one-dimensional case; when con-
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sidering, say, «p2+x2)n), only for n=O, 1 should 
(p2 + x 2) n be used in conjunction with the distribution. On 
the other hand the distribution was constructed so that for 
the basic variables x and p (and indeed for linear combina­
tions of them) a naive connection of this sort held for all 
positive integer n. The fact that Sz n is equal to a scalar multi­
ple of Sz or of the identity does not mean that such a naive 
program is unsuitable when we include spin-it just means 
that the distributions will be such that multiplying them by 
(s cos ())n and integrating produces the same results as mul­
tiplying by (~) n or by q) n - IS cos () and integrating. 

While Stratonovich's formalism is not naive in the above 
sense, some of his statements are compatible with a naive 
view. Thus, "the 'representation distributions' of course do 
not give an entirely classical interpretation of quantum the­
ory, but they provide a basis for that interpretation of quan­
tum theory which has maximum closeness to classical ideas 
and thus has the greatest physical-intuitive meaning." And, 
characterizing the limitations of Moyal's notions,8 insofar as 
Moyal had hoped they would apply to variables with no clas­
sical analog, Stratonovich says: " ... with a discrete set of 
characteristic values of the 'basis' operators one must not 
restrict the distribution to the discrete values only, but must 
include the continuous spectrum in the treatment." 

U sing a three-dimensional instead of a two-dimensional 
manifold for the spin vector takes these ideas a stage further 
than Stratonovich himself did. In the actual form of F, or of 
F v3, his restriction of s to ! is in a sense vindicated; but the 
presence of the 8' function makes a crucial difference from 
the sense in which he accepted this restriction. 

VI. POSTSCRIPT: THE DOUBLY SPINNING ELECTRON 

In Sec. III negative values of s were temporarily allowed 
as a device to obtain a solution for g(s). To obtain F, negative 
spin about e was understood there as merely another way of 
referring to positive spin about - e. Whether this equiv­
alence amounted to a complete identity was of no conse­
quence in the dynamical and probabilistic features then un­
der discussion. But for the Wigner-O'Connell property the 
integrand is bilinear in the distribution and it does matter 
whether (i) s is limited, as in Secs. III and IV, to [0,00) or 
(ii) s ranges, as in this section, over ( - 00,00 ) while FA is 
taken as a product/A (x, p, e)gA(s). 

Alternative (ii), which might be called the doubly spin­
ning electron, is capable, in contrast to (i), of satisfying the 
Wigner-O'Connell property; this is achieved by taking the 
Stratonovich value A = Y3. There then appears to be a good 
case for adopting this as the definitive extension of the 
Wigner distribution to a particle of spin !. 

However, once we grant a mysterious distinction in spin 
space between (e, s) and ( - e, - s), both of which corre­
spond to the same point of (sx, SY' sz) space, why should the 
distinction be allowed only within the distribution? For ex­
ample, why should/A(x, p, - e)gA( - s) not represent a 
different state from/A (x, p, e)gA(s) even though they corre­
spond to the same spinor wave function? In that case we 
would have two distinct states where we now admit one, and 
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for an n electron system r states where we now have one. We 
should then need a stronger exclusion mechanism than Fer­
mi-Dirac statistics to generate Pauli's principle. The real 
question may be, is the doubly spinning electron merely a 
formal devices to save the Wigner-O'Connell property, or 
can it offer new insights? 
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APPENDIX: THE SCULLY AND SCULL Y-MOYAL 
KERNELS 

Scully's paper6 contains a recipe for a distribution over 
Sx' Sy' and sz. For ease of comparison with a formulation 
containing explicitly as few hidden variables as his purpose 
will allow, he concentrates on functions of Sx and Sz. With 
this restriction his recipe leads in the spin-up case to a proba­
bility distribution assigning equal probability to values 
( ±!,!) for (sx, sz)' and zero probability to other (sx' sz). 

As this gives correct expectations for Sx nand Sz n, and for 
powers n = 0,1,2 of spin components about other directions 
in the xz plane, it may serve a worthwhile purpose in the 
context in which Scully introduces it. However, it fails to 
give correct expectations for higher powers of spin compo­
nents about oblique directions. 

When Sx' Sy' and Sz are all included, his recipe yields, in 
the spin-up case, equal probabilities for ( ±!, ±!, P where 
the two ± signs are independent, and zero probability for 
other (sx' Sy' Sz ). This is more obviously unacceptable, as it 
treats unequally different directions making the same angle 
with the z axis. Furthermore, when taken in conjunction 
with spatial variation so as to deal with states with different 
principal spin directions at different points, it does not satis­
fy the first dynamical principle (Wigner's) of Sec. II, though 
it does satisfy the second. 

Scully's procedure involves at a certain stage the kernel 

or better, such a product averaged over the different orders 
of the factors. Here ax, ay' a z are Pauli matrices. In consid-
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ering one-dimensional motion a somewhat similar averaged 
product is 

~ ( eiax ei{3p + ei{3p eiax ) . 

Taking the trace of its product with the density matrix and 
applying a suitable Fourier transformation from a, f3 to x, P 
yields the one-dimensional Wigner distribution. 

In this case the averaged product is identical with 
ei(ax + {3p). 

But, owing to the commutation relations between pairs of 
ax, ay' az being of a different form from that connecting x 
and p, the Scully kernel above is not the same as 

This last expression may be called the Scully-Moyal kernel, 
being similar in some ways to expressions used in conjunc­
tion with Fourier transformations by Moyal8 to yield 
Wigner-type distribution functions. We can apply appropri­
ate Fourier transformation, and selection of the 1,1 element 
(i.e., taking the trace with density matrix [6 g], for the 
spin-up case) to the Scully-Moyal kernel, as Scully did to his 
kernel. When this is done one finds, instead of the unsatisfac­
tory distribution mentioned above, a distribution over spin 
magnitude s and spin direction e, proportional to 

(1 + cos e)o'(s -!) + 20(s - p, 
where e is the angle between e and the z direction. This is 
identical with that associated with the distribution denoted 
by F in the body of the paper [see Sec. III, Eq. (5)]. Thus, 
indirectly, Scully's work can be said to lend support to the 
kind of distribution considered in this paper; and in particu­
lar to the choice orA = 1 rather than A = "\/3 in F'\ suggest­
ed at the end of Sec. IV. 
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A new method is presented to study supersymmetric quantum mechanics. Using relative 
scattering techniques, basic relations are derived between Krein's spectral shift function, the 
Witten index, and the anomaly. The topological invariance of the spectral shift function is 
discussed. The power of this method is illustrated by treating various models and calculating 
explicitly the spectral shift function, the Witten index, and the anomaly. In particular, a 
complete treatment of the two-dimensional magnetic field problem is given, without assuming 
that the magnetic flux is quantized. 

I. INTRODUCTION 

Since the first observation of fractionally charged states 
in certain field theoretic soliton models,1 various techniques 
to obtain a more detailed understanding of that phenomenon 
have been developed.2 Furthermore, the possible phenome­
nological realization of these states in one-dimensional poly­
mers such as polyacetylene strongly stimulated this develop­
ment. 3-6 

Among the different existing approaches2 the treatment 
of external field problems offers the simplest possibility to 
study fractional charge quantum numbers. In this context, 
one starts from a Dirac operator with some external poten­
tial with nontrivial asymptotics. For example, in one dimen­
sion this can be realized in the easiest way by considering the 
following operator, acting on two-component wave func­
tions: 

A*) d , A=-d +tP, -m x 
(1.1 ) 

where tP(x) and m(x) are space-dependent "mass" terms. 
Nontrivial (solitonlike) asymptotics is then expressed by 
limx_ ± 00 tP(x) = tP ± ' in comparison with the trivial case 
limx_ ± 00 tP (x) = tPo· Since, in a field theoretic context, the 
transition from one case to the other corresponds to the pas­
sage from one representation of the canonical anticommuta­
Hon relations to an inequivalent one, the relative charge is 
usually defined through a regularization procedure. It turns 
out that under suitable conditions on the Dirac Hamilto­
nian, the charge is given by half of the associated 'Tf m invar­
iant.2,7-12 

a) On leave of absence from Institut fUr Theoretische Physik, Universitiit 
Graz, A-SOW Graz, Austria. 
b) Laboratoire associe au CNRS. 

The method described above (for m = 0) is closely con­
nected with supersymmetry, a subject of current interest in 
different fields of physics. 13,14 Indeed, the Hamiltonian de­
fined as 

( 1.2) 

represents two Schrodinger operators, A * A and AA *, which 
are non-negative and which have the same spectrum, except 
perhaps for zero modes. The investigation of such supersym­
metric quantum mechanical models is important. They 
serve as a laboratory to test and to understand supersym­
metry breakdown in realistic field theories.2.14-16 Further­
more, they provide a simple recipe for generating partner 
potentials, which can be used successfully in many physical 
problems. See Ref. 13 and references therein. 

To study supersymmetric systems, Witten 16 introduced 
a quantity fl, counting the difference in the number of bo­
sonic and fermionic zero-energy modes of the Hamiltonian. 
This quantity, called the Witten index, has to be regularized 
if the threshold of the continuous spectrum of A * A (AA *) 
extends down to zero (see, e.g., Refs. 2 and 16-19). Here we 
will use the resolvent regularization, viz., Ref. 17, 

fl = lim fl(z) , 
(1.3 ) 

fl(z) = -zTr[(A *A _Z)-I- (AA * _Z)-I] . 

When A is Fredholm (i.e., if and only if the infimum of 
the essential spectrum of A * A is strictly positive), this index 
fl equals the Fredholm index i(A) = [dim Ker(A) 
- dim Ker(A *»). When A is not Fredholm, this equality is, 

in general, destroyed and fl can become noninteger; in fact, it 
can be any arbitrary real number,20 due to threshold effects. 
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Fractionization of fl. has been seen explicitly in a number of 
examples.2.8.20-25 

In this paper, we develop a new method to study super­
symmetric quantum mechanics without assuming the Fred­
holm property for the operator A. This method, based on 
relative scattering techniques (Levinson theorem-type argu­
ments, etc.), has the advantage of being simple and math­
ematically rigorous at the same time. In particular, we derive 
a relationship between Krein's spectral shift function26-28 
and the Witten index fl.. Furthermore, we show how the 
topological invariance of the (resolvent) regularized Witten 
index leads to the corresponding invariance of the spectral 
shift function itself. These new results offer a useful tool for 
explicit model calculations. To illustrate this, we discuss sev­
eral examples in detail. A short account of this work has 
appeared in Ref. 20. 

The rest of this paper is organized as follows: In Sec. II, 
we recall the basic properties of Krein's spectral shift func­
tion, 5 (A), A the energy, and its connection with (modified) 
Fredholm determinants. 29-3 I In Sec. III, we consider super­
symmetric quantum mechanical systems. We prove that un­
der certain conditions on the Hamiltonian, the Witten index 
fl. is given as (minus) the jump of the spectral shift function 
5(..1) at A = 0 and that the axial anomaly .d (Refs. 17 and 
32) is equal to the limit of 5(..1) as ,1.-+ 00. Furthermore, we 
use the topological invariance of the resolvent regularized 
Witten index under "sufficiently small" perturbations to de­
rive the corresponding invariance of Krein's spectral shift 
function itself. Finally, we discuss the spectral asymmetry 
17m associated with Qm in terms of 5(..1). Section IV illus­
trates the power of our method in explicit calculations by 
treating a number of models. Using the connection between 
Fredholm determinants and Wronskians33 or exploiting the 
topological invariance discussed in Sec. III, we calculate in a 
straightforward way Krein's spectral shift function, the Wit­
ten index, and the anomaly for various examples on the line 
and on the half-line. Furthermore, we analyze the supersym­
metric system describing a particle in a two-dimensional 
magnetic field without assuming the magnetic flux to be 
quantized. In this case, our method is the first rigorous and 
nonperturbative one that shows that the spectral shift func­
tion is piecewise constant, and thus that both the anomaly .d 
and minus the index fl. are equal to the flux. Also, the spec­
tral asymmetry for the corresponding two-dimensional Qm 
model is calculated. 

We end this introduction with the remark that Secs. III 
and IV are completely self-contained, so that they may be 
read independently of Sec. II, which offers a full account of 
the more technical results needed in the paper. 

II. FREDHOLM DETERMINANTS AND KREIN'S 
SPECTRAL SHIFT FUNCTION 

In this section, we present a full account of those basic, 
more technical results on Krein's spectral shift function and 
its connection with Fredholm determinants that we need in 
the rest of the paper. We start by introducing the following 
hypotheses. For any result, only some of the hypotheses will 
be assumed. 
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Hypothesis (i): Let d¥" be some (complex, separable) 
Hilbert space, let Hj' j = 1,2, be two self-adjoint operators 
in d¥" such that (HI - zo) -I - (H2 - zo) -IEYJ I (d¥") for 
some zoEp(HI ) np(H2 ). 

[Here YJ p (d¥") , pE [ 1,(0) denote the usual trace 
ideals31 and p ( .) denotes the resolvent set.] 

Hypothesis (ii): In addition to Hypothesis (i), assume 
that Il.i, j = 1,2, are bounded from below. Suppose that 
HI = H 2+ V12 (here + denotes the form sum), where V12 

can be split into two parts, V12 = V 12U 12 such that 
u 12 (H2 - z) -IV12 is analytic with respect to zEp(H2 ) in the 
YJI(d¥") topology and such that u12 (H2 -ZO)-I, 
(H2 -ZO)-IV12E YJ 2 (d¥") forsomezoEp(H2 )· 

Clearly, Hypothesis (ii) resembles the Rollnik trick of 
splitting a self-adjoint multiplication operator Vex) into 
Vex) = W(x) 1

1/2W(x) 1112 sgn V(X).34 Next, we introduce 
a "high-energy" assumption of the following type. 

Hypothesis (iii): Assume Hypothesis (ii) and 

lim det[l + u 12 (H2 -Z)-IV12 ] = 1. 
Izl-oo 

Finally, we introduce two assumptions which will allow 
generalizations in the sense that the Fredholm determinant 
used later on can be replaced by a modified one. This gener­
alization is critical in higher-dimensional systems where Hy­
pothesis (iii) is known to fail (cf., e.g., Refs. 35 and 36). 

Hypothesis (iv): Suppose Hypothesis (ii) is satisfied ex­
cept that u12 (H2 -Z)-IVI2 is now assumed to be analytic 
with respect to zEp(H2 ) in the YJ 2 (d¥") norm. 

Hypothesis (v): Assume Hypothesis (iv) and 

lim det2[1 + u 12 (H2 -Z)-IV12 ] = 1. 
z-oo 

Irnz#O 

We first recall the following. 
Lemma 2.1: Assume Hypothesis (i). Then there exist:; a 

real-valued measurable function 512 on R (Krein's spectral 
shift function26-28) unique a.e. up to a constant with 

(a) (l+1'1 2
)-ls12EL I (R); (2.1) 

(b) Tr[(H1 -Z)-I - (H2 -Z)-I] 

= - i dAsdA)(A-z)-2, zEp(Hj )np(H2); 

(2.2) 

(c) if SI2 (A) denotes the on-shell scattering operator for the 
pair (HI ,H2 ), then 

detS12 (A) =e- 21Ti';,,(A.) for a.e. AEaac(Hj ) (2.3) 

[a ac ( • ) denotes the absolutely continuous spectrum] . 
For a proof, see, e.g., Refs. 37 and 38. For an appropri­

ate class of C I (R) functions «I> with «I> (HI ) 
- «I>(H2)EYJ I (d¥") , one gets similarly 

Tr[«I>(H1 ) - «I> (H2 ) ] = i dA 512(..1)«1>'(..1) (2.4) 

(cf. Refs. 37-39). Finally, the invariance principle for wave 
operators can be used to relate 512 associated with (HI ,H2 ) 

and si2 corresponding to («I>(H),<<I>(H2 ») by37 

512(..1) = si2(<<I>(A»)sgn(<<I>'(A»). (2.5) 
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IfHj,j = 1,2, are bounded from below, wedefine512(A) = ° 
to the left of the spectra of HI and Hz in order to guarantee 
uniqueness for 512' For connections between Levinson's 
theorem and 512' see, e.g., Refs. 28,40, and 41. 

Example 2.2: Let HI denote the Friedrichs extension of 
( - d z/dxz + a/xz) ICQ'(R,{O}) in L z(lR), a;> -! and 

H z = - dZzl . (2.6) 
dx H'·'(R) 

Then the on-shell scattering operator SI2(A) in CZ reads4z 

1 (0 l)e-i1T[(a+ 114)'''+ II2J 1 ° (2.7) 
SI2(/l,) = 1 ° ' /l, > . 

Thus 

{
O, ,.1,<0, 

512(,1)= (a+!)I/Z, ,.1,>0, 
(2.8). 

and, e.g., 

Tr[(HI -Z)-I - (Hz _Z)-I] 

= (a + !) I/ZZ-I, ZEC,\ [0, 00 ) . (2.9) 

By a Laplace transform, Eq. (2.9) is equivalent to a result of 
Ref. 43. If HI equals the Neumann instead of Friedrich's 
extension of ( - d 2/dx2 + a/x2) ICQ'(R,{O})' a> -1, one 

obtains42 

Next, we recall28.z9 the following. 
Lemma 2.3: (a) Let U,GCC be open, AEYJ p ($') for 

somepE[ 1, 00), andO'(A) C UCG, whereaUis compact and 
consists of a finite number of closed rectifiable Jordan curves 
(cf., e.g., Ref. 44) oriented in the positive sense. [Here 0'( . ) 

denotes the spectrum and a U denotes the boundary of the set 
U.] Let! G--.C be analytic with 1(0) = 0. Then 
I(A )EYJ p ($'). 

(b) LetA: [a,b] -+ YJ I ($') be continuously differentia­
ble in the YJ I($') norm. Let UtE[a.b ]u(A(t»)CG, where 
GCC is open. Let! G--.C be analytic with/(O) = 0. Then 

!!..Tr(f(A(t»)] =Tr [f'(A(t») dA(t)] , tE(a,b). 
dt dt 

(2.10) 

(c) Let G C C be open, and A: G --. YJ 1 ($') be analytic 
in the YJ I ($') norm. Then det[ 1 + A (z)] is analytic with 
respect to zEG and 

d 
-lndet[1 +A(z)] 
dz 

1514 

= Tr{ [1 + A (z)] -I d~~Z) }, - lE£u(A (z») , 

zEG. (2.11) 

Lemma 2.3 immediately implies the following. 
Lemma 2.4: Assume Hypothesis (ii). Then 
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Tr[(HI _Z)-I- (H
2 

_Z)-I] 

= - !!..In det[ 1 + u12 (Hz - z) -IV12 ] , 
dz 

zEp(HI ) np(Hz) . (2.12) 

Proof' By Lemma 2.3, cyclicity of the trace, and the re­
solvent equation one gets 

!!..In det[l + u 12 (H2 -Z)-IV12 ] 
dz 

= Tr{[ 1 + u12 (H2 - z) -IV12 ] -IU12 (Hz - z) -2V12 } 

= Tr{(H2 - z) -Ivd 1 + u12 (H2 - z) -IV12 ]-1 

Xu 12 (H2 _Z)-I} 

= - Tr[ (HI - z) -I - (H2 - z) -I] , 

zEp(HI ) np(H2 ) • o 
In order to connect Krein's spectral shift function with 
Fredholm determinants, we formulate the following. 

Lemma 2.5: Assume Hypothesis (iii) and assume that 
(1 + 1'1> -1512EL I (lR). Then 

1 dA 512(,.1,)(,.1, - Z)-I 

=lndet[l +u 12 (H2 -z)-IVJ2 ] , zEp(H1)np(H2 )· 

(2.13 ) 
If, in addition, 512 is bounded and piecewise continuous on 
lR, then 

[512(,.1,+) + 512(,.1,_)]12 

= _1_ lim In det[ 1 + u 12(H2 - ,.1,- ic) -IV12 ] 

21TiE-O+ det[l+u 12 (H2-A+ic)-lvlz] ' 

AElR. (2.14) 

Proof' By Lemma 2.4, we have 

- !!..In det[ 1 + u12 (Hz - z) -IV!2] 
dz 

= Tr[ (HI - Z)-I - (H2 -z) -I] 

= - !1 dA5nCA)(A-z)-I, zEp(HI )np(H2)· 

Thus Eq. (2.13) holds up to a constant. By Hypothesis (iii), 
this constant equals zero. Equation (2.14) results from stan­
dard properties of the Poisson kernel (cr., e.g., Ref. 45). 0 

Without the piecewise continuity of 512' Eq. (2.14) 
holds a.e. in AElR. Hypothesis (iii) is, in general, valid for 
one-dimensional systems (cf. Sec. IV) but breaks down in 
higher dimensions. Thus we formulate the following. 

Lemma 2.6: Let G C C be open, and A: G --. YJ 2 ($') be 
analytic in YJ 2{$') topology. Then the modified Fredholm 
determinant det2 [1 + A (z)] is analytic with respect to zEG 
and 

d 
-lndet2[1 +A(z)] 
dz 

= Tr{([l +A(z)]-1-1) dAd~Z)} 

-Tr{[l +A(Z)]-IA(z) dAd~Z)}, 

- 1E£u(A(z») , zEG. (2.15 ) 
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Proof Obviously Eq. (2.15) holds for A(Z)E&# 1(£')' 
ZEG. The general case follows by a limiting argument. 0 

Lemma 2. 7: Assume Hypothesis (iv). Then 

Tr[(H, -Z)-I - (H2 -Z)-I 

+ (H2 -z)-IV\2(H2 _Z)-I] 

= - ~ In det2 [1 + u\2(H2 - z) -IU\2] , 
dz 

zEp(H, ) np(H2) . (2.16 ) 

Proof By Lemma 2.6 one gets 

~ In det2 [ 1 + u\2(H2 -Z)-IV\2] 
dz 

= Tr{([1 + u\2(H2 -Z)-IV12 ]-1 - 1) 

X u 12 (H2 - z) -2VI2} 

= -Tr{(H, -z)-'-(H2-z)-' 

+ (H2 -z)-'VdH2 -z)-'}, 

zEp(H,)np(H2) . 

For related work, see also Ref. 46. 

o 

Next, we assume the existence of some 'T/\2: [Ao,oo)--+R 
such that 

Tr[(H2 -z)-'V\2(H2 -z)-'] 

= (00 dA 'T/\2(A)(A _Z)-2, zEp(Hz) , (2.17) 
JAo 

and we define 

tnCA) = {5\2(A) - 'T/\2(A) , ..1>..10' 
512(..1) , ..1<..10' 

(2.18 ) 

Lemma 2.8: Assume Hypothesis (v) and assume that 
(1 + l'I)-'t\2EL '(..10,00). Then 

L dAt\2(A)(A -z)-' 

= In det2 [ 1 + u 12 (H2 - z) -Iud , 

zEp(H,)np(H2) . (2.19) 

If, in adddition, t 12 is piecewise continuous and bounded on 
R, then 

[t\2(A+) +tnCA_)]l2 

1 I' I det2 [1 + u\2(H2 -A - i€)-IV12 ] =-lmn---=..:;---=-.:.---"'-----'---o.:..::.... 
21Ti €~o+ det2 [1 + u\2(H2 -A + i€)-'Ud 

(2.20) 

I 
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Proof Similar to that of Lemma 2.5. 0 
Example 2.9: Let IVd 1+ sEL '(R2

), (1 + I'IS) V'2 
EL '(Rz)forsomes> O,respectively, V\2EL I (lR3) nR (R the 
Rollnik class,34 i.e., 

1. d 3x d 3yl Vex) II V(y)llx - yl-2 < 00) 

and define in L \R"): H, = - ~+ V'2 and H2 
= - ~IH2.2(Rn), n = 2,3. Then 

(2.21 ) 

(2.22) 

Finally, assume Hypothesis (i) and define, for some MER, 

~M(Z) = - (z-M) Tr[(H, -z)-'- (H2 -z)-'], 

zEp(H,) np(H2) . (2.23) 

Furthermore, define 

~M= lim (2.24) 
z-M 

IRe z - M I <C"llm zl 

and, if in addition H j , j = 1,2, are bounded from below, 

.sf = - lim ~M (z) (2.25) 
z- 00 

IRezl<C,IImzl 

(Co,C, positive constants). Then one has the following. 
Lemma 2.10: Assume Hypothesis (i). 
(a) Let MER and suppose that 5'2 is bounded on Rand 

piecewise continuous in (M - 2b,M + 2b) for some b > O. 
Then 

(2.26) 

(b) If Hj , j = 1,2, are bounded from below and if 5'2 is 
bounded and limA._OO 5\2(..1) = snC 00) exists, then 

.sf = 512( 00) . (2.27) 

Proof Choose € > 0 sufficiently small, 
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Now 

x [(A - Re Z)2 + (1m Z)2] -2 + i f:+ E 

dA [SI2(A) - SI2(M +) H(lm z)[ (A - Rez)2 - (1m Z)2] 

+ 2(,.1, - Rez) (Rez - M)lm z}[ (A - Rez)2 + (1m Z)2] -2. (2.28) 

For example, the real part in Eq. (2.28) yields 

Joo dP{[p2 IRe z - M I] _ [IRe z - M I] _ 2P} (p2 + 1)-2 
- 00 11m zl 11m zl 

X [sd( pllm zl + IRe z - M I )sgn(Re z - M) + M) - SI2(M +) lXI(M.z) (p)-+O 

as z -+ M and IRe z - M I < Co I 1m zl, 

I(M,z) = [-IRez-Ml/llmzl, ksgn(Rez-M) -IRez-MI1I1Imzl] 

by dominated convergence. (Here X I denotes the characteristic function of the interval Ie R.) The same analysis applies for 
the imaginary part in Eq. (2.28), proving Eq. (2.26). Similarly one proves Eq. (2.27). 0 

III. SUPERSYMMETRY AND KREIN'S SPECTRAL SHIFT 
FUNCTION 

In this section we consider general supersymmetric 
quantum mechanical systems and we establish a basic rela­
tionship betwen Krein's spectral shift function S12 (A) and 
the Witten index, and between SI2(A) and the axial anoma­
ly. Furthermore, we discuss the topological invariance of the 
(regularized) Witten index and the spectral shift function. 
Finally, the spectral asymmetry for Qm -type models [cf. Eq. 
0.1)] is related to SI2 (A). 

Let A be a closed, densely defined operator in Jr'" and 
define the "bosonic," respectively, "fermionic" Hamilto­
nian HI and H 2, by 

HI =A *A, H2 =AA *. (3.1) 

The corresponding supercharge Q and the supersymmetric 
Hamiltonian H in Jr'" Ell Jr'" are, respectively, 

Q=G A *) 2 (HI o ' H=Q = 0 (3.2) 

Assuming Hypothesis (i) throughout this section, Witten's 
(resolvent) regularized index Ll(z) is defined byl7 

Ll(z) = -zTr [(HI -Z)-I- (H2 -Z)-I], 

ZEC\, [0,00) , (3.3 ) 

and Witten's index Ll (Ref. 16) is given by (cf. Sec. II) 

Ll= lim Ll(z) (3.4 ) 
z-o 

IRezl<Collmzl 

(for some Co> 0) whenever the limit exists. Instead of the 
regularization (3.3), one could as well consider a (heat ker­
nel) regularization A (s) of the type 

A(s) = Tr[e- SH
, - e- sH

,] , s;;;'O, (3.5) 

and define Witten's index by 

Ll = lim A(s) . (3.6) 
s- 00 
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In order to avoid technicalities, we restrict ourselves to Cal­
lias's regularization (3.3). 

As a first result, we try to relate Ll and the Fredholm 
index i(A) of A: We recall an operator is Fredholm47 iff A is a 
closed operator with a closed range such that dim Ker(A ) 
and dim Ker(A *) are finite. The Fredholm index i(A) is 
then given by 

i(A) = dim Ker(A) - dim Ker(A *) . (3.7) 

We remark that A is Fredholm iff A * (or A *A) is.47 In addi­
tion 

dim Ker(A) = dim Ker(A *A) (3.8) 

implying that 

i(A) = dim Ker(HI ) - dim Ker(H2) . (3.9) 

Thus i (A) describes precisely the difference of bosonic and 
fermionic zero-energy states (counting multiplicities). 

We emphasize that we shall also use definition (3.7) for 
i(A) in case A is not Fredholm. Of course, in this case i(A) 
might lose some of the typical properties of an index. 

We state the following. 
Theorem 3.1: Assume Hypothesis (i) and suppose A is 

Fredholm. Then 

Ll =i(A). (3.10) 
Proof: We only sketch the major step. The fact that H j , 

j = 1,2, are Fredholm guarantees an expansion of the type 

-z[(HI _Z)-I- (H2 _Z)-I] 

"" = PI - P2 - z I zn [T~ + I - T~ + I] (3.11 ) 
n=O 

valid in the f!lj I (Jr"') norm. Here Pj denotes the projection 
onto the eigenvalue zero of H j ,j = 1,2, and 1) is the reduced 
resolvent, viz., Ref. 47, 

1)=n-lim(Hj-z)-I[1-Pj] , j=I,2. (3.12) 
z-o 
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Taking the trace in Eq. (3.11) and observing that 

Tr[PI-Pz] = i(A) (3.13) 

completes the proof. 0 
What happens if A is not a Fredholm operator? Before 

trying to answer this question, let us consider an equivalent 
definition of the Fredholm property of A. Since A * A >0 and 
A is Fredholm iff A * A is, we get the criterion that A is Fred­
holm iff inf U ess (A * A) > ° [uess ( .) denotes the essential 
spectrum]. The examples of the next section show that, in 
general, equality (3.10) is violated if A is not Fredholm. In 
fact, I:l. may take on half-interger values in the first four ex­
amples of Sec. IV, whereas in the fifth example it can even 
take on arbitrary real values (see also Ref. 20). 

To study also these non-Fredholm cases we now intro­
duce Krein's spectral shift function S12 associated with 
(H I ,Hz) as discussed in Sec. II. We always assume Hypothe­
sis (vi). Assume that S IZ (or t 12) is bounded and piecewise 
continuous on Rand S 12 (A) = ° for A < 0. 

As can be seen from Lemma 2.5 (Lemma 2.8), this es­
sentially requires continuity of the trace-norm (Hilbert­
Schmidt norm) limits ulz(Hz -A +iO)-IVI2 with respect 
to AER. This can be checked explicitly in concrete examples 
(cf., e.g., Sec. IV). 

Let us denote the threshold of H j by 

L = inf U ess (HI) = (inf U ess (H2») . (3.14 ) 

We observe that HI and H2 are essentially isospectral49 (cf. 
also Ref. 50), i.e., 

u(HI ) '\ {a} = u(H2) '\ {a} 

and 

HJ=Ej, E=I=0 

implies H 2(Aj) =E(Aj) , jE!»(HI) , 

H1K = E'g, E'=I=0 

implies HI(A *g) =E'(A *g), gE!»(H2) , (3.15) 

with multiplicities preserved. Under the additional assump­
tion that 

L =infuac(H1 ) [=infuac(Hz)] (3.16) 

and that, e.g., u12(H2 -A - iE)-IVI2, A>~, has .%'2(JY')­
valued limits as E ..... O+ and that the exceptional set 

8 = {A>~13jEJY', j=l=O 

with u 12(Hz -A - iO)-l v12 j= - j} 

is discrete (cf., e.g., Refs. 31 and 51), we get 

{

a, ,1<0, 

sdA)= sdO+) , O<A<~, 

- (21Ti) -I In det S12(A), A > ~ . 

(3.17) 

(3.18) 

The simple structure in Eq. (3.18) follows from the fact that 
the effects of all nonzero bound states of HI and H2 cancel 
since they occur with the same multiplicity in both HI and 
H 2 •

49 Under suitable conditions on VW37.51 the on-shell S 
matrix S12(A) is continuous in trace norm in A > ~ [with 
det SI2(A) #0], implying continuity of S12 for A >~. [If 
~ = 0, then the second line of the rhs ofEq. (3.18) should be 
omitted.] 
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If we define the axial anomaly .91 by (cf. Refs. 17 and 
32) 

.91= lim I:l.(z) ( 3.19) 
z_ 00 

IRezl<C,llmzl 

(for some C I > 0) we obtain from Lemma 2.10 the following. 
Theorem 3.2: Assume Hypotheses (i) and (vi). Then 

I:l. = - S12(O+) . (3.20) 

If, in addition, limA_ 00 S12 (A) ==SI2( 00 ) exists, then 

.91 = S12( 00) . (3.21) 

If ~ > 0, then - S 12 (0 +) describes precisely the difference 
of zero-energy bound states of HI and H2 (counting multi­
plicity) sinceS12 (A) = Ofod <0. Thus - SI2(0+) = i(A) 
in agreement with Theorem 3.1. If ~=O, then SIZ(O+) 
might be fractional due to threshold resonances or bound 
states of HI or H2 or due to relative long-range interactions 
as shown in Sec. IV. 

We also recall that by Lemma 2.5, SIZ can be recovered 
from the Fredholm determinants by 

[S12(A+) + S12(A_)]12 

1 I' I det[ 1 + u12 (H2 - ,1- iE) -IV12 ] 
=- 1m n I 

21Ti E-O+ det[ 1 + UnCH2 - ,1+ iE) - v12 ] 

(3.22 ) 

assuming Hypotheses (iii) and (vi) and (1 + 1'1) -IS12 
EL I (R). Under the same assumptions, I:l.(z) is given by [cf. 
Eq. (2.13)] 

I:l.(z) = -zTr[(HI -Z)-I - (Hz _Z)-I] 

=z~i dAS12 (A)(A-Z)-1 
dz R 

=z~lndet[1 +udHz-z)-IV12 ] , ZEC'\[O,oo). 
dz 

(3.23 ) 

We omit the corresponding generalizations based on Hy­
pothesis (v) in terms of modified Fredholm determinants. If 
an expansion of the type 

det[ 1 + u12 (H2 - z) -I V12 ] = za[ 1 + O(z)] as z ..... O 
(3.24 ) 

holds, then obviously 

I:l.=a. (3.25) 

In the same way, a high-energy expansion determines the 
anomaly .91. 

Next, we turn to an important invariance property of 
I:l.(z) under sufficiently small perturbations of A. Let B be 
another closed operator in JY' infinitesimally bounded with 
respect to A, and introduce on !» (A), 

Ap = A + f3B, f3ER. (3.26) 

The quantities HI,p, H 2,p, u12,p, v12,p, Sl2,P' and 1:l.(f3,z) then 
result after replacing A by Ap. We have48 the following. 

Theorem 3.3: Fix ZoEC'\ [0,00 ) and assume that 

(i) (HI,p - zo) -I - (H2,/3 - Zo) -IE.%' I (JY') 
for all f3ER ; 

(ii) B *B(HI - zo) - I, BB * (H2 - Zo) -IE.%' 00 (JY'), 
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[A *B+B*A ](HI-ZO)-I, 
[AB * + BA *](H2 - zo) -IE~ 00 (cW') ; 

(iii) (HI -zo)-IB*B(HI -ZO)-I, 
(H2 - zo) - IBB * (H2 - zo) -IE~ I (cW') , 
(HI - ZO)-I [A *B + B *A ](HI - zo) -I, 
(Hz - zo) -I [AB * + BA *](H2 - zo) -IE~ I (cW') ; 

(iv) (HI-ZO)-MB*(H2-Z0)-ME~I(cW') 
for some MEN. 

[Here ~ I (cW') and ~ 00 (cW') denote trace class and com­
pact operators in cW', respectively.] Then 

ll( /3,z) = ll(z) , ZEC\[O,oo), /3ER, (3.27) 

i.e., the regularized Witten index is invariant against small 
perturbations B of the above type. 

Since a more general result (where A acts between dif­
ferent Hilbert spaces cW' and cW") has been proven in Ref. 48, 
we only formally indicate the proof: By conditions (i)-(iii) 
one proves that the function 

F(/3,z) = Tr[(HI./3 _Z)-I- (H2./3 -Z)-I], 

ZEC\ [0,00) , (3.28 ) 

is differentiable with respect to /3 with derivative 

~F( /3,z) 
a/3 

- Tr{(HI ./3 - z) -I [A $B + B *A/3] (HI./3 - Z)-I 

- (H2./3 -z)-I[A/3B* +BA$] (H2./3 _Z)-I}. 

Using the commutation formulas49 

(A$A/3 -z)-IA$~A$(A/3A$ -Z)-I, 

(3.29) 

(A/3A $ - z) -IA/3 ~A/3 (A $A/3 - z) -I, ZEC\ [0,00 ) , 
( 3.30) 

and cyclicity of the trace, the two terms on the rhs of Eq. 
(3.29) cancel. Thus 

a 
- F( /3,z) = 0, /3ER, ZEC\ [0,00 ) , 
a/3 

(3.31 ) 

implying the desired result F( /3,z) = F( O,z). Conditions 
(iii) and (iv) enter in a rigorous derivation of Eq. (3.31) .48 

The result (3.27) yields the topological invariance of 
the regularized index II (z) in the concrete examples of Sec. 
IV (cf. also Ref. 52). Moreover, it proves the topological 
invariance of II and .x/ whenever the limits z ..... 0 and z ..... 00 of 
ll(z) exist. In the case where A is Fredholm, the invariance 
of the Fredholm index i(A) (and thus of II by Theorem 3.1), 
i.e., 

i(A + /3B) = i(A) , /3ER, (3.32) 

under relatively compact perturbations B with respect toA is 
a standard result. 47 Equation (3.27) works without assum­
ingA to be Fredholm, but needs much stronger assumptions 
on the "smallness" of B than just relative compactness. 

Another application of Eq. (3.27) concerns the invar­
iance of Krein's spectral shift function. In fact, we get the 
following. 

Theorem 3.4: Assume Hypothesis (vi) with A replaced 
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by A/3 and (1 + 1'1) -I [5 12.13 - 512]EL I(R) for all/3ER. If 
conditions (ii)-(iv) of Theorem 3.3 hold, then 

[512./3 (A+) - 512(A+)] + [512./3 (A_) - 512(A_)] = 0, 
(3.33 ) 

for all/3,AER. In particular if 512. /3,/3ER, and 512 are contin­
uous at a point AER then 

512.13 (A) = 512(A), /3ER. (3.34) 

Proof: Equations (2.2) and (3.27) together with the 
Lebesgue dominated convergence theorem imply 

0= L dA [512./3 (A) -512(A)](A-Z)-2 

=~ r dA [512./3 (A) -512(A)](A -Z)-I (3.35) 
dz )R 

and hence 

L dA [512./3(A) -512(A)](A -Z)-I =0 

by taking Izl ..... oo, Imz#O. Thus Eq. (3.33) results from 
standard properties of the Poisson kernel (cf., e.g., Ref. 
45). D 

In the first four examples of the next section, 512.13 (A) 

coincides with a multiple of the relative phase shift between 
HI andH2 and the Fredholm determinants in Eq. (3.22) are 
expressed in terms of Wronski determinants. In these cases 
the topological invariance property of ll(z) and 512(A) can 
be established by simple and explicit calculations. 

Finally, we note that the following family of operators in 
cW'fficW': 

A * ), 
-m 

o 2)' mER\{O}, 
H 2 +m 

(3.36) 

can be treated analogously. In order to illustrate a simple 
application of the above results, we briefly discuss the invar­
iance of the spectral asymmetry 17m (Refs. 7 and 9) under 
"small" perturbations. Under suitable conditions on Hm 
[cf., e.g., Eq. (3.17)], the (regularized) and spectral asym­
metry can be defined by 

17m = lim 17m (t) , (3.37) 
I-O-+-

(This definition resembles the ones available in the litera­
ture, e.g., in Refs. 2, 8, 12,53, and 54.) Since 

Tr[Qm(Hm +z2)-le -tHm
] 

= m Tr [(HI + m 2 + Z2) -Ie - t(H, + m'l 

_(H
2
+m2 +Z2 )-le -t(H,+m'l] , t>O, (3.39) 

we can rewrite Eq. (3.38) in the form 

17m (t) = m Tr[ (HI + m 2 ) -1/2e - t(H, + m'l 

_ (H
2 
+ m2) -ll2e - t(H, + m'l] 

and, using Eq. (2.4), 

Bolie eta!. 
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7JmCt)=ml" dAS12 CA) d~ [CA+m2)-1/2e -t(A+m'l]. 

(3.41 ) 

(3.42) 

Obviously, Eqs. (3.41) and (3.42) imply the invariance of 
7Jm with respect to the substitution A -Af3 = A + f3B as a 
consequence of Theorem 3.4. 

IV. SPECIFIC MODELS 

We present a series of examples of explicit model calcu­
lations which illustrate the practical use of the abstract re­
sults of the foregoing section. 

Example 4.1: Let JY = L 2 (10 and 

A=(! +tP)IH"'(Rl' (4.1) 

where tP fulfills the following requirements: 

tP,tP'EL '" ClR) are real valued 

lim tP(x) = tP ± ElR, tP2_ <tP2+ , 
x_ ±!Xl 

(4.2) 

± i± '" dx(1 + IxI 2 )ltPCx) - tP± 1<00 . 

In this case, HI and H2 explicitly read 

H j = ( - :x: + tP2 + ( - 1 )jtP') I H"(Rl' j = 1,2. 

(4.3 ) 

Then 

dCz) = [tP+CtP2+ _Z)-1/2_tP_CtP2 __ Z)-1/2]/2, 

ZEC,\ [0,00 ) , (4.4) 

and hence 

S12(A) = 1T- I {O(A - tP~ ) arctan [ CA - tP2+ ) 1/2/tP+ 1 
-OCA-tP2_) arctan[CA-tP2_ )1/2/tP_]} 

+ OCA)[sgn (tP-) - sgn(tP+)]l2, 

tP_#O, tP+#O, 

S12(A) =1T- 10(A-tP2+ )arctan[(A-tP2+ )1/2/tP+l 

- 0(.,1,) [sgnCtP+)]l2, 

tP- = 0, tP+ #0; AElR. (4.6) 

[Here O(x) = 1 for x;;'O and O(x) =0 for x<O and 
sgn(x) = ± 1 forx<O and sgn(O) =0.] Equations (4.4)­
(4.6) clearly demonstrate the topological invariance of these 
quantities as discussed in Sec. III since they only depend on 
the asymptotic values tP ± of tP (x) and not on its local prop­
erties. In fact, replace tP (x) by tP (x) + f3t/J(x), f3ER, where 

t/J,t/J'EL 00 (R) are real valued, 

t/J(x),t/J'(x) =O(lxl-3-<) for some ~>O as Ixl-oo. 
( 4.7) 

Then the perturbation B [cf. Eq. (3.26)] given by multipli­
cation with t/J leaves the regularized index invariant since the 
hypotheses of Theorem 3.3 are satisfied. 

Concerning zero-energy properties of Hj , j = 1,2, see 
Table I. 

These zero-energy results easily follow from the fact 
that the equations 

Aj=O, A*g=O (4.8) 

have the solutions 

j(x) =f<o)exp( - f dttP(t») 

= O(e -¢±x) as x- ± 00 , (4.9) 

g(x) = g(o)exp(i
X 

dttPCt») = O(/±x) as x- ± 00 . 

In order to derive Eq. (4.4), we introduce Jost solutions 
(4.5) jj± (z,x) associated with Hj,j = 1,2, 

TABLE I. Zero-energy properties of H, and H2 in example 4.1. 

Zero-energy resonance Zero-energy bound state 
ofH, ofH2 up(H,)n{O} Up (H2 ) n{o} I!:.. i(A) 

¢_ <O<¢+ no no {O} ¢ 

¢+ <O<¢_ no no ¢ {O} -1 -1 

¢+,¢_>o 
or no no ¢ ¢ 0 0 
¢+,¢_ <0 

¢_ =0,¢+;i0 yes no ¢ ¢ ~sgn(¢+ ) 0 

¢_ =¢+ =0 yes yes ¢ ¢ 0 0 
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I" ) ± ik±x Jj± (Z,X = e 

- i±"" dx'k ;Isin[k± (x-x')] 

X [¢2(X') _¢2± + (-l)J¢'(x'»./j± (z,x') , 

ZEC, j=1,2, (4.10) 

where 

k± (z) = (z_¢z± )112, 1m k±>O. (4.11) 

The corresponding Fredholm integral equation reads 

/..± (z,x) = [TI2 (z)1- l h± (z,x) 

-L dx' g2(Z,X,X')[ - 2¢'(x') J /.. ± (z,x') , 

ZEC\CTp (Hz), z#¢z_, (4.12) 

where 

gz(z,x,x') = - [W(fz_(z),h+(Z»)J-I 

ffz+(Z,x)h_(z,x') , x>x', 

X V;- (z,x) 12+ (z,x') , x<x', 

ZEC\CTp (H2 ) , z#¢z_, 

gz(z) = (Hz _Z)-I, zEp(Hz) , 

and T12 (z) denotes 

(4.13 ) 

T I2 (Z) = W(h_ (z),f2+ (Z»)/W(fI_ (z),1I + (z»), 

ZEC \ t7p (Hz), z#¢z_. (4.14) 

Here 

W(F,G)x = F(x)G'(x) - F'(x)G(x) (4.15 ) 

denotes the Wronskian of F and G. (For more details on one­
dimensional systems with nontrivial spatial asymptotics, cf. 
Ref. 23.) As can be seen, e.g., from Eq. (4.12), the relative 
interaction VIZ reads 

V1Z(x) = - 2¢'(x) . (4.16) 
Our first main step to derive Eq. (4.4) now consists of 

the observation that 

W(fl_ (Z),fl+ (z») 

W(fz_(Z),h+(z») 

= det[ 1 - 2WI1/2 sgn(¢')gz(z) 1¢'II/2] , 

zEp (Hz), Z#¢2_, (4.17) 

such that (cf. Lemma 2.4 ) 

Tr(HI-z)-I- (Hz -Z)-IJ 

_ ~ In W(fl_ (Z),fl + (z») ZEC \ [0,(0) . 
dz W(fz_(z),Jz+(z») ' 

(4.18 ) 

Equality (4.17) can be proved along the lines of Ref. 33 
using Eqs. (4.10) and (4.12) (cf. Ref. 23). 

Next, we note that Eq. (3.15) also holds for distribu­
tional-type (e.g., Jost) solutions of HI and Hz. In fact, as­
sume that II (Z,x) , z#O, is normalized according to Eq. 
(4.10), i.e., 

I" ±ik x 1 JI± (z,x) =e ± +o() as x-- ± 00, 

then (All ± ) (z,x) asymptotically fulfills 
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as x-- ± 00 . 

Thus 

{
II ± (z,x) 

h± (z,x) = (±ik± +¢± )-I(AII ± )(Z,x) , z#O, 
( 4.19) 

are correctly normalized Jost solutions for HI and H 2 • Equa­
tion (4.17) thus becomes 

det[ 1 - 21¢' /1/2 sgn( ¢' )g2 (z) /¢' /IIZ J 

= (-ik_ +¢_)(ik+ +¢+)W(fI_(Z),JI+(Z») 

X [W(A.t;_)(z),(A.t;+)(z»)]-1 , ZEC\[O,oo). 

(4.20) 

Finally, a straightforward computation yields 

W(AI)(z) ,(Ag)(z») = zW(f(z),g(z») , ZEC, 
(4.21) 

whereJ,g are distributional solutions of 

(A *At,b(z»)(x) = - t,b"(z,x) + [¢2(X) - ¢'(x)]t,b(z,x) 

= zt,b(z,x), ZEC. (4.22) 

Consequently, Eq. (4.20) becomes 

det[I - 2WI l/2 sgn(¢')gz(z)i¢'1 1/2 ] 

= (-ik_ +¢_)(ik+ +rP+)lz, ZEC\[O,oo) 
(4.23) 

and Eq. (4.4) follows from Eqs. (3.23) and (4.23). 
The result (4.4) was first derived by Calli as, 17 and since 

then by numerous authors. Z.!O,1l.18,21,2Z,25,55 While our deri-

vation is close to that in Ref. 22, it seems to be the shortest 
one since the trick based on Eq. (4.21) explicitly exploits 
supersymmetry and avoids the use of an additional compari­
son Hamiltonian in the approach of Ref. 22. 

Next, we discuss an example on the half-line (0,00 ). 

Example 4,2: Let JY = L z(O, 00) and 

A = (:r + ¢(r») I Hi\·I(Q,,,,,) , (4.24) 

where ¢ fulfills the following requirements: 

¢,¢'EL "" (0, 00) are real valued, 

lim ¢(r) = ¢+ER, lim ¢(r) = ¢oER, 
r __ 00 r-O + 

i"" drr(1 + r)I¢'(r)1 < 00 , 

Sa"" drr(1+r)I¢(r)-¢+i<oo. 

In this case, HI and Hz read 

(4.25 ) 

( 4.26) 

where F denotes the Friedrichs extension of the correspond­
ing operator restricted to CO' (0,00 ) and 
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(4.27) 

g'(o+) -~o,g(o+) =0; g"EL 2 (0,00)}' 

With AC ,oc (a,b) the set of locally absolutely continuous 
functions on (a,b). Then 

ZEC\ [0,00) , 

and hence 

(4.28) 

A = { _- I[ 1 -_sgn_(~+)]/2, ~+ =1=0, 
L.l - d=!, 

2' 4>+ -0, 
(4.29) 

SdA) = {1T- 'O(A - ~2+ ) arctan [ (A - ~2+ ) 1/2/~+] + O(A)O( - ~+), ~+ =1=0, 
0(,1,)/2, 4>+=0; AER. ( 4.30) 

Again, Eqs. (4.28 )-( 4.30) exhibit the topological invar­
iance of all these quantities since only ~ + enters. [The argu­
ments in connection with Eq. (4.7) can easily be extended to 
the present situation.] Concerning zero-energy properties, 
see Table II. 

In order to derive Eq. (4.28), we introduce the Jost solu­
tions 

Jj ± (z,r) 

= e±ik+r - LX> dr' k :;: I sin[k+(r - r')] 

X [~2(r') _~2+ + (-I)j~'(r')]Jj± (z,r') , 

ZEC, j= 1,2, (4.31) 

where 

k+(z)=(Z_~2+)1/2, Imk+>O, (4.32) 

and the regular solutions 

Ifl (z,r) = k :;: I sin k+r + f dr' k :;: 'sin[k+ (r - r')] 

X [~2(r') _~2+ -~'(r')] If,(z,r'), 
- -I' 1f2(z,r) = cos k+r + 4>ok + sm k+r 

+ fdr'k:;:tsin[k+(r-r')] 

x[~2(r') _~2+ +~'(r')] 1f2(z,r') , ZEC. 

(4.33 ) 

Using again Eq. (3.15), we assume that It ± (z,r), z=I=0 is 
normalized according to Eq. (4.31), i.e., 

It± (z,r) =e±ik±r +0(1) as r-+oo. 

Then (Alt ± ) (z,r) fulfills 

TABLE II. Zero-energy properties of H, and H2 in example 4.2. 

¢>+ >0 

¢>+ <0 

¢>+ = 0 

1521 

Zero-energy 
resonance Zero-energy bound state 

of H, of H2 up (H,) n{o} up (H2) n{o} 

no no 

no no 

no yes 

tP 
{o} 

tP 
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o 
-1 

i(A) 

o 
-1 

o 

(Alt ± )(z,r) = ( ± ik+ + ~+)e±ik+r + 0(1) as r-+ 00 

such that the J ost functions 

{
II ± (z,r) , 

12± (z,r) = ( ± ik+ + ~+)-t(AI t ± )(z,r) , z=I=O, 
(4.34) 

are correctly normalized. Similarly, we assume that 1ft (z,r), 

Z =1= ° fulfills 

1ft (z,r) = r + oCr) as r-+O+ . 

Then 

(Alft )(z,r) = 1 + ~or + oCr) as r-+O+ 

and thus 

{
1ft (z,r) , 

1f2 (z,r) = (AIf, )(z,r) , z=I=O, 
(4.35) 

are correctly normalized regular solutions of H t andH2 • The 
rest is now identical to the treatment of example 4.1. First of 
all, one derives, as in Eq. (4.18) (cf., e.g., Ref. 30) 

Tr[(H t _Z)-I- (H
2 
_z)-t] 

=~ln W(lf2(Z),j2+(Z») ZEC\[O,oo). (4.36) 
dz W(lfl(Z),jl+(Z»)' 

Then one calculates, as in Eq. (4.21), that 

W(Alfl)(Z) ,(A/,+)(z) ) = ZW(lfl (z),j1+(z»), ZEC. 
(4.37) 

We now consider a generalization of this example which 
allows us to discuss n-dimensional spherically symmetric 
systems (cf., e.g., Refs. 2 and 13). 

Example 4.3: Let JY' = L 2(0, 00 ) and 

A = (:r + 4> )!CO(O.=l ' 
where 4> fulfills the following requirements: 

4>(r) = ¢V- t + ~(r), 4>0< -!, r>O, 

~,~'EL= (0,00) are real valued, 

lim ~(r) = ~+ER, 

( 4.38) 

i= drW"'o(r)(I~'(r)1 +r-tl~(r) -~+Il<oo, (4.39) 

i= dr W"'o(r)I~(r) -~+I < 00, 

and the weight function W"'o is defined by 
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if ¢Jo = _1 
2 ' 

( 4.40) 

Now HI and Hz are given by 

H ( 
dZ Z . ) 

j = - d~ + ¢J + ( - 1 )1¢J' F' j = 1,2 . ( 4.41) 

Explicitly, we have 

The topological invariance in Eqs. (4.43 )-( 4.45) is obvious. 
(See Table III.) If ~+ = 0, the result a = ~ is not due to a 
zero-energy (threshold) resonance, but due to the long­
range nature of the relative interaction V12 (r) = 2¢J2r - 2 

+ o(r-2) as r-. 00. Since Eq. (4.43) is independent of ¢Jo, 

this result holds in any dimension >2 and for any value of the 
angular momentum. 

In order to derive Eq. (4.43), one could follow the strat­
egy of example 4.2 step by step since formula ( 4.36) remains 
valid in the present case for suitably normalized Jost and 
regular solutions (although we are dealing with a long-range 
problem!). To shorten the presentation, we will use instead a 
different approach based on the topological invariance prop­
erty of a(z) ands12 (A) (this approach obviously also works 
in example 4.2). Indeed, because of Theorem 3.3, it suffices 
to choose ~(r) = ~+, r>O in example 4.3. Then 

( 
d2 [2 j-2 

Hj = - d~ + ¢Jo - ( - 1) ¢Jo] r 

+ 2¢Jo~+r-1 + ~2+ t, j = 1,2 (4.46) 

[cf. Eq. (4.42)] and hence56 

S.(A) = r(2- I + 2- I
( - I)j - ¢Jo + i(¢Jo~+lk+») 

1 r(2- 1 +2- 1
( -1)j-¢Jo-i(¢Jo~+/k+») 

Xei1r [z-'-(-l)iz-'+<p"l, A>~z+, j= 1,2 

(4.47) 

[k+(A) definedinEq. (4.32)] implying 

TABLE III. Zero-energy properties of H, and H2 in example 4.3. 

Zero-energy 
resonance Zero-energy bound state 

ofH, ofH2 Up (H,)n{O} Up (H2 )n{0} t:. itA) 

~+>o no no {a} ¢> 

~+ <0 no no ¢> ¢> 0 0 

~+ =0 no no ¢> ¢> 0 
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¢J2(r) + ¢J' (r) = (¢J~ ± ¢Jo)r- z + 2¢JifJ +r- I 

Then 

+ ~z+ + ~Z(r) _ ~z+ + ~'(r) 
+2¢Jo[~(r)-~+]r-l, r>O. (4.42) 

a(z) = (zI2)(~z+ _Z)-1/2[~+ _ (~2+ _Z)I/2]-I, 

ZEC,\ [0,00) 

and hence 

(4.43 ) 

a = {~1 + _ sgn~ ~ + ) ]12, ~ + =/= 0 , ~ = _!, 
2' ¢J+-O, 

(4.44) 

( 4.45) 

SI2(A) =SI(A.)S2(A)-1 

= (~+ - ik+)/(~+ + ik+) , A >~2+ 
( 4.48) 

Equation (4.48) proves Eq. (4.45). Now Eq. (4.43) follows 
by explicit integration (Ref. 57, p. 556) in Eq. (3.23). 

The result (4.43), in the special case ~ (r) = 0, has been 
discussed in Ref. 21 by different methods. 

Next, we briefly discuss non local interactions. 
Example 4.4: Let Jf' = L Z (0,00 ) and 

A= :rI H5"(O.OO) +B, 

where 

B,A *B,AB *Ef!iJ I(L 2(0,00»). 

( 4.49) 

(4.50) 

In this case the assumptions of Theorem 3.3 are trivially 
fulfilled, and hence Eqs. (4.28) -( 4. 30), in the special case 
¢J(r) =0, hold. In particular 

(4.51 ) 

In order to illustrate the possible complexity of zero-energy 
properties of HI and H2 in spite of the simplicity of Eq. 
(4.51), it suffices to treat the following rank 2 example: 

B = a(J,') f + P(g;)g, a,{3ER, 

J,gEC b (0, 00), ~O ,g>O, f =/=g. ( 4.52) 

By straightforward calculations, one obtains the informa­
tion contained in Table IV. Here the following case distinc­
tion has been used: 

TABLE IV. Zero-energy properties of H, and H2 in example 4.4. 

Zero-energy 
resonance Zero-energy bound state 

of H, of H2 up (H,) n{o} up (H2 ) n{o} t:. itA) 

Case I no yes ¢> ¢> -! 0 

Case II yes no ¢> {a} -~ -1 

Case III no yes {a} {o} -1 0 
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case I, 
case II, 

case III, 

where 

\{J(a,{3) #0; 
\{J(a,{J) = 0, 
a#2G( 00 ){F( (0)[ (J,G) - (g,F)])- \ 
\{J(a,f3) = 0, 
a = 2G( 00 ){F( 00 )(J,G) - (g,F) ]}-I; 

F(x) = LX dx'/(x') , G(x) = LX dx' g(x') , 

\{J(a,{3) = [1 +a(J,F)][1 +{3(g,G)] -a{3(J,G)(g,F). 
(4.53 ) 

Finally, we consider in detail the following two-dimensional 
magnetic field problem. 

Example 4.5: Let JY' = L z(Rz) and 

A= [(-ial-al)+iuaz+az)Jlco(R')' (4.54) 

where 

a=(azifJ,-alifJ), a/==~, j=I,2, (4.55) 
aXj 

and ifJ fulfills the following requirements: 

ifJECz(Rz) is real valued, 

ifJ(x) = - Flnlxl + C + O(lxl) -E, 

(VifJ)(x) = -Flxl-zx+O(lxl- I - E), 
( 4.56) 

C,FER, €>O as Ixl- 00 , 

(AifJ) I +0 , (1 + l'IO)(AifJ)ELI(Rz) for some 15>0. 

Then 

H j = [( - iV - a)z - ( - 1 )jb ] IH"'(R')' j = 1,2, 
(4.57) 

where 

(4.58) 

Introducing the magnetic flux F by 

F=(21T)-1 f dZxb(x) (4.59) 
JR' 

we obtain 

A(z)=A= -F, ZEC\[O,oo), d=F, (4.60) 

S12(A)=FtJ(A), AER. (4.61) 

Moreover, we have 

i(A)sgn(F) 

= (J( - F) dim Ker(A) - (J(F)dim Ker(A *) 

={-Nif IFI=N+€, 0<€<1, (4.62) 
- (N - 1) if IF I = N, NEN. 

SinceEq. (4.62) has been derived in Ref. 58 (cf.alsoRefs. 8, 
24, and 59-62), we concentrate on Eqs. (4.60) and (4.61). 
For this purpose we first study a special example (treated in 
Ref. 63). Let 

{ 
- (F,.z/2R z), r<R, 

ifJ(R,r)= -(F/2)[1+lnC,.z/Rz»), r>R, R>O, 
(4.63 ) 
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and denote the corresponding Hamiltonian in (4.57) by 
H j (R), j = 1,2. Next, define U

E
, €>O, to be the unitary 

group of dilations in L 2(Rz), viz., 

(UEg)(x) = €-lg(X/€), € > 0, gEL z(Rz) . (4.64) 

Then a simple calculation yields 

UEHj(R)UE-I=€zHj(€R), €,R>O, j=1,2. 
( 4.65) 

If we denote by S12(R), the scattering operator in L z(Rz) 
associated with the pair (HI (R ),Hz(R»), then S12(R) is de­
composable with respect to the spectral representation of 
Hz(R)Pac(Hz(R») [Pac (.) is the projection onto the abso­
lutely continuous spectral subspace]. Let S 12 (A,R) in 
L z(S I) denote the fibers of SdR), then Eq. (4.65) implies 

S12(A,R) = S12(~A,R IE) , ( 4.66) 
S12(A,R) =S12(€2A,R/€), A>O. 

Applying now Theorem 3.4, we infer that S IZ (A) cannot 
depend on R > 0 as long as Fis kept fixed in Eg. (4.63). Thus 
Eq. (4.63) implies S 12 (A) = S 12 (€zA), A > 0, which in turn 
implies that S 12 is energy independent. 

We will give two methods of computing this constant 
value of S 12' the first using heat kernels, the second, resol­
vents. 

Method 1: By Eq. (2.4) 

Tr(e-tH'_e- tH,) = -tL'" e- tAS12 (A)dA 

= - S12' (4.67) 

Let Ho = - AH"'(R')' We will prove that 

lim [Tr(e- tH, - e - tHo)] = - V. (4.68) 
110 

This, with the analogous calculation for Hz, yields 

S12=F. (4.69) 

To prove (4.68), we expand e - tH, perturbatively (Du Ha­
mel expansion) and obtain 

Tr(e - tH, _ e - tHo) = a + {3 , 

a = - tTr(e-tHob) , 

(3 = f s Tr(e-SHobe- (t-S)H'b)ds. 

Since (e - tHo) (x,x) = (41Tt) -I, we have 

a= -t(41Tt)-1 f b(x)dzx= -V 
JR' 

so we need only show that 

lim (3 = O. 
,,0 

By the Schwarz inequality 

Tr(e-SHobe- (t-S)H'b)<rl/zDI/z, 

r=Tr(e- 2sHob z) = (81TS)-li b 2 d 2x, 
R' 

Bolle eta/. 
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(4.75) 
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where we have used the diamagnetic inequalities (see Ref. 59 
and references therein). Thus 

11«1, b 2 d 2X )e + ZI lib II~ (81T) -I L SIl2(t - s) -IIZ ds 

(4.76) 

goes to zero as nO. 
Method 2: This is essentially the Laplace transform of 

method 1. Since Ll (z) = Ll is independent of z, we can calcu­
late it in the z ---> 00 limit. To do this, we infer from the proof 
of Lemma 2.7 that 
Mz) =zTr [(Hz -z)-IV12 (H2 -Z)-I] 

-zTr{[l + u 12(Hz -Z)-IVI2]-IUI2(H2 -Z)-I 

XU\2U\2(HZ -Z)-2U12}, ZEC,\[O,oo). (4.77) 

Next, we employ the resolvent equation giving 

(Hz -z)-tV12(H2 _Z)-l = (Ho -z)-IV
12

(Ho -Z)-I 

- (H2 - z) -IVz(Ho - z) -lV12 (Ho - Z)-I 

- (HO -Z)-IV\2(Ho-z)-IV2 (H2 _Z)-l 

+ (H2 - z) -IV
2
(Ho - Z)-I 

XV12(HO -Z)-IVZ(H2 -z)-I, ZEC'\[O,oo), 

where 

Ho = - LlI H "<IR') ' V12 (x) = 2b(x) , 

V2 =2iaV+i(Va) +a2 -b. 

Then estimates of the type35 

IIw(Ho - z) -III~ <C IIwll~ Izl-l, 

1m zIlZ > 0, wEL z(Rz) , 

and, e.g., 

II (Hz -Z)-IV2 (Ho -Z)-lVIZ (Ho -z)-Ilil 

<II (Hz -z)- IIZ IIII(H2 -z)-IIzVzlI 

X II (Ho - z) -Iudz lIu 12 (Ho - z) -Iliz 

<Clzl-1Ilmzl- IIz , IRezl<Clllmzl 
imply [cf. Eq. (2.21)] that 

lim zTr[(Hz -z)-IVlz (Hz-z)-l] 
Izl- 00 

IRezl<C,IImzl 

(4.78) 

(4.79) 

( 4.80) 

(4.81) 

lim zTr [(HO -Z)-IV12 (Ho-z)-l] 
Izl- 00 

IRezl<C,IIrnzl 

= - (21T)-1 ( dZxb(x) = -F. 
Ja' 

Similarly, we get 

II [1 + unCHz - Z)-IU12 J -lUI (Hz - Z)-I 

X U\2U 12(HI2 - z) -zUnlll 

( 4.82) 

<Cllul2(H2 -z)-lv12 III1(Ho -z)(Hz _z)-lliz 

Xllul2(Ho-z)-llIzlI(Ho-z)-ludlz 

<C'lz l-llIu I2 (Hz -z)-Ivdl =o(lzl-l) 

as Izl-oo, IRezl<C11Imzl. 

Inequality (4.83) follows from the fact that 
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(4.83 ) 

IluI2(Ho-z)-IUI2112 Izl-oo -+0, 
IRezl<Clllmzl 

(4.84 ) 

which in turn is a consequence of the Hankel function esti­
mate 

IHbl)(vlzlx-yIW 

<dl + d2 (lnlx - yl)2, 1m vIz>J.l >0, (4.85) 

and dominated convergence. Relation (4.80) then shows 

II -I II Izl--oo u1z(Hz-z) U\2 z -+0, 
IRezl<Clllmzl 

( 4.86) 

where we have again used the resolvent equation and Eq. 
(4.84). Thus we have shown that Ll ( (0) = -.If = - F, 
which completes the derivation of Eq. (4.60). 

The result of Aharonov-Cashe~8 implies that 
dim Ker(H1 ) - dim Ker(Hz) differs from Ll by at most 1. 
It would be nice to know why this is true. 

We remark that the result (4.60) has been obtained in 
Ref. 24 by using certain approximations in a path integral 
approach. The above treatment seems to be the first rigorous 
and nonperturbative one. 

To complete this discussion, we still mention that the 
(regularized) spectral asymmetry, 11m (f), associated with 
this magnetic field example (4.5) after replacing H j by 
Hj + m Z [Q by Qm' cf. Eq. (3.36)] can be calculated using 
the result (4.61) and Eq. (3.41). One easily gets 

lIm(t) = sgn(m)Fe- 1m
' , mER'\{O}, (>0, (4.87) 

containing in the limit (-+ 0 + the known result for 11m (cf., 
e.g., Ref. 2). 
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A model Hamiltonian for a many-electron system which unifies superconductivity, charge 
density waves, and spin density waves is analyzed. It is shown that the spectrum generating 
algebra for this system is su ( 8), and all 63 generators of this Lie algebra are identified. The 
seven symmetry operators that are broken in transition to the condensed state are identified, 
together with 56 order operators, whose expectations give the order parameters of the various 
phases present in the model. The discrete symmetry properties of these operators are tabulated. 
A chain of subalgebras of submodels with corresponding decoupled phases is constructed. 
Finally, how the finite temperature Green's functions may be obtained and used to solve the 
problem of self-consistency of the order parameters in the model is indicated. 

I. INTRODUCTION 

The pioneering experiments ofSooryakumar and Klein I 
on the coexistence of superconductivity and charge density 
wave phases, and many subsequent investigations, both 
theoretical and experimental, 2 have sparked interest in those 
systems for which the coexistence of these and other phases, 
such as ferro- and antiferromagnetic, are possible. In this 
paper we give a purely theoretical description, based on the 
approach of Lie algebras, to a system capable of embracing 
the phenomena of superconductivity and density waves. The 
model we analyze incorporates conventional homogeneous 
singlet superconductivity-and, perforce as a consequence 
of algebraic consistency, homogeneous triplet superconduc­
tivity. The density wave phenomena are those of charge den­
sity waves and spin density waves (antiferromagnetism)­
within the same algebraic framework it is also possible to 
include ferromagnetic effects. 

The approach we adopt is that of the spectrum-generat­
ing Lie algebra (SGA). Our model will be described by a 
Hamiltonian H given in terms offermion creation and anni­
hilation operators at,., ak '(T' for electrons constituting the 
electron gas in the system, Under suitable approximations, 
which we detail, Hbecomes a sum ofbilinears in these opera­
tors; and so the terms of H generate a compact Lie algebra, 
the SGA of the model. For a model sufficiently general to 
include the physical phenomena noted above, the algebra is 
sue 8). 

The advantages of this algebraic approach are manifold. 
First, the various phenomena are synthesized into a single 
structure in which their relationships are transparent. The 
most striking example of this is the relationship between the 
existence of singlet superconductivity and density waves on 
the one hand, and triplet superconductivity on the other. 3 

Another example is the description of the large number of 
"order operators"-these are operators whose expectations 

a) Permanent address: Faculty of Mathematics, Open University, Milton 
Keynes, MK7 6AA, United Kingdom. 

b) Permanent address: Department of Physics, City College of the City Uni­
versity of New York, New York, New York 10031. 

give the order parameters-which it would otherwise be dif­
ficult to classify. Second, although such a complex system 
does not lend itself easily to explicit calculation, the exis­
tence oflow-dimensional faithful representations (8 X 8 ma­
trices in the case of the full system, smaller matrices in the 
case of subsystems) simplifies explicit calculation of such 
physical quantities as spectra and phase coexistence boun­
daries, as we have previously illustrated in the simpler super­
conductivity-charge density wave sue 4) case,4 as well as se­
lection rules5 for various transition processes. 

Third, this model may be regarded as unifying a variety 
of sub models, obtainable as subalgebras ofsu(8), which de­
scribe interesting physical systems of one or more phases, 
many of which have been previously treated separately in the 
literature. 6 Finally, within the context of mean field theory, 
where our model is firmly situated, finite temperature effects 
may be treated using the thermal Green's function method, 
and problems of self-consistency may also be tackled in this 
manner. We touch upon these questions in the final section 
of this paper. 

II. MODEL HAMILTONIAN 

Our starting Hamiltonian is a conventional sum of con­
tributions from kinetic energy, superconducting, and den­
sity wave terms, thus 

(2.1 ) 

where 

(2.2) 

(2.3 ) 

(2.4 ) 

In the above, ala is the fermion creation operator for an 
electron in the Bloch state labeled by wave vector k with spin 
(J and energy E(k), We have the anticommutation rule 

(2.5) 
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with other anticommutators zero. The BCS parameter 
Ao(k) may be taken complex, as may the density wave cou­
pling constants YI' (k). Here Q=.2kF is the characteristic 
wave vector of antiferromagnetic order, where kF is the Fer­
mi level. We have implicitly summed over the spin indices 
(understood) in H DW , and over the index f-l = 0,1,2,3; we 
include f-l = ° corresponding to a Yo charge-density wave 
coupling, while y; (i = 1,2,3) is the spin-density wave term. 

In principle, the summations in the above terms are over 
all k values. However, we now effect a considerable simplifi­
cation, which leads to a decoupling and eventual algebraic 
solvability, by assuming that our model is quasi-one-dimen­
sional, with no contributions from terms for which Ik I > Q. 
The first two terms (2.2) and (2.3) may then be rearranged 
by use of the identity 

Q kF 
L f(k) = L {f(k) + f( - k) + f(k) + f( - k)}, 
-Q 0 

where k=.k - Q; and a similar reduction of (2.4) leads to 

the model Hamiltonian H = "1.~F=oH(k), where 

H(k) = E(k) (aLaku + a t_ kua _ ku) 

+ E(k)(aluaku + a t_ kua _ ku) 

+Atakla_ k1 +Ata_klakl 

+ Ab*akla_kl + Ab*a_klak1 + H.c. 

+ Yl'ata~f3akf3 + Yl'a t_ ka~f3a _ kf3 + H.c. 
(2.6) 

Here, as throughout the paper, we sum over repeated in­
dices. We allow a k dependence of the BCS singlet gap pa­
rameter Ao, and so write Ao for Ao(k), and Ab for Ao(k). 

We note that [H(k),H(k ')] = ° for k,k 'E[O,kF ] so we 
have decoupled the Hamiltonian into a direct sum. As in 
Ref. 7, where we treated H DW in more detail, we now define 
the set {B;(k)} (i= 1,2, ... ,S) by 

{B j (k)} = {ak l'at_ kl ,ak I ,at_ kl ;akl ,at_ k I ,akl'at_ k I}' 
(2.7) 

From (2.5) we have {BuB J} = 8ij whence the operators Xij 

=.BTBj generate the Lie algebra gl(S) with commutation 
relations [Xij,xkl] = 8jk X a - 8i/Xkj" The Hamiltonian 
H(k) in (2.6) is a linear sum of Hermitian combinations and 
has trace zero since E(k) = E( - k); thereforeH(k) may be 
considered as an element of sue S). The spectrum-generating 
algebra (SGA) ofthe model Hamiltonian H is thus a subal­
gebra 

fB kg(k) C fB kSU(S)(k» 

with each g (k) isomorphic to a fixed Lie algebra g (which we 
shall call the SGA of our model). We shall determine g later; 
we show that the presence of singlet superconductivity and 
spin density waves is sufficient to generate the whole sueS) 
algebra. This very rich rank-7 algebra possesses, in a Cartan 
basis, seven mutually commuting operators, which we inter­
pret as conserved quantitites (above the transition tempera­
tures) that are no longer conserved in the various phases 
present in the model below the appropriate transition tem­
peratures; and 56 other basis elements which are putative 
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order operators, whose expectations are order parameters 
for the corresponding phases. 8 

The bulk of this paper will be devoted to exploiting the 
algebraic consequence of this system of operators. We com­
mence by introducing some notation. Define the Pauli ma­
trices 

70 = (~ ~), 7) = (~ ~), 

72 = (~ ~ i), 73 = (~ ~ J, 
and the 4 X 4 matrices 

S; = ~ 70 X 7;. T; = ~ 7) X7u 

U; =! 72X7U W; =! 73X7;, 

E; =! 7; X70 (i = 1,2,3). 

(2.S) 

The set (2.S) provides a "Nambu basis" for sue 4) (Ref. 5). 
The basis for sueS) that we shall use is given by 

{SX71" TX71" UX71" WX71" EX71" I XT} 

(f-l = 0,1,2,3). (2.9) 

Here I is the 4 X 4 identity matrix. This is effectively a triple 
N ambu representation. The algebra su (S) (k) is generated by 
{"1.ij B ;(k)MijBj (k)} (r = 1, ... ,63), whereMij is one of the 
63 Hermitian matrices defined in (2.9). 

If we take the standard representation of the gl (S) alge­
bra generated by Xij (k) =.B T (k)Bj (k), 

A 

Xij(k) = eij' 

where 

(eij)/m = 8a8jm (i,j,l,m = 1,2, ... ,S), 

then (2.9) is a basis for a representation ofsu(S) (k); we ~all 
consistently denote this representation by a circumflex . In 
this representation the number operator N = "1.N(k), where 

a= r.~ 

(2.10) 

is given by 

N(k) = I X 73' where I is the 4 X 4 unit matrix. 

The spin operator "1.k u(k), where 

u(k) = L (aL~f3akf3 + at_kaUaf3U_kf3 
a.f3 

is given by 

(iT)(k),u2 (k),u3(k») = (E1X73' E 2 X73, E 3X70 )' (2.11) 

(The spin matrices (71' are defined as usual by (71' =.! 71") 
Introduce the operator 

S(k) =...!.- L [aLa ka + at_ kaa - ka 
2 a= 1,1 

- (aLai<a + a t_ kaa _ ka) ] 

represented by 

S(k) = S3X73' 

We may now rewrite the Hamiltonian (2.6) as 
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H(k) =! (e + e')N(k) + (e - e')S(k) 

- AoDo(k) + AbD b (k) + H.c. 

+ Yl'rl' (k) + H.c. (2.13 ) 

In (2.13) we have introduced a scalar, complex supercon­
ducting order operator 

Do(k) = aL at
_ k! + at

_ k 1 aL 
[O'(k), Do(k)] = 0, 

(2.14 ) 

with a similar expression for Db (k) in which kis replaced by 
k. We have also introduced a complex charge-spin density 
wave order operator rl' (k), defined by 

r I' (k) = aka cr:/akf3 + a t_ kacr;,Pa _ kf3' (2.15) 

The Ii = 0 scalar component is the charge density part, 
while the Ii = 1,2,3 vector components refer to the spin den­
sity wave. The real and imaginary parts of rl' (k) are two of 
a quartet of density wave order operators r~a), fully defined 
in Sec. III, which satisfy 

[ r ca)] 0 [ rca)] - . rCa) 0', 0 =, (/f' m - lefmn n , (2.16) 

where efmn is the permutation symbol on l,m,n = 1,2,3, 
a = 1,2,3,4. 

In the representation with basis (2.9) and number and 
spin operators repesented by (2.10) and (2.11), respective­
ly, these order operators are given by 

A-

Do = (E3 + W3) X! (1'1 + i1'2), 

Db = (E3 - W3 )X! (1'1 +i1'2) 

E - Ao 

-Ail' -E 

!(y(l' + 11) 0 

H= 0 - !(r(l' - yt> 

0 0 

0 0 

!(n + iy!) 0 

0 - !(yf + iy!) 

III. THE ORDER OPERATORS 

(2.17 ) 

!(Yo + Y3) 0 

0 -!(YO-Y3) 

E' A' - 0 

A'* - 0 -E' 

!(YI + iY2) 0 

0 - !(YI + iY2) 

0 0 

0 0 

We now analyze the Lie algebra su(8) with basis (2.9). 
This rank-7 algebra has seven Cartan (diagonal) elements 
and 56 off-diagonal elements. If h is a Cartan, e is a typical 
nondiagonal element satisfying the canonical rules 

[h,e] =Ae (A #0), 

we see that in an eigenstate I )of h, (lei) = O. The root vec­
tors e, and linear combinations of such root vectors, are or­
der operators for eigenstates of h. Their expectations are the 
order parameters which vanish in states for which h is a 
conserved operator. The eight Cartan elements for the u(8) 
algebra generated by the B ;Bj of (2.7) may simply be writ­
ten B ;Bi (i = 1, ... ,8); or more physically nKu ' the number 
operator for K,(/ (K = ± k, ± k, (/ = i,!). In terms of the 
basis (2.9), the Cartan elements are 
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and 

{r o,i\,1\,i\} 
= {! (SI - iS2 ) X 1'3' ! (TI + iT2 ) X 1'3' 

! (U I + iU2 ) X 1'3' ! (WI + iW2 ) X 1'o}. (2.18 ) 

We may now rewrite our starting Hamiltonian (2.6) in the 
representation with basis (2.9) as 

H=HKE +Hsc + H SDW + Hcow, (2.19) 

HKE = (e + E') q I X1'3) + (e - E')S3 X 1'3' (2.20) 

Hsc = - (a + a')(E3X 1'1) + (a' - a)( W3 X1'I) 

+ (/3+/3')(E3X1'2) + (/3-/3')(W3X1'2)' 
(2.21 ) 

HSDW = Re YI (TI X1'3) + Re Y2( UI XYJ) 

+ Re Y3( WI X 1'0) - 1m YI (TZ X1'3) 

(2.23 ) 

In (2.21) Ao = a + i/3, Ab = a' + i/3'. The expressions 
(2.22) and (2.23) give the spin density wave and charge 
density wave terms, respectively. The operators in (2.20)­
(2.23) are only part of a full system of order operators for 
this model. We define and examine the full system of order 
operators in the next section. In the meanwhile we write 
down for reference the matrix for the Hamiltonian (2.19) in 
the basis (2.9): 

0 0 !(YI - iyz) 

0 0 0 

!(yf - iy!) 0 0 

0 - !(yf - iy!) 0 

E Ao !(Yo - Y3) 

A* 0 -E 0 

!(y(l' - yt> 0 e' 

0 -!(Yil'+yt> A'* 0 

N = I X 1'3' P = 2S3X1'o, S = S3 X 1'3' 

F= 2E3X1'o (= 20-3), 

E3X1'3' W3 X 1'0' W3 X 1'3' 

0 

- !(YI - iY2) 

0 

0 

0 

- !(Yo + Y3) 

A' 0 

-E' 

(3.1 ) 

We have already introduced the number operator N, the dif­
ference of k,k number S=! (Nk - N k ), and the third com­
ponent of spin (/3 in Sec. II. (This last plays t~e role of a 
ferromagnetic order parameter F.) The matrix P represents 
the momentum operator. [In the case ofu( 8) we would have 
additionally the unit matrix I X 1'0'] 

We now illustrate a useful algebraic method for obtain­
ing the order operators Qi corresponding to a given quantum 
observable h. The operator h is assumed to be one of the 
operators conserved in the lower symmetry phase; we take it 
to be one of the elements of the Cartan subalgebra, and there­
fore diagonal in our representation. From the above re-
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marks, the Qi are the elements ofthe Cartan basis that do not 
commute with it. Defining the centralizer of it as 

CSU (8) (it) = {xEsu(8): [x,it] = O}, 

we see that the set of order operators we seek is precisely the 
complement in sue 8) of this centralizer, C :u(8) (it). In addi­
tion, one may readily obtain such centralizers by the follow­
ing method9

: Let the matrix M in the defining representation 
of the group U( n) be diagonal, with the eigenvalue multi-
plicities m\,m2, ... ,ms , where m\ + m 2 + ... + ms = n. The 
little group of Mis V(m\) ® V(m 2) ® ... ® U(ms )' Trans-
lating this result to the present Lie algebra context, if the 
diagonal matrix h has eigenvalues with multiplicities 
m\,m2, ... ,ms , where m\ + m 2 + ... + ms = 8, then 

Cu (8) (it) = u(m\) E!) u(m2 ) E!) '" ® u(ms )' 

For the case of su ( 8) the corresponding result is 

Csu (8) (it) = s(u(m\) E!)'" E!)u(m s ») 

-u(1) E!)su(m\) E!) ... E!)su(ms )' 

As an example, take for our quantum observable h the num­
ber operator N. This is represented by the matrix N = I X 73 

[Eq. (2.10)]; we have m\ = m 2 = 4, and so 
A 

Csu (8) (N) = u(1) E!) sue 4) E!) sue 4). 

Taking the complemeI}.!, we find by this means 32 N-noncon­
serving operators C' (N), which split into 16 superconduct­
ing D operators C' (N) n C(P), and 16 anomalous A opera­
tors C' (il) n c' (P). There are 16 density-wave r operators 

A A 

C(N) n c' ( P), and finally eight ferromagnetic F operators 
A X A 

C(N) n C(P) n c' (F). The first three sets of operators di-
vide naturally into scalar plus vector quartets as follows: 

superconducting order operators: 

D~l) = (E3 X7\, -E2X7\, E\X7\, !IX72), 

D ~2) = (E3X72' - E 2X72' E\ X 72, ! I X7\), 

D ~3) = ( - W3X7\, U3X7\, - T3X7\, - S3 X72)' 

D~4) = (- W3X72, U3X72, - T3X72' S3 X7\); 

charge-spin density wave operators: 

f~l) = (-S2X73' T\X73, U\X73, W\X70), 

f~2) = (S\X73, T2X73, U2X73, W2X70), 

f~3) = (S\ X 7 o, T2X70' U2X70, W2X73), 

f~4) = (-S2X70' T\X70, U\X70, W\X73); 

anomalous-order operators: 

A~\) = (W2X72, - U\X7\, T\X7\, S\X72), 
A 

A~2) = (W\X7\, - U2X72' T2 X 72, -S2X7\), 

A~3)=(-W2X71> -U\X72, T\X72, -S\X7\), 

A~4) = (- W\X72' - U2X7\, T2X7\, S2 X72); 

ferromagnetic order parameters: 

(3.2) 

(3.3 ) 

(3.4 ) 

(3.5) 

are simply the off-diagonal elements of the ferromagnetic 
subalgebra which is their closure, namely 
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(3.6) 

This algebra is the su(2) E!) su(2) E!) su(2) E!) su(2) generated 
by 

{alO"ak' at_ k O"a _ k' afO"a" , at _" O"a _ d, 
four independent spin algebras. Corresponding to four lin­
early independent combinations of these spins, we may de­
fine the operators 0" from (2.11) and 0"(1), 0"(2), 0"(3) from 
(5.10) below. 

IV. DISCRETE SYMMETRIES 

A. Parity inversion 1T 

This is defined by 1Taka 1Tt = a _ ka' where 1T is a unitary, 
linear operator. Acting on the B basis (2.7) we have 

1T(BI>B2,B3,B4)1Tt = B I.B loB LB;). 

We may represent this action as an 8 X 8 matrix 

1TBi1Tt = L AijB I, 
j 

where 

A = 7\ X70X7\. 

The action on a bilinear inB, ~ij mijB ;Bj (with tr m = 0) is 
easily calculated to be 

1T(B t mB)1Tt = - B tAmAB, 

where m is the transpose of the 8 X 8 matrix m. Thus in the 
8 X 8 representation of Sec. II (2' 8 et seq.) parity inversion 
corresponds to 

m- -AmA. 

B. Time inversion Y 

This is defined by YakaYf = ~o' (i72)aa,a -ko" where 
Y is a unitary, antilinear operator. Acting on the B basis of 
(2.7) we have 

Y(B\,B2,B3,B4;B5,B6,B7,Bs)Yf 

= (B i, - B T ,B !, - B I; - B l,B 1, - B I ,B ~ ). 

We may represent this action as an 8 X 8 matrix, 

YBiYf = L TijB I, 
j 

where 

T= i73X70X72' 

The action on a bilinear 2-.mijB ;Bj (with tr m = 0) is readily 
evaluated to give 

Y(BtmB)Yf = BtTmtTB. 

In our 8 X 8 representation, time reversal corresponds to 

m-->TmtT. 

C. Charge conjugation C(j 

From the action tPa (x) - C(j tPa (x) C(Jt = tP~ (x), we de­
fine charge conjugation to act on the electron destruction 
operator aka by yg aka C(Jt = at_ ka' where C(J is a unitary, 
linear operator. On the B basis, we have yg (B\,B2,B3,B4) ygt 
= (B6,B5,B8,B7) , whence 
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TABLE I. Parity, time reversal, and charge conjugation properties. 

Scalars 

D{l) 
a 

D(2) 
a 

D(3) 
a D!,4) r(l) 

a 
r(2) 

a 
r(3) 

0 

1T + + + + + 
.Y + + + + 
cr; + + + 

Vectors 

D(ll D(2) D(3) D(4) r(() r(2) r(3) r (4) 

1T + + 
.Y + + + + 

where A is the same matrix as in part (i). The action on a 
bilinear in B j is therefore given by 

C(J (B tmB) C(Jt = B t(AmA )B; 

in our representation the effective action of charge conjuga­
tion corresponds to 

m-AmA. 

We append a table of the discrete transformation prop­
erties of the 15 scalars and 48 vectors of this model (see 
Table I). 

V. COMMUTATORS 

In (3.2), (3.3), and (3.4), writing X,u = D ~a>, A ~a>, or 
r~a), the zero-component operators are the scalar quantities 
satisfying 

(5.1 ) 

Thus Dba) (a = 1,2,3,4) are the ordinary superconducting 
singlet order operators occurring in the (2.22), while the 
rba

) are the charge-density order operators, of which the 
two even-time-reversal scalars appear in (2.4). The triplet 
operators satisfy 

[uj .%;] =ieijkXk, (5.2) 

[Xj.%;]=ieijkuk' (5.3) 

so that, for example, the rja) are spin-density order opera­
tors, of which the two odd-time-reversal triplets appear in 
(2.23). The operators in (3.2)-(3.4) satisfy 

(5.4 ) 

and 

(5.5 ) 

with two similar sets of commutators obtained by cyclic per­
mutation. 

The N,P, and S operators (3.1) move one quartet of 
order operators to the next, for example, 

[!N,D~l)] = iD2), [!N,D~3)] =iD~4), 

[S,D ~2)] = iD 2>' [S,D ~4)] = iD ~l). 
( 5.6) 

The analogous commutators for r~a) and A ~a) are 
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r(4) 
0 

+ 

+ 

A!,l) A (2) 
a 

A (3) 
0 

A (4) 
a N S P 

+ + + + 
+ + + + 

+ + + 

A(l) A(2) A(3) A(4) 
IT cr(l) 0'(2) (T(3) 

+ + + + 
+ + + + 

(5.7) 

[ 1 N,A (I)] = iA (3) 
2,u ,u , [ 1 N,A (4)] = iA (2) 

2,u ,u' 

U P,A ~I)] = iA ~4). 
(5.8 ) 

[ 1 P,A (3)] = iA (2) 
2,u ,u , 

The singlet and triplet components of the order operators are 
related as follows: 

[D ba) ,D(a)] = i(J'(I), 

[rba>,r(a)] = i(J'(2), 

[Abu),A(a)] =i(J'(3) (no sum over a). 

These pseudospin triplets are represented by 

0.(I) = (E I X To, E 2 XTo, E 3 XT3), 

a(2) = (T3XTo, U3XTo, W3XT3), 

a(3) = (- T3XT3' - U3XT3, - W3XTo)' 

(5.9) 

( 5.10) 

These triplets have the following commutation relations: 

[
(a) (a)] _ • 

U j 'Uj - leijk Uk' 

[
(a)] • (a) 

Uj,Uj = leijkuk , ( 5.11) 

[ uta) U«(3)] = - ie .. 
k

ea(3YUk(Y) 
l 'J IJ 

(i,j,k; a,/3,y = 1,2,3). 

The uja) connect triplet components with singlet, for exam­
ple: 

and (5.12 ) 

[(J'(I),D(a)] = iD6a), 

with similar relations for r~a) and A ~a). 

VI. THE SPECTRUM GENERATING ALGEBRA 
We may write our starting Hamiltonian (2.6) and 

(2.19 )-( 2.23) in terms of the order operators (3.2) and 
(3.3) as 

if =! (E + E')N + (E - E')S + aba)Dba) 
+ y(l)r(l) + y(2)r(2) 

,u,u ,u,u 

(with summation over J..l and u), where 

{ab I) ,ab2 ) ,ab3 ) ,ab4 )} 

=:={ - Re(ao + ab ),Im(ao,ab), 
Re(ao - ab ),Im(ab - a o)} 
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and 

r~1) = {1m ro,Re y}, r~2l = {Re ro' - 1m y}. (6.2) 

From the form of the Hamiltonian given in (6.1), using the 
commutation relations of the previous section, it is a 
straightforward matter to determine the spectrum generat­
ing algebra g for this system; that is, the algebra generated by 
the elements of (6.1). Since these are all elements of su (8), 
the SGA must be a subalgebra of su(8). In fact, we now 
demonstrate that the algebraic closure g of the operators 
occurring in (6.1 ) is all of su (8). This has the consequence 
that all of the 63 operators of the theory will appear in the 
time evolution of the order operators already present in the 
Hamiltonian (6.1). Whether they give rise to physical 
phases will depend on an evaluation of their expectations in 
the eigenstates of ( 6.1) or on a self-consistent analysis. 

The generation of all su (8), for example, from (6.1) 
may be seen in the following stages. 

(i) Since r~l),r~2lEH and SEH, using (5.7) we have 
that all r~a)Eg. 

(ii) Also [rjl),ry)] = ieijkO'k' so aEg. 

(iii) Evaluating [rjl),rtl] =ieijkO'il ) givesa(1)Eg. 
(iv) From D 6a),a(1lEg, using (5.12) gives all D ~a)Eg. 
(v) Using (5.4) and (5.5) weseethatD~al,r~a) gener-

ateA~a). 

(vi) As in (iii) [Djl),D?)]=ieijkO'i3) and 
[A j I),A y)] = ieijk O'i2) imply that all a(a)Eg. The 60 opera­
tors D ~a) ,r~al,A ~a) ,a(a) ,a together with the 3 remaining 
Cartan operators S, N, and P= (2Ii) [r~\),r~2)] exhaust 
su(8). 

We may note at this point that the commutation relation 

[D63 ),r(2)] = _iA(3) 

generates an odd-parity odd-time inversion anomalous tri­
plet term from singlet superconductivity (T = - 1) and a 
spin-density term (T = - 1). The production of such an 
anomalous term has been previously noted in the litera­
ture. \0 

However, even more striking is the generation of con­
ventional (Q = 0) triplet superconductivity from the inter­
action of singlet superconductivity and density waves. A 
simplified modee exhibiting this phenomenon may be ob­
tained from (6.1) by choosing ao = a~ (real) and r~ 2) = 0 
in (6.2). It is also sufficient to choose axes so that only 
y(2)-rf). It may be shown that the SGA of this submodel is 
soC 4) Ell soC 4). The even-time-reversal triplet superconduc­
tivity order operator D j3) is generated as a second-order 
effect of the interaction between the.singlet superconductivi­
ty, and the charge and spin density waves; it has nonzero 
expectation in the ground state of the Hamiltonian and may 
therefore be considered as an observable phase.3 

VII. SUBALGEBRAS AND SUBMODELS 

It is a fairly straightforward matter to obtain the spec­
trum generating algebras corresponding to submodels of the 
Hamiltonian (6.1). These algebras are generated by subsets 
of the 63 su(8) operators, (3.1)-(3.5). The components of 
the algebras generated by the order operator terms may most 
easily be calculated by taking centralizers; to these one must 
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add the other terms of the Hamiltonian (such as kinetic en­
ergy N,S). We illustrate this method by obtaining the spec­
trum generating algebras of some previously noted submo­
dels. 

A. Superconducting models 

The order operators for superconducting systems are 
defined as those which conserve momentum, but do not con­
serve number. As in Sec. III, we obtain the set {D ~a)}, repre­
sented by the matrices (3.2). These may be succinctly writ­
ten as 

(7.1 ) 

and in this form we see that they generate the subalgebra 

{E,T3,U3,W3} X 7/L U{S3,I}XT, (7.2) 

which is isomorphic to su(4) EIlsu(4). This algebra is the 
semisimple component of the centralizer of momentum P in 
su(8); 

Csu(8) (P)-u(1) EIlsu(4) EIlsu(4). 

As this su ( 4) Ell su ( 4) algebra also contains the appropriate 
kinetic energy terms Nand S, this is the spectrum generating 
algebra corresponding to a two-component (k,k) supercon­
ducting fermion system. Each su ( 4) corresponds to a mixed 
triplet-singlet superconductor as previously obtainedll-
one for k and the other for k. This may be ma.de explicit as 
follows: define 

7r =! (70 +73), 7j =! (70-73)' 

Then the two commuting su ( 4) algebras are 

k component: sU(4)-{TX7r X7/L' 70X7r XT}, 
(7.3) 

k component: su(4) -{TX7j X7/L' 70X7j XT}. 

Conventional singlet superconductivity may be obtained as 
the centralizer of the spin operator in either of the above 
sue 4) models, thus 

-so(3), (7.4 ) 

which is the spectrum-generating algebra of the singlet su­
perconductor. In the notation of the previous section, the 
so (3) (k) Ell so (3 ) 0<) singlet subalgebra has basis 
{N,S,D 6a)}. The spin-I, pure triplet case corresponds to the 
so(5)(k) EIlso(5)(I<) subalgebra with basis {N,S,D(a), 
a,a(3)}, in the notation of the previous section. Each soC 5) 
algebra is also the SGA for superfluid He 111,12,13 or a spin-l 
superconductor. 

B. Density wave models 

The order operators for density wave systems are de­
fined as those which conserve number, but do not conserve 
momentum. As in Sec. III, we obtain the set {r~a)}, repre­
sented by the matrices (3.3). We may rewrite this set as 

7/L X {71,72} X {70,73}. (7.5) 

As in (i) above, under commutation these generate 

TX7/L X {rO,73} U70X1'X{70,73}' (7.6) 

which is again isomorphic to an su(4) EIlsu(4) algebra. To 
obtain the spectrum generating algebra (SGA) of the den-
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sity wave Hamiltonian containing the r~a) order operators 
we must adjoin the number operator N, which is not present 
in (7.6). Thus the SGA for a mixed spin and charge density 
wave model is u (1) EB su (4) EB su ( 4), as previously ob­
tained. 7 This algebra may be most simply obtained as the 
centralizer of the number operator N in su (8), 

C.u (8) (N) -u(1) EB sue 4) EB sue 4). (7.7) 

The centralizer of spin a in (7.7) gives the CDW algebra 
generated by {p,S,N,ri>a)} which is u(l) EBso(4); we have 
previously obtained this directly from a model charge-den­
sity wave Hamiltonian. 14 The spin-l part of (7.7), the pure 
spin density wave algebra, is generated by the nonspin con­
serving elements of (7.5), and has for basis {p,S,N,r(al, 
a,a(J)}. This is the algebra u (1) EB so (5) EB SO (5), as calcu­
lated previously from a specific density wave Hamiltonian. 7 

Ifwe consider only the parity-invariant elements of the 
above subalgebras, where the parity operator 1T is as defined 
in Sec. IV A, then we obtain subalgebras as follows: 

CDW {N,S,r62),rb4)}-u(2), 
(7.8) 

SDW {N,s,r(J),r(3),a}-u(1) EB so(5). 

These are the spectrum generating algebras for the model 
Hamiltonian (6.1) in the absence of superconductivity tak­
ing the coupling constants (6.2) real, and considering pure 
scalar and pure vector, respectively. 

C. Singlet model 

We obtain a spin-O model by taking the centralizer of the 
spin operator a in our su (8) algebra; thus 

C'U (8) (a) -su(4) 

with basis 

{I X 1"3' SX1"o, SX1"3' WX1"I,WX1"2, E3 X1"I' E3 X1"2}' 
(7.9) 

This su ( 4) is isomorphic to that obtained previously for the 
spectrum generating algebra of a model Hamiltonian exhi­
biting the coexistence of superconductivity and charge den­
sity waves.4 To see this isomorphism more readily, write the 
set (7.9) in the form 

(7.10) 

[where in (7.10) we have actually considered CU (8) (a) 
- u ( 4) for simplicity; we can always discard the central ele­
ment 1"0 X 1"0 X 1"0 later]. The set (7.10) is clearly isomorphic 
to 

{1"0 X 1"0' 1"0 X 1"3' 1"3 X 1"1' 1"3 X 1"2} X 1"1" 

which in turn is isomorphic to 1"1' X 1"1" This is the set of 15 
generations {E,S,T,U,W} of sue 4) (together with the unit 
element 1"0 X 1"0) of Ref. 4. 

D. Spin models 

The eight spin order operators (3.5) generate the alge­
bra with basis {a(a)} (a = 1,2,3,4, a(4)=a); as remarked in 
Sec. III this is equivalent to fourindependent sue 2) algebras. 
We may obtain the spectrum generating algebras for spin 
model Hamiltonians by adjoining the kinetic energy terms N 
and S. For example, the even parity spins give an algebra 
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{N,S,a,a(3)}. This splits up into {1"oX 1"r X 1"3' 1"1 X 1"r X 1"3' 
1"2X1"r X1"3' 1"3 X 1"r X1"0}-u(2), and {1"O X1"1 X 1"3' 
1"1 X 1"1 X 1"3' 1"2 X 1"1 X 1"3' 1"3 X 1"1 X 1"0} - u(2); two indepen­
dent u(2) spin models, for the k and k systems respectively. 

We show the descent from su ( 8 ) to the subgroups corre­
sponding to models (A)-(D) in Fig. I. 

VIII. GENERAL HAMILTONIAN AND SELF­
CONSISTENCY 

We may now write down the most general Hamiltonian 
for the coexistence of superconductivity (singlet and triplet) 
and density waves (charge and spin) within the context of 
our su ( 8) algebra. This will generate the expression (6.1), 
thus 

H= IH(k), 
k 

H(k) =~ (E+E')N+ (E-E')S+pP 

+11(p)D(p) 
I' I' (superconducting terms) 

+ y(p)r(p) 
I' I' 

(density waves) 

+ a;:)A;:) (anomalous terms) 

+ H~~;'a(P) (magnetic field terms). (8.1 ) 

We sum over repeated indices in (8.1): fl = 0,1,2,3 and 
p = 1,2,3,4. We have written a(4)=a for conciseness; and 
have included a momentum term pP, where P = 2S3 X 1"0' in 
order to attain the full complement of 63 operators. The 
magnetic field terms in (8.1) enable calculations of suscepti­
bilities, as has been carried out for the SDW subalgebra of 
su(8) (Ref. 7). 

The expression (8.1) has the virtue of explicitness; how­
ever, a more concise, if less transparent, form of the mean­
field Hamiltonian H is given by 

H = L mij (k)Xij (k) (8.2) 
k 

(summation over repeated indices i,j) in terms of the opera­
torsXij (k) =B ;(k)Bj (k) introduced in Sec. II. These satis­
fy the commutation relations 

[Xij(k),Xrs(k')] = Dkk,(DjrXis(k) -DiSXrj(k»). (8.3) 

We may consider the mean-field Hamiltonian (8.2) to 
have arisen from a pairing Hamiltonian H red in the following 
way. We require that H red conserve number N, momentum 
P, etc., in fact, all seven Cartan operators that are broken in 
the passage to the lower symmetry, mean-field system. 
These operators have the form LkA. i (k)Xii (k) 
(i = 1,2, ... ,8) (adding in the identity) and it is straightfor­
ward to verify that the Hamiltonian 

Hred=+ L gij(k,k')Xij(k)Xij(k')t (8.4) 
iJ,k,k' 

conserves these quantities. Thus (8.4) is a suitable choice of 
pairing Hamiltonian. If we choose 

gij(k,k)=2Ei (k)Dij (8.5) 

and note that [Xii (k) ] 2 = Xii (k), then the kinetic energy 
terms are also included in (8.4). With this choice the cou­
pling constants satisfy 
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C(P) 
Center 

SU (8) 
I 

~ 
SU ( 4 ) x SU (4 ) 
( supe~fluid) 

C (CJ ) U(l) x SU(4) x SU(4) 
(Density Waves) 

C«(11 
SU(4) 

(CDW-SC) / 

C(P) / ce,7 ~ 
50(5) x SO(5) so ( 3) x SO ( 3) 

(2 x SSC) 
U (1) x SO (4) 
(Complex CDW) 

50(5) 
(TSC) 

SO (3) 
(SSC) 

1T 

U (2) 
(COW) 

Notation: SSC = Singlet Superconductor 
TSC = Triplet Superconductor 
COW = Charge Density Waves 
SOW = Spin Density Waves 

gij(k,k') =gji(k',k). ( 8.6) 

In addition, from the Hermiticity of H red we have 

gt(k,k') =gij(k',k). (8.7) 

Now define 

mij(k) = (('frgij(k,k')Xij(k'))) Ci==/=j) (8.8 ) 

(no summation over ij), where « » refers to a thermal 
average with respect to the pairing Hamiltonian (8.4), 

«Q» = tr{exp ( - /3H red )Q}/tr exp( _ /3Hred). 
(8.9) 

We now apply a Hartree-Fock linearization to Hred, and 
obtain as an approximation the mean-field form (8.2), using 
relations (8.6) and (8.7). We now introduce the thermal 
Green's functions, 15.16 and 

(8.10) 

where, at the level of mean-field theory, the thermal average 
is with respect to the mean-field Hamiltonian H of (8.2), as 
is the Heisenberg 7 evolution 

Bi (k,7) = exp(H7)Bi (k)exp( - H7). 

Here Tr is the 7-ordering operator, so that 

(8.11 ) 
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U(l) x 50(5) x 50(5) (comr SnW) 

U (1) x SO (5) 
(SDW) 

FIG. I. Subgroup descent from SU(8). 

Writing the conventional UJ transform of the Green's func­
tion, and replacing ~ k' in (8.8) by the integral, we obtain the 
self-consistent equation 

(8.12 ) 

In mean-field approximation the Green's function is expli­
citly known I6

•
17

; in matrix form 

(8.13 ) 

where H(k) is the 8X8 representation of (8.2), H(k)ij 
=mij.(k). Thus Eq. (8.12) becomes 

1 J d 3
k' mij (k) = - I --gij(k,k ')tr[ ejiG(k,UJn )], 

/3 n (21T)3 
(8.14 ) 

where eij is the same matrix as was introduced in Sec. II. A 
slightly more conventional form of (8.14) is obtained by 
using the Hamiltonian (8.1) in the triple-Nambu represen­
tation (2.9), thus-for simplicity-taking g ij (k,k ') = - g 
Ci=lj) independent of k,k' 

g J d 3
k mabc = - - I --3 tr[ (7a X7b X7c )G(k,UJn )], 

/3 n (21T) 
(8.15 ) 

where we have writtenH = ~mabc7a X7b X7c' Thus, for ex­
ample, using (2.8) and (3.2) to determine the coefficient 
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a~/) of D 61
) in (8.1), and taking a = ao = ab real in (6.2) 

we have 

a self-consistent equation for the singlet superconducting 
gap in this formalism. 

IX. CONCLUSIONS 

Starting with the simple model Hamiltonian (2.1) of 
Sec. II, we are led by algebraic closure ofthe operators there­
in, to the general Hamiltonian of (8.1). This new system 
includes many new phenomena not present in the original 
system, involving as it does 63 parameters against the origi­
nal 14. Two questions concerning the algebraically genera­
ted operators arise naturally: (i) Is it really necessary to 
include them in the theory?; and (ii) Do they give rise to 
physically observable phenomena? The answer to (i) is that 
even if the new operators are not present in the original 
Hamiltonian, they will be generated by the time evolution of 
the dynamics acting on the operators already present; and so 
they must be included for completeness. The physical detec­
tion of the corresponding order parameters will depend on 
their not vanishing in the ground state of the system; this 
requires diagonalization of the Hamiltonian. This calcula­
tion has been carried out for a simplified so( 4) ® so( 4) ver­
sion3 of the complete su( 8) model, where it was found that a 
new operator (triplet Q = 0 superconductor) not present in 
the original Hamiltonian. 18 These questions may also be ex­
amined by conventional self-consistent methods; and we 
sketched this approach in Sec. VIII. 
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Separability of the Killing-Maxwell system underlying the generalized 
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The conceet of a Killing-Maxwell system may b~ defined by the relation A[I';v];P 

= (41T/3)j[l'gv]' In s~ch a system the one-form!1' is interpretable as the four-potential of an 
electromagnetic field Fl'v' whose source currentj I' is an ordinary Killing vector. Such a system 
determines a canonically associated duality class of source-free electromagnetic fields, its own 
dual being a Killing-Yano tensor, such as was found by Penrose [Ann. N.Y. Acad. Sci. 224, 
125 (1973)] (with Floyd) to underlie the generalized angular momentum conservation law in 
the Kerr black hole metrics, the existence of the Killing-Yano tensor being also a sufficient 
condition for that of the Killing-Maxwell system. In the Kerr pure vacuum metric and more 
generally in the Kerr-Newman metrics for which a member of the associated family of source­
free fields is coupled in gravitationally, it is shown that the gauge of the Killing-Maxwell one­
form may be chosen so that it is expressible (in the standard Boyer-Lindquist coordinates) by 
!(a2 cos 2 () - ,-'l)dt + !a(,-'l - a2 )sin2 

() df/J, the corresponding source current being just (41T/ 
3) (a fat). It is found that this one-form (like that of the standard four-potential for the 
associated source-free field) satisfies the special requirement for separability of the 
corresponding coupled charged (scalar or Dirac spinor) wave equations. 

I. INTRODUCTION 

Although it is well known that the charged black hole 
uniqueness and no hair theorems l-7 allow only two electro­
magnetic degrees of freedom (or just one if a magnetic mon­
opole moment is deemed to be physically unrealistic) for 
regular electromagnetic perturbations that are source-free 
and asymptotically vanishing, the dropping of these latter 
restrictions permits one to envisage many other possibilities. 
Among these, one particular example is specially singled out 
(if not for any obvious astrophysical relevance, at least for its 
remarkable mathematical properties), namely what we shall 
refer to as the Killing-Maxwell field. It is demonstrated in 
this paper that if this field is taken seriously, in the sense of 
being considered to act in the usual way on charged scalar or 
spinor fields and discrete classical particles on the black hole 
background, then the resulting coupled systems have the 
same kind of very special separability properties as have al­
ready been found, respectively, B-IO when such charged fields 
and particles are coupled to the familiar source-free electro­
magnetic perturbations allowed by the no hair theorems. 

The existence of a Killing-Maxwell system in the sense 
to be defined below is an equivalent (necessary and suffi­
cient) condition to the existence-in four dimensions-of a 
second degree Killing-Yano tensor, 

IAI' = irAI' l' IA(I';P) = 0 (1.1) 
(using a semicolon for covariant differentiation, with square 
and round brackets for symmetrization and antisymmetriza­
tion of tensorindices). It was the culmination of a systematic 
attempt (using two-spinor methods) by several co­
workersIl-

14 to obtain (from the Weyl tensor degeneracy 
property that was the basis of Kerr's original discovery of his 
metric l5 ) a simple underlying reason for the remarkable in­
tegrability properties of so many kinds of systems in the Kerr 

(and Kerr-Newman I6 ) black hole metricsB,IO,17-21 that the 
existence of such a tensor in these metrics was first brought 
to light by Penrose22 (with Floyd). Much further work (in­
cluding the use of a Debever-type bivector formalism23for 
transcription of earlier two-spinor results into equivalent but 
more widely readable tensorial form) has explored the gen­
eral properties of such systems, essentially confirming that 
the remarkable properties just referred to can indeed be con­
sidered as automatic consequences of ( 1.1 ). A recent sum­
mary and guide to many relevant references, of which only a 
sample can be mentioned here,24-3o has been given by Kam­
ran and Marck. 31 This body of work together with earlier 
resultsB soon made it clear that the existence of a (nonzero) 
solution of (1.1) is by itself sufficient to characterize the 
Kerr (or Kerr-Newman) solution uniquely among asymp­
totically flat pure vacuum Einstein (or source-free Einstein­
Maxwell) solutions (and likewise for the author's asymp­
totically de Sitter black hole solutions 2,B,32_though it re­
mains a teasing mystery why the solutions of the (global) 
black hole problem should turn out to belong to this (local­
ly) privileged class. 

We start by collecting some essential conclusions that 
can be drawn directly from ( 1.1) (without recourse to Ein­
stein or any other equations) by straightforward tensor anal­
ysis. Among the most basic of these results is the existence of 
an ordinary (symmetric) Killing tensor (whose presence in 
the case of the Kerr solutions was directly implied by the 
original discoverylO of a quadratic generalized angular mo­
mentum constant of the motion) 

aAI' =1;.pi,,1' , a (AI';p) =0, (1.2) 

together with the existence of what we shall refer to as the 
primary and the secondary killing vector (giving rise to linear 
constants of motion, interpretable as linear combinations of 
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energy and axial angular momentum), the first defined (us­
ing the alternating tensor) as the dual of the (necessarily 
antisymmetric) covariant derivative of the Killing-Yano 
tensor, 

~ = (1!3!)€"l"po-fI"P;o-' k u.;I") = 0, 

and the second given in terms of the first by 

(1.3) 

k"=aAPkp' h(A;I") =0. (1.4) 

Furthermore, as well as having the Killing vector property 
of generating symmetries of the metric, gA/-,' these two vector 
fields also generate symmetries of the Killing-Y ano tensor 
itself (and hence of the system as a whole, which entails in 
particular that they must commute) in the sense that the Lie 
derivatives of the Killing-Yano tensor (and hence of any­
thing constructed directly from it) with respect to each of 
these vectors must vanish. (The primary Killing vector has 
the additional special property that the corresponding co­
variant derivatives along it must also vanish.) 

II. THE CONCEPT OF A KILLING-MAXWELL SYSTEM 

The basic defining equation of what we refer to hence­
forth as a Killing-Maxwell system may be taken to be 

A A 

All";V];p = (41T13)jll"gv]p' (2.1) 
A 

where A I" is a four:potential one-form, associated with a 
four-current vector j /-', and g/-,v is the metric of the back­
ground space-time (and where we have introduced a cir­
cumflex to distinguish quantities pertaining to the Killing­
Maxwell field from the analogous quantities pertaining to 
the closely related source-free Maxwell field to be mentioned 
below). Such a system evidently satisfies the (much less 
highly restrictive) ordinary Maxwell equations for the cor­
responding electromagnetic field tensor 

A A 

F/-,v =2A[v;l"] (2.2) 

since the contraction of (2.1) leads directly to the source 
equation 

A A 

FP/-';p = 41Tj /-' . (2.3) 

By straightforward tensor algebra and the use of the Max­
well-Faraday integrability condition for (2.2), 

A 

Fl/-'v;p] = 0, (2.4 ) 

it can easily be checked that the systems ( 1.1) and (2.1) are 
equivalent (modulo gauge transformations in the latter) 
since one can be constructed from the other and vice versa by 
the simple duality relation 

-" A 

f/-'v = *Fl"v =~c/-'vpo- Fpo-' (2.5 ) 

which evidently entails that the current is to be identified, 
modulo a rationalization factor, with the primary Killing 
vector: 

k/-' = (41T13)]/-'. (2.6) 
For many purposes it is convenient to work with the 

corresponding complex self-dual Killing-Maxwell Yano 
tensor 

+ FA/-' = FAA/-' + if A/-,' (2.7) 

Using the fact that by (2.1) its contraction with the primary 
Killing vector is a pure gradient, 
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A A A 

kP+F = -l(+F +Fo-P) (2.8) PI" g po- .1'" 

it is straightforward to check that one can construct a new 
(complex) proportionally related self-dual field of the form 

A 

+ FAI" = Cs- 3 + FA/-' , (2.9) 

which will satisfy the full set of source-free Maxwell equa­
tions, whose complex form is 

+F/-,P;p = 0, 

for an arbitrary value of the complex (charge) constant C, 
provided that s is taken to be the scalar field given in terms of 
the scalar invariants of the Killing-Maxwell field by 

4s2 = +Ppo- +p<7P. (2.10) 
The fact, mentioned above, that the KiIIing-Yano ten­

sor and hence also the Killing-Maxwell system (not to men­
tion the associated source-free field that has just been con­
structed) will be in variant under the action generated by the 
primary Killing vector can at this stage be seen directly by 
combining the gradient property (2.8) with the condition 
[obtained by contracting the Killing vector with the dual of 
its defining relation (1.3)], which leads to a pair of equa­
tions 

FAI";PkP =0, 2FplA k/-,];p =0 (2.1l) 

which add up to the condition that the Lie derivative with 
respect to k/-' vanishes. For the secondary Killing vector h/-' , 
we do not have analogs of the separate equations (2.11) but 
we can nevertheless obtain the combination expressing the 
corresponding invariance condition, 

PA/-,;phP +iFplAh/-,];p =0, (2.12) 

from (2.4), using the fact that the imaginary (magnetic) 
part of (2.8) implies a corresponding real (electric but not 
magnetic) gradient property for the effective electric (but 
not the magnetic) field as defined with respect to the second­
ary Killing vector: 

hPFp/-, = - iz{(Fpo-fo-p )2},i-'" (2.13) 

We can use (2.12) together with (1.3) to see that the Killing 
bivector 2k lA hI"] has a dual two-form given by 

CAI"Po-kP hO- = 2i;,[A h/-,];p, 

which enables us to derive the equations 

h[A;/-,kpho-J = 0, k[A;/-,kpho-J = 0, 

(2.14) 

(2.15 ) 

of which the first is an obvious consequence directly of 
(2.15), while the second can be obtained from (2.11), which 
evidently entails a formally identical pair of equations with 
fA/-' in place of PA/-' . The same considerations also, respective­
ly, imply 

(2.16 ) 

It can be seen that (2.15) and (2.16) are the same circularity 
conditions as those deduced from the generalized Papape­
trou theorem in the black hole problem 2,33 from quite a dif­
ferent starting point (involving Einstein curvature equations 
and global boundary conditions) instead of the very simple 
equations (1.1) or equivalently (2.1), which is all that we 
have assumed here. In particular (2.15) is interpretable as 
the Frobenius integrability condition for the two-surface ele-
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ments orthogonal to the Killing bivector to be themselves 
two-surface forming. 

III. THE KILLING-MAXWELL ONE-FORM 

We have so far mainly been collecting results that (al­
though rather dispersed about the literature quoted above, 
and derived by perhaps more devious routes and in more 
specialized notation than the ordinary tensor calculus used 
here) are nevertheless for the most part, in principle, "well," 
albeit not "widely," known by now. However, we shall now 
concentrate our attention on what is in a sense the most 
fundamental element of all in the foregoing tree of relation­
ships, which does not yet seem to have had the attention it 
deserves (or even to have been considered explicitly at all), 
namely what we have dubbed as the Killing-Maxwell one­
form, AJ-L' Once it has been specified (assuming that the 
metric tensor is also known) all the other quantities can be 
constructed by successive differentiations (the Killing­
Yano tensor at first order, the ordinary Killing vectors at 
second order, and so on.) One reason for the neglect of the 
zero-order element at the base of the tree may be that to 
make it explicit one must, of course, make some specific 
choice of the gauge. In practice, however, there is no real 
ambiguity because there turns out to be a canonical gauge 
that imposes itself naturally (just as I found long ag08•10 to be 
the case for what can now be interpreted as the canonically 
associated source-free fields). 

To pin down the ga~ge we start by requiring that the 
four-potential one-form AJ-L should have the same properties 
of invariance under the action of the Killing vectors as the 
field FAJ-L itself, properties which are simultaneously compa­
tible in consequence of the commutation relation 

hJ-LpkP-kJ-LphP=O (3.1) 

that follows from the fact that the secondary Killing vector is 
constructed from quantities known [by (2.11) 1 to be invar­
iant under the action of the primary Killing vector. We can 
thus obtain 

AJ-L;p kP + ApkP;J-L =0, 

and 

(3.2) 

AJ-L;phP + AphP;J-L =0. (3.3) 

Using the real (electric) part of (2.8) we see from (3.2) that 
it is possible by a further minor adjustment to arrange to 
have 

ApkP = - !Fp"F"P, (3.4) 

while similarly, by (2.13) [again bearing in mind the com­
patibility property (3.1) ], we seefrom (3.3) that it is possi­
ble also to arrange to have 

A hP = - ~(F f"p)2 (3.5) 
P 32 P" • 

Finally, leaving aside the possibility of degenerate limit cases 
in which the primary and secondary Killing vectors might 
not be independent, it can be seen that (as in the analogous 
stage in the black hole problem2

) the orthogonal transitivity 
and field circularity properties, (2.15) and (2.16), allow us 
to impose the gauge circularity condition 

A[Akl"hpJ=O, (3.6) 
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which now ties down the gauge completely. Although there 
is now no longer any freedom to impose further gauge re­
strictions, it is apparent that (3.2), (3.3), and (3.6) together 
are sufficient to ensure automatically that the standard Lor­
entz gauge condition 

A ;p = 0 (3.7) p 

is also satisfied. 

IV. ALGEBRAICALLY PREFERRED COORDINATES 
AND SEPARABILITY 

Up to this stage we have kept to fully covariant termin­
ology, but it is now useful (at the price of leaving aside de­
generate limit cases in which the two Maxwellian scalar in­
variants do not vary independently) to bring in algebraically 
preferred coordinates of the kind introduced by the present 
author8 and commonly used in studies of the general 
cases26

,29.30 (as opposed to the more particular physical 
black hole case, for which the slightly different geometrical­
ly preferred coordinates of the type introduced by Boyer and 
Lindquise4 are usually chosen). Within the present ap­
proach the algebraically preferred system may be specified 
to consist oftwo nonignorable coordinates, rand q say, given 
in terms of the Killing-Maxwell invariants by 

A 

r - q2 = !Fp"FP" , 2rq = !Fp"f"P , (4.1) 

together with two ignorable coordinates, t and ~ say, taken 
to be constant on the orthogonal hypersurfaces whose exis­
tence is established by (2.15) and such that the primary and 
secondary Killing vectors, kJ-L and hJ-L , can be identified, re­
spectively, with the operators a fat and a /a~. It can be seen 
that the specification (4.1) is satisfied simply by taking rand 
q as the real and imaginary parts of the scalar field defined by 
(2.9), i.e., we have 

s= r+ iq. (4.2) 

In this system the gauge conditions imposed at the end of the 
previous section lead unambiguously to the explicit expres­
sion 

Ap dxP = !(q2 - r)dt - !rq2 d~. ( 4.3) 

Nothing in the preceding line of reasoning makes it ob­
vious in advance that this field should share the already 
known property of the associated source-free Maxwell field 
of satisfying the author's condition2

,8 for separability of the 
Klein-Gordon wave equation (and hence afortiori the cor­
responding classical charged orbit equations) for a charged 
scalar field coupled to an electromagnetic field. In the pres­
ent terminology this very restrictive condition is expressible 
as the requirement that the four-potential one-form should 
have the form 

A d X+(r)(dt+q2d~) -X_(q)(dt-r d~) 
Ap 'xP = r 2 

+ q (4.4) 

where X + (r) is a function ofronly, and X _ (q) is a function 
of q only. It transpires nevertheless that in the gauge (4.3) 
the Killing-Maxwell one-form does indeed satisfy this con­
dition, the two single variable functions having the simplest 
form imaginable on dimensional grounds, namely 
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X+(r) =!r4, X_(q) =!q4. (4.5) 

For comparison, it may be recalled that the analogous 
functions for the family (2.9) of source-free associated fields 
(including those coupled gravitationally in the Kerr-New­
man 16 solutions) are correspondingly expressible2

,8,10 in 
terms of the real (electric charge) part Q and the imaginary 
(magnetic monopole) part P of the complex charge param­
eter C appearing in (2.8) by 

X+(r)=Qr, X_(q)=Pq (P+iQ=C). (4.6) 
The significance of the property of being expressible in 

the form (4.4) is strengthened by the recent work of Kam­
ran and McLenaghan,28 which shows that the condition 
(4.4) is sufficient to ensure (undecoupled Chandrasekhar­
type l9 ) separability in the case where the charged scalar is 
replaced by a charged Dirac spinor. Although such separa­
bility properties can be studied more easily in the algebrai­
cally preferred coordinates used here, they are, of course, 
preserved by the transformation to the standard geometri­
cally preferred Boyer-Lindquise4 coordinates according to 
the prescription 

- 1-r--r, q--a cos e, cp--a- cp, t--t - acp. (4.7) 

(I would insist, by the way, that contrary to a widespread 
myth that has been implicitly perpetuated by a recent major 
treatise on the subjece5 the transformation to Boyer-Lind­
quist coordinates does not imply any need to transform to a 
noncanonical-e.g. Kinnersley-type36 -tetrad in place of 
the maximally symmetric one. 8,29,37-40) It is also to be re­
marked that the separability condition (4.4) is preserved by 
the trivial gauge changes corresponding to addition of 
constant multiples of dt and d¢>. The Boyer-Lindquist form 
of the Killing-Maxwell potential quoted in the abstract does 
in fact differ from (4.3) by such a separability-preserving 
adjustment. 

Despite the fact that the corresponding constants of the 
motion could have been constructed in advance as eigen­
functions of corresponding operators in both the scalar41 

and Dirac spinor25 cases, the fact that these constants are 
associated with full separability still seems somewhat mirac­
ulous. In the simplest case, that of a classical particle with 
charge to mass ratio elm on an orbit whose unit tangent 
vector ul' evolves according to 

UI';pUP= (elm)Fl'pu P, (4.8) 

our original postulate (1.1) implies that the generalized 
(specific) angular momentum vector and scalar, defined by 

II' = fl'p up, I p Ip = apau Pua, (4.9) 

will satisfy corresponding precessing translation and conser­
vation laws, 

II';pu p = (elm)FI' piP, (lPlp ),aua = 0, (4.10) 

for any field F),p given by an expression of the form (2.9) 
whatever the field s may be. Now although any field satisfy­
ing the separability condition (4.4) will have the form (2.9) 
for some scalar field s, the converse requirement is highly 
restrictive! It is therefore remarkable that such a require­
ment (which in this case is manifestly not necessary for the 
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conservation law to apply) should turn out to hold both for 
the source-free solutions [with s given by (2.10) or (4.3)] 
and for the Killing-Maxwell field (with s uniform so that 
Cs- 3 = I). Indeed even in the Minkowski space limit, for 
which the Killing-Maxwell field is interpretable as that 
within a uniform spherical charge distribution, the spherical 
symmetry of which is broken by the superposition of a uni­
form magnetic field, the (scalar and Dirac) separability that 
has been revealed was hardly obvious in advance. 
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A new self-similar solution of the Einstein field equations is presented. In the new space-time, 
the density is zero at time zero and follows an inverse square law for large t. The new solution 
may have interesting astrophysical applications since it has the same reference lengths as that 
of the Friedmann universe. 

I. INTRODUCTION 

Recently, Wesson l proposed a dimensional cosmologi­
cal principle and a dimensional perfect cosmological princi­
ple that can lead to both Friedmann and non-Friedmann 
models. These dimensional principles require that the phys­
ical properties of the universe such as density, pressure, and 
mass appear only in combination with the gravitational con­
stant G, the speed of light e, and the coordinates rand t as 
dimensionless functions that solely depend on the epoch. 
These principles were later modified by Chi2 who showed 
that the coordinate r(R,t) can be replaced by the comoving 
coordinate R. Chi also pointed out that the self-similar 
space-times found by Henriksen and Wesson3 can be derived 
from these modified principles by using R leas the reference 
time instead of a constant reference time. Self-similarity has 
wide applications in hydrodynamics.4 In recent years, self­
similarity found many astrophysical applications.5

,6 In this 
paper, we apply the modified dimensional cosmological 
principle to Einstein's field equations to find a new self-simi­
lar space-time. 

II. THEORY 
We assume a spherically symmetric metric of the form 

ds2 = e2eu dt 2 _ eOJ dR 2 _ redO 2 + sin2 0 d¢2), (1) 

where R is a comoving radial coordinate, and r = r(R,t) is 
not comoving. The functions O'(R,t) and OJ (R,t) are dimen­
sionless. Let m(R,t) be the total mass inside the radius R, 
p(R,t) the total pressure, andp(R,t)e2 the total energy den­
sity. Then the Einstein field equations become7 

2Gml(e2r) = 1 +e- u;:"/c2_ e -OJr,2, 

m = 41TPr;'le2
, 

m' = + 41Tprr', 

0" = - 2P'I(P + pe2
), 

W = - 2jJC2/(P + pe2
) - 4;'lr, 

(2a) 

(2b) 

(2c) 

(2d) 

(2e) 

where a dot means a I at and a prime means alaR. Following 
the modified cosmological principle, we require that the 
properties of the universe be made dimensionless as follows: 

81TG/~ple2 = N(s), 81TG/~P Ic4 = Q(S), 

2Gml(c2/m) = M(S), r = RS(s), 5 = ct IR, 
(3) 

where Ip' Ip, and 1m are all functions of R and ct. The refer­
ence time in Eq. (3) is chosen to be Ric, since we are looking 
for self-similar solutions ofEq. (2). The self-similar space­
times developed by Henriksen and Wesson were obtained 
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from Eqs. (2) and (3) by choosing lp = Ip = 1m = R. Here 
we choose 

(4) 

It was shown in Ref. 2 that the choice of reference lengths 
(4) gives rise to the Friedmann universes. We are therefore 
interested to know what kind of self-similar space-times can 
have the same reference lengths (4). 

With the choice of Eqs. (3) and (4), Eqs. (2) become 

M=s2S[1 +e- uS,2- e -OJ(S_sS,)2], (Sa) 

3M - sM' = NS2(S - sS'), (5b) 

M' - 2M Is = - QS2S', (5c) 

OJ' = - 2(N' - 2N Is)(Q + N) - 4S'IS, (5d) 

0" = 2Q '/(Q + N), (5e) 

where a prime means d Ids. For simplicity, we look for the 
dust solutions of Eqs. (5). Assume Q = 0. Then Eq. (5c) 
gives M = MOS2, whereMo is a constant. And Eq. (5e) can 
be integrated to give e- U = 1. Equation (5d) implies that 
e - OJ = N 2 S 4/5 4, provided the integration constant is prop­
erly chosen. Substituting M = Mos 2 into Eq. (5b), we find 
that 

MOS2 = NS 2(S - sS'), 

and consequently Eqs. (Sa) becomes 
Mo = S [1 - S,2 - M ~ ] . 

In short, the dimensionless dust solutions of Eqs. (5) are 
given by 

Q=O, M=MoS2, e- U = 1, e- OJ =N2S 4/s 4
, 

SS'2 +S(1-M~) -Mo=O, (6) 

MoS2 = NS2(S - sS'). 

The above solution differs from that found by Henriksen and 
Wesson in that the dimensionless density M = MoS2 is not 
constant. 

Consider the case Mo = 1. Then we find from Eq. (6) 
that 

S = [3(50 ± S)!2F/3, (7) 

and that N satisfies 

52 = NS2(S - sS'). 

Eliminating Sin Eqs. (7) and (8), we find that 

52 = 9N(So ± 5) (so ± 5/3)/4. 

Consequently, 

(8) 
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c2 
( ct IR)2 

P = 181TGR 2S~ [1 ± (ct 1RSo)][ 1 ± ct 1( 3RSo)] 
(9) 

The solution (6), more specifically the expression (9), has 
some interesting behavior. For smallict IR l,p-s4It 2, and 
p equals zero at t = O. For large Ict IR I, p - (S It)2, and p 
has the behavior of an inverse square law. Along the lines 
Ict IR I = const, the density is inversely proportional tot 2 for 
large t. 

III. CONCLUSION 

In conclusion, we demonstrate the usefulness of the new 
dimensional cosmological principle by using it to find a new 
self-similar space-time. Since the Friedmann universes are 
solutions of the Einstein's field equations with the length 
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scales (4), we expect the self-similar solutions having the 
same length scales to have interesting astrophysical applica­
tions. 
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The Tolman-Oppenheimer-Volkov equation is studied in the case of the ultrarelativistic 
equation of state. The original system of two first-order differential equations is turned into one 
first-order equation that is independent of the central density, plus an integral. It is shown how 
the physical solutions are related to the analytically known infinite central density solution. 
The results are further generalized into the arbitrary y-law equation of state, p (y - 1 )p. 
Finally, the case of a nonzero bag constant is briefly discussed. 

I. INTRODUCTION 

The properties of neutron stars have been studied exten­
sively since the pioneering works by Landau 1 and Oppenhei­
mer and Volkov.2 At the turn of the 1950's the accepted 
knowledge on the behavior of matter at such high densities 
was established in the Harrison-Wakano-Wheeler (HWW) 
equation of state.3 Since then, the neutron star calculations 
based on that equation of state have been refined along with 
the growing understanding of phenomena in particle phys­
ics.4 

In higher densities the y-Iaw equations of state 

p-nY, p = (y-l)p (1) 

(where 1<y<2 is the physically meaningful range) have 
been used as a suitable approximation. If it is inserted in the 
Tolman-Oppenheimer-Volkov (TOV) equation,S 

p'(r) = - (p + p)(p~ + m/47r)/r(r - m/21T), (2) 

where 

m = 41T i r 

p(r')r,2 dr' . (3) 

It is known in this case that the TOV equation has an analyt­
ic solution6 

p=2(y-l)/(y+4y-4)r 

= 3/14r, for y = j . (4) 

Although the matter in any star cannot obey the equa­
tions of state of the type given by Eq. (1) without any r 
dependence in y, the solution (4) can still be used as a high 
density limit of the star core. The procedure is then as fol­
lows: the equilibrium configuration given by Eq. (4) is 
smoothly matched with some low energy configuration (for 
example, the one obtained by the HWW equation of state) at 
some transition regime. In this way both the y-Iaw equation 
of state and the infinite central density solution (4) have 
their importance. In this paper we shall consider the physical 
solutions obeying the y-law equations of state (especially, 
when y = j). By "physical" we mean solutions that have 
finite central density. We shall examine their behavior and 
show how they are related to the infinite central density solu­
tion (4). 

II. REFORMULATION OF THE TOV EQUATION 

Let us start with the special (but the most interesting) 
case, y = j, which corresponds to ideal gas of ultrarelativis­
tic particles. We insert the appropriate equation of state, 
p = p/3, to the TOV equation, which then reads 

p'(r) - 4p(p~ + 3m/41T)/3r(r - m/21T) . (5) 

If we differentiate Eq. (5) with respect to r and use Eq. (3) 
to eliminate m from the differentiated equation, we obtain 

2f (2f + 3 )rj" - (2f + 9)rj'2 - 8fC 4f - 3 )rf' 

+ 8P04j - 3) = 0, 

where 

f=p(r)r. 

Now we make the substitutions 

t = in r, x(t) =f(r), 

(6) 

(1) 

(8) 

which transforms Eq. (6) to a form having no explicit r 
dependence 

2x(2x + 3)x" - (2x + 9)X,2 - 18x(2x - 1)x' 

+ 8x2 (l4x - 3) = 0 . 

If we then define 

x'(t) y(x), 

we get an equation for y(x), 

2x(2x + 3)yy' - (2x + 9)y2 - 18x(2x - l)y 

+ 8x2 (l4x - 3) = o. 

(9) 

( 10) 

(11 ) 

The appropriate initial value for this equation can be ob­
tained by 

y(x = 0) = x'(t) Ix 0 = rf'(r) 0 = o. (12) 

Suppose the functiony y(x) is solved from Eq. (11). Then 
the solution of the TOV equation (5) is expressed in the form 

r IP(r)r' dx 
In ~ = p(O)" y(x) , 

(l3 ) 

where the limit €-+O is understood. 
By the above manipulation we have turned the original 

TOV equation, which is essentially a system of two first­
order differential equations [Eqs. (5) and (3)], into one 
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FIG. I. The numerical solution of the function y = y(x). 

first-order equation ( 11 ) plus an integral ( 13). Note that the 
initial value that fixes the solution of the TOY equation, 
namely the central density, p(O), does not exist in Eq. (11) 
nor in its boundary value, Eq. (12), but enters only in the 
integral (13). Thus, the function y (x) is independent of 
p (0) and can be used in Eq. (13), once obtained, for every 
central density. 

It should be noted here that the possibility of expressing 
in this case the solution of the TOY equation in form ( 13) is 
equivalent to the notion that by the substitution (8) the 
TOY equation can be reduced to a plane autonomous sys­
tem.7 

We note from Eq. (11) that it has a trivial solution 
x = -fi, which corresponds to the Misner-Zapolsky (MZ) 
solution (4) for y = j. However, if we consider the physical 
solutions with finite central density, we should use the initial 
value yeO) = 0 obtained by Eq. (12). The numerical solu­
tion appropriate for this initial value is shown in Fig. 1. Start­
ing from the origin the curve rapidly spirals to the point 
x = -fi, y = O. For the energy density this means that it ap­
proaches the MZ energy density oscillating with decreasing 
amplitude around it, when r-.O. The behavior of corre-

r 

FIG. 2. Schematically drawn behavior of the energy density configuration 
as a function of the radius. The Misner-Zapolsky solution and the outer­
most envelope curve are also shown. 
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sponding energy density is shown schematically in Fig. 2, 
from which we obtain that the energy density configuration 
continues to infinity. This was expected, since it is compati­
ble with the known fact that gravitation can never produce 
hydrostatic equilibrium in a finite fluid, if the pressure is 
proportional to the energy density.s 

From Eq. (11) we find that near the origin y - 2x. This 
means that also the right-hand side ofEq. (13) behaves like 
- - In E at small E, which guarantees that the limit E -.0 is 
well defined. An interesting fact can be extracted from Fig. 
1. The largest value of x is obtained from the point where the 
curve crosses the x axis for the first time after the origin. The 
explicit value is x = a = 0.342. Because x<a everywhere, 
this means p<al,-2 and the mass inside radius r is 
m (r) < 41Tar. The curve p = al,-2 is drawn also in Fig. 2. The 
physical solution touches this curve at one point. As a matter 
off act, this curve is the envelope of the family of the physical 
solutions parametrized by the central density. It is worth 
noting that also all the other points where the curve y(x) 
intersects the x axis define an envelope. Hence, the family of 
solutions given by Eq. (13) have an infinite number of enve­
lopes of type -an r- 2

, the constant of proportionality an 
given by the point where the curvey(x) intersects thex axis 
for the nth time after the origin (a 1 = a above). 

III. GENERALIZATION TO OTHER EQUATIONS OF 
STATE 

We can generalize our procedure into the case, where 
the equation of state is of the arbitrary y-law type ( 1 ). (This 
is because our manipulation above is not based on the ultra­
relativistic equation of state but on the proportionality of the 
pressure and energy density.) For an arbitrary y law, Eq. 
(6) becomes 

y(y- 1)(1 + 2(y- l)f)f,-2r 

- (y-1)(3y-2+4(y-1)2f),-2f'2 

+ (5y-4)(y-1)(2+ (y-4)f)frf' 

- (5y-4)(2(y-1) - (r+4y-4)f)f2=0. 

(14) 

Moreover, if we use the same substitutions (8) and defini­
tion (10) as before, Eq. (11) changes to 

y(y-1)(1 + 2(y-1)x)xyy' 

- (y - 1)(3y - 2 + 4(y - 1) 2xll 

+ (y-1)(9y-8+ (3r-22y+ 16)x)xy 

- (5y- 4)(2(y- 1) - (r + 4y - 4)x)x2 = O. 
(15) 

From this equation the general MZ solution, 
x = 2(y - l)/(r + 4y - 4), can be found immediately. 
The solutionsy y (x) with the initial valuey y (0) = 0, which 
give the physical solutions of the TOY equation by the inte­
gral ( 13), are qualitatively similar to the y = j case, starting 
from the origin with y - 2x and spiraling to the focal point 
that is given by the MZ equation. Consider the outermost 
envelope defined by the first intersection of function yy (x) 

with the x axis. We find that this point ajY) = ay increases 

Tuomo Toimela 1542 



                                                                                                                                    

with increasing r up to a2 = 0.352 (which is only slightly 
larger than a4/3 ). 

As a final note, let us also consider the case of a nonzero 
bag constant. Unfortunately the MZ solution cannot be gen­
eralized to that case. There is, however, one exception. That 
is, if the Zel'dovich equation of state, p = p with a bag con­
stant B, is accepted, we find that the TOV equation has in 
that case an exact solution 

p= 1/4r+B, p= 1/4r-B. (16) 

The energy density is infinite in the center of the star and falls 
to 2B at the surface, where p = O. The radius of such a star is 

R 1/2$ 

and the mass 

m = 21T/3$ . 

(17) 

(18) 

If Bl/4 = 135 MeV (in the usual units), the radius and the 
mass become 

Rz19km, mz4.2M0 . (19) 

The nontrivial components of the metric of this star are 
given by 

g" = - (1 - m/21Tr)-1 = 2(1 - r/3R 2) I (20) 

g" = r/3R 2, (21) 

which match the metric components of the Schwartzschild 
exterior solution at the surface. The red shift of a photon 
emitted from the surface of such a star is then 
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z =.,J3 - 1 = 0.732. (22) 

Equation (16) represents an extreme solution of the TOV 
equation, as the equation of state of quarks inside the bag is 
the "hardest" possible, p = p (corresponding to the sound 
velocity that equals the velocity of light) and the energy 
density has an infinite limit at the center. 
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Spin fluids in stationary axis-symmetric space-times 
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(Received 2 September 1986; accepted for publication 4 February 1987) 

The relations establishing the equivalence of an ordinary perfect fluid stress-energy tensor and 
a spin fluid stress-energy tensor are derived for stationary axis-symmetric space-times in 
general relativity. Spin fluid sources for the G6del cosmology and the van Stockum metric are 
given. 

I. INTRODUCTION 

The search for new and significant solutions to the field 
equations has long been an important aspect of general rela­
tivity. With the realization that the stress-energy content of a 
given geometry is not unique, this aspect of general relativity 
has grown to include the search for new and significant 
sources to known geometries. 

The relation between a viscous-heat conducting fluid 
and a perfect fluid was derived by King and Ellis l in their 
paper on tilted space-times. The equivalence of electromag­
netic fields and some viscous fluids has been discussed by 
Tupper2 and Raychaudhuri and Saha.3 Tupper4 has also de­
rived the equivalence relations for perfect fluid space-times 
and space-times with viscous-magnetohydrodynamical mat­
ter content. Carot and Ibanez5 have shown that the interior 
of a Schwarzschild sphere could contain a viscous heat con­
ducting fluid as well as a simple perfect fluid. 

In this paper we extend the possible alternatives to sim­
ple perfect fluid sources by considering the stress-energy ten­
sor for a perfect fluid with spin in a stationary axis-symmet­
ric space-time. The metric we treat is 

ds2 = -/dt 2 -2kd<fJdt+ld(p+eb (dr+dz2
). (1) 

We do not assume that I is harmonic. This will allow us to 
discuss the G6del cosmology. In this space-time a simple 
perfect fluid has a stress-energy tensor 

T"v = EU" Uv + P(g"v + U" Uv ), (2) 

where E is the energy density, Pis the pressure, and U" is the 
fluid velocity. We work in the comoving frame, where U" is 
the timelike component of the tetrad a1i) that diagonalizes 
the metric; 

U" = a~. 
The tetrad is 

a~ = (1//7,0,0,0), at = (/7,O,O,kl/7), 

al{ = (O,e bI2,0,0), a~ = (0,ebI2,0,0), 

a/f. = (O,O,e- bI2,0), a; = (0,0,ebI2,0), 

aj = (-kID/7,O,O,/7ID), a! = (O,O,O,DI/7), 

(3) 

(4) 

whereD 2 =/1 + k 2
• The tetrad indices are in parentheses or 

are numerical indices. We use coordinate labels, i.e., 
(t,x,y,z) for the space-time indices. Tetrad indices are raised 
and lowered by 'TJij = ( - 1, + 1, + 1, + 1). 

The general stress-energy tensor for a spin fluid was giv-

en by Ray and Smalley6,7 and has two parts: 

T"v = T"v(fluid) + T"v(spin). (5) 

The fluid portion ofEq. (5) is the spin-fluid counterpart of 
Eq.O): 

T"v(fluid) =cU"Uv +P(g"v + U"U,,). (6) 

The spin contribution to the stress-energy tensor is 

TJ'v (spin) = U("SV) a tJa + [ U(vS,,) a];a 

+ (jJ,,(aSv)a + U("Sv)a(jJaPUp , (7) 

where tJ" = U,,;v U" is the acceleration of the fluid and (jJ "V 
is the angular velocity tensor associated with the spin. This 
angular velocity is defined in terms of the tetrad given in Eq. 
( 4): 

1 [ . (a) • (a) ] (jJ"v = 2 a" a(a)v - av a(a)J' . (8) 

The spin density obeys the Weyssenhoff condition 

U"S"v = 0. (9) 

In Sec. II we derive the equations that establish the equiv­
alence between the sources described by Eqs. (1) and (5). 
Some metric applications are given in Sec. III. 

II. EQUIVALENCE RELATIONS 

Equating the stress-energy tensors in Eqs. (1) and (5), 
we find 

EUJ' U" + P(g"v + UJ' Uv ) 
. i 

= €U" Uv + P(g"v + U" Uv ) + (UJ'Svi + UvS"i) U 

+!( u" Wv + Uv W,,) + !(SJ' aU",a + SvaU,,;a) 

+ !(S" a(jJya + Sya(jJ,,(Z), (10) 

where W" is the spin divergence, 

(11 ) 

The equations to be satisfied are generated from (10) by 
running through the possible index combinations. We will 
eventually want some of the equivalence relations with tet­
rad indices, but several useful equations result from consid­
ering coordinate indices first. 

The equivalence expressed by Eq. (10) assumes the 
same fluid velocity in the perfect fluid as in the spin fluid. We 
could have used different velocities as, for example, Tupper2 

did in adding fluid viscosity and shear. This would introduce 
more parameters into the equivalence description. Since the 
spin-fluid stress-energy tensor is lengthy, we choose the sim­
plest workable equivalence. 
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For the space-time described by Eq. (1), we find the 
kinematic parameters of the spin fluid are 

w" = - f,/2/7, w,.p = kJ2/7, if, =fJ2f, 
(12) 

W tz = - fz/2/7, wz.p = kz/2/7, ifz =fJ2f, 

wherefr = a,f, etc. The spin divergences are calculated to 
be 

W, = (eb ID2)S.pr(fkr - kfr) 

+ (eb ID 2)S.pz(fk z -kfz), 

W.p = eb [JrS.p, + JzS.pz + (S.prI2D2)(1J,. -fir) 

+ (S.pzI2D 2)(/fz -flz), (13) 

Wr = (lID)Jz CebDSrz ), 

Wz = (lID)Jr (ebDSzr )· 

The fr, tz, rt/J, and zt/J components of the stress-energy tensor 
are 

T" = ( - /7/2D)(ebDSrz ),z (314[f)fzebS rz , 

T,z = (- /7/2D)(ebDSzr ),r (314[f)f,ebS Zrl 

Tr.p = - (kI2D/7)(ebDSrz ),z 

- (ebSrzI4f3/2) (klz + 2fkz), 

TZ4> = (-kIW/7)(ebDSzr )'r 

- eb(Szr I4f312)(kf, + 2fkr)' 

(14) 

These stress-energy components are zero and Eqs. (14) de­
termine S rz and set the condition for a consistent solution to 
exist. We find 

Ek 2 P.pD2 kW.p S.preb 
T .... =-+--------(kf, +2fk) 

'1'''' f f /7 2f3/2 r r , 

S -b 
.pze 

- 2P/2 (kfz + 2fkz)' 

We have allowed for anisotropic pressures in the spin fluid. 
Equations (15) and (16) are useful as they stand. The 

remaining stress-energy components are more convenient to 
use with tetrad indices. Using Eq. (4) we find the tetrad 
indexed stress-energy components are 

TOO=E- W,I/7, 

Til =P, + Sr.p(ebID 2/7)(fkr kf,), 

T22 = Pz + SZ4> (eb ID 2/7)(fkz kfz), 

T33 =P4> + (S.preb I D2/7)(kf, -fkr ) 

+ (S.pzebID 2/7)(klz -fkz ), 

W3 = !-t [( S~f).r + ( S~f).z] 

(18) 

(19) 

(20) 

(21 ) 

(22) 

(23) 

The procedure is simply to check Eqs. (15) and (16) for a 
possible zero and then to use Eqs. (18 )-(23) to generate the 
description of the spin fluid source. 

S rz = eb AID f3l2, (15) III. APPLICATIONS 

withA #0 iffis proportional to k and A = 0 otherwise. We A. The GOdel cosmology 
will find this is a very restrictive condition which eliminated We have 
the Srz spin component in all of the examples we found. The 
rz component of the stress-energy tensor establishes another ds2 = _ (dt + eax dy) 2 + dx2 + !e2aX dy2 + dz2 , (24 ) 
strong condition on the spins: 

Tn = (1I2D 2/7)[Sr.p(f k z klz) 

+ SZ4> (fkr - kf,)], (16) 

which is also zero. Many useful and symmetric solutions 
depend only on one coordinate. In this case Eq. (16) causes a 
second spin component to be zero. The stress-energy compo­
nents that are left are used to determine the remaining spin 
density and matter content of the spin fluid: 

3 e-% 3 e% 
Tt4> = Ek - 4"S¢r /7 - 4"S4>z /7 

_ /7W.p _ _ k_ W 
2 2/7 t' 

T" =fE-/7Wt , (17) 

Trr = Preb + (kr/7 ID 2)Sr¢ (kf,ID 2/7)Sr¢' 

Tzz =Pzeb+ (kz/7ID 2)Sz.p (kIzID 2/7)Sz¢, 
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with (t,r,t/J,z) ...... (t,x,y,z). This space-time has E = P = !a2
• 

For this space-time we have f= I, k = eax
, 1= _ !e2aX

, 

b = 0, D 2 = !e2ax
• Clearly fis not proportional to k, so 

Sxz = O. (25) 

From Eq. (16), 

(26) 

The only nonzero spin is SXY' a spin along the z axis of rota­
tion. Equation (22) determines the functional form of the 
spin as 

(27) 

Using this spin and Eqs. (18)-(21) we find the energy den­
sity and pressure to be 

~a2 = E - 2aA, !a2 = Pr - 2aA, 

~a2 = Pz, !a2 = P¢ - 2aA. 
(28) 

There is a rotational correction to the usual isotropic G6del 
pressures. There is no pressure change along the rotational 
axis. This spin fluid has a timelike divergence. The diver­
gence along the spatial tetrad components is zero. 
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B. The Van Stockum solution8 

We have 

ds2= _ (dt_ap2drp)2+p2drp2+e-a'p'(dp2+dz2), 

f= 1, k = - ap2, I =p2 - a2p4, (29) 

b = _ a 2p2, D2 p2. 

This space-time has a zero pressure and E = 4a2ea2p
'.9 We 

have identified a and a in E. 
As in the previous example, we find 

Spz = Sz¢> = O. (30) 

The nonzero spin component is determined by the vanishing 
of T03: 

Sr¢> =Ap. (31) 

The pressures and energy densities are 

E = £ + 2aAea2p', Pr = 2aAea 'P', 

Pz = 0, P¢> = 2aAe
a2p2

. 
(32) 

The nonzero pressures can again be interpreted as the rota­
tional action ofthe spin about the axis of rotation. The Van 
Stockum spin source has only a timelike tetrad divergence, 
as in the G6del cosmology. 

Both of the examples considered thus far have only a 
timelike divergence component. The last example, which is a 
dust metric due to Hoenselaers and Vishveshwara,1O devel­
ops a spatial component to the spin divergence. 

C. An example with spatial divergence 

The rotating dust solution of Hoenselaers and Vishvesh­
wara 10 has a metric 

ds2=e2(CX+dl(dx2+dy2) + ~(a2x2 +)dz2 

+ 2[ ~( +_a
2
x

2
) + axJdzdt 

+ ~ dl'((l- a,:), _ ~;} 
n2 

[afu]2 1(221) f=21J1- l-~ IJI, l=q;ax -2' 

k = ~ (a2x2 - ~) - ax, 

b = 2{cx + d), (t,r,z,rp) - (t,x,y,z) , 

(33) 

where n, IJI, c, and d are constants determined by boundary 
matching. This metric, like the previous examples, has only a 
single nonzero-spin component: 
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Sxy 0, Syz = O. (34) 

The nonzero component Sxz is functionally determined by 
the T03 component of the stress-energy tensor: 

T03 - W312 + 3 (Sxze'1xl4/lD) = 0, (35) 

Sxz AD If5/2. (36) 

This spin fluid is the first example to have a spatial diver­
gence component. The divergence is 

W, (SzxebaID21J1)[n212 + (IJI a!1x)2], 
(37) 

W3 - ~(Szxe'1J..J7D). 
The energy density is related to the perfect fluid energy den­
sity by 

£ = E + w,IfJ. (38) 

The pressures are 

(39) 
Pz = + Sxz (ebal.[JlJI) [!12 + 2(1JI - !1xa)2]. 

In summary, we have given the relations establishing spin 
fluid sources for axis-symmetric stationary space-times. The 
space-times used for illustration seem quite different, with 
some, for example, having fluid accelerations and some not; 
however, there are similarities between the spin fluid 
sources. All of the source examples are polarized, have some 
nonzero component of the spin divergence, and exhibit an­
isotropic pressure. All of the pressures are, however, sym­
metric about the axis of rotation. The spin density is in gen­
eral required to Fermi-Walker transport. For the three 
space-times considered, this is equivalent to 

S,..V O. 

The spin is constant along the flow lines. These examples 
provide another alternative to simple perfect fluids or fluids 
with viscosity and heat conduction. 
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A general theorem concerning any Godel-type solution of higher-derivative gravity field 
equations, which may be produced by any reasonable physical source with a constant energy­
momentum tensor, is analyzed. The resulting class of metrics depends on two parameters, one 
of which is related to the vorticity. A general class of solutions of Godel-type space-time­
homogeneous universes in the context of the higher-derivative theory is exhibited. This is the 
most general higher-derivative solution of such type of metric and includes all known solutions 
of Einstein's equations related to these geometries as a special case. A number of completely 
causal rotating models is also obtained. Some of them present the interesting feature of having 
no analogs in the framework of general relativity, 

I. INTRODUCTION 

General relativity with higher-derivative terms has been 
considered 1-4 as a very attractive candidate for a theory of 
quantum gravity. The theory is defined by the action 

1= J d4X~ -g[ ~ - ~ + aR 2 +{3Rpv R P
V +Lm], 

(1.1 ) 

where a and{3 are dimensionless coupling constants (in nat­
ural units), x and A are the Einstein and cosmological con­
stants, respectively, and Lm is the matter Lagrangian den­
sity. The corresponding field equations are given by 

Hpv = - Tp,,' ( 1.2) 

HI'" = (1!x)(RllV - !Rgp,,) + (Alx)gpv 

+ a( - R 2gp" + 4RRp" - 4gp"OR + 4V'v V'pR) 

+ {3( - 20Rp" RpeR pegp" 

+ 4RppevRPe -gp"OR + 2V'" V'!-,R) , (1.3) 

with trace 

T = R Ix + 4Alx + 4(3a + {3)OR. (1.4) 

For the quantum field theorist this higher-derivative 
theory has the great advantage of being renormalizable by 
power counting,1 whereas, as it is well known, classical gen­
eral relativity is clearly perturbatively nonrenormalizable by 
power counting in four dimensions.5

,6 In the pure classical 
framework, the aforementioned theory may be considered as 
a possible generalization of Einstein's general relativity, in 
the sense that it respects the geometrical nature of gravity as 
well as its gauge symmetry (invariance under general coor­
dinate transformations). Recent work has shown4.7-

12 that 
the presence of a ghost responsible for a pseudononunitarity 
of the theory, which was considered its Achilles's heel, is no 
more a vulnerable point of it. The reason is that the ghost is 
unstable. In spite of the previously mentioned virtues, com­
paratively little is known about fourth-order gravity theory. 

Of course a better understanding of its behavior is of vital 
interest to those working on quantum gravity, and in partic­
ular, quantum cosmology. Consequently, the investigation 
of cosmological models in the framework of higher-deriva­
tive gravity is well suited. 

Here we wish to focalize the so-called Godel-type uni­
verses. 13 These models are defined by the line element 

ds2 = [dt 2 + H(x)dy]2 _ D 2(x)dy2 dx2 dz2, 

0.5) 

and are such that in case 

H = em", D = em"I{l" (1.6) 

we recover GOOel's universe,14 which is a solution of Ein­
stein's equations with an energy-momentum tensor given by 

Tp"=pvpv,,, va=oao, 

m2 = - 2A = xp = 202
, (1. 7) 

wherep is the constant density of matter, va is the fluid four­
velocity, and 0 is the rate of rigid rotation of matter. Our 
choice for Godel-type models is dictated, first of all, by their 
simplicity, which will allow us to accomplish the formidable 
task of finding exact solutions of higher-derivative gravity 
field equations, in the case of models that are homogeneous 
in space and time (ST homogeneous). And second, because 
this analysis will give us the opportunity of answering a very 
interesting question, i.e., what happens to the causal patho­
logies of these universes when quantum corrections are in­
troduced in the standard general relativity theory? 

We organize the paper in the following way. In Sec. II, 
we present a general theorem concerning any Godel-type 
solution of fourth-order gravity field equations with con­
stant energy-momentum tensor. The resulting class of me­
trics is characterized by two parameters, one of which is 
related to the rotation of the matter relative to the compass 
of inertia. Of course, any reasonable physical source will put 
restrictions on these parameters through the higher-deriva­
tive equations. Taking into account the last consideration, 
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we show in Sec. III that a geometry having as its source a 
perfect fluid plus a massless scalar field and an electromag­
netic field can fit the parameters of the ST homogeneous 
Godel-type universes. This is the most general higher-deriv­
ative solution concerning this type of metric and includes all 
known solutions of Einstein's equations related to such geo­
metries as a special case. On the other hand, contrary to what 
generally happens in Einstein's theory, the restrictions on 
the parameters of the ST-homogeneous Godel-type models, 
imposed by the sources through the higher-derivative equa­
tions, will provide us with a number of solutions which con­
tain no closed timelike lines, i.e., that are completely causal. 
We will look into this subject in a comprehensive way in the 
last section. 

II. A GENERAL THEOREM 

In order to facilitate our calculations, we shall use a 
class of locally stationary observers represented by the vec­
tors etA) a defined by ~ = etA) a dxa, wherein the one­
forms eA are given by 

eO = dt + H(x)dy, el = dx, 
(2.1) 

e2 = D(x)dy, e3 = dz. 

(Capital letters are tetrad indices and vary from 0 to 3 and 
Greek indices are tensor indices.) As a consequence, the vec­
tors etA) a assume the form 

e(O)o = eO\ = e(3\ = 1, e(0)2 H, e(2)2 = D, (2.2) 

HAB = (llx)(RAB - ~R1JAB) + (Alx)1JAB 

and the geometry (1.5) may be written as 

ds2 = 1JABeAeB, (2.3) 

where 1JAB = diag( +, -, -, - ). 
On the other hand, taking into account that dxa 

= ea 
(A) eA 

, we immediately get 

eO(O) = e\l) = e3
(3) = 1, 

eO(2) = -HID, e\2) D- 1
• 

(2.4) 

We shall also need the Ricci coefficients of rotation defined 
by 

r1c -e(A)a;[3ea (B)ef3(C)' (2.5) 

[We use the comma for partial derivative, the semicolon for 
covariant derivative, and the bar for tetrad components of 
covariant derivatives. For instance, RAB IC = RAB;aea(C) 
= RAB,aea (C).J From (2.2) and (2.4) together with (2.5) 
we get the following nonvanishing components concerning 
these coefficients: 

.fJ I I _ ,;2 r 12 r 02 r 20 - - r 01 

- rIO = rP21 = H'/2D, 

rl2 -y I22=D'ID, 

(2.6) 

where the prime denotes differentiation with respect to x. 
In the local inertial frame defined by e A = e(A) a dxa 

the higher-derivative gravity field equations, Eqs, (1.2) and 
(1.3), take the form 

(2.7) 

+ a [ - R 21JAB + 4RRAB 41JAB1JCD(RlcID - yM CDRIM) + 4(R IA IB - yMABRIM)] 

+ /3{ - R CDRcD1JAB + 4RAcDBR CD -1JAB1JCD(RICID - yM CDR 1M ) + 2(R IA IB yMABR IM } 

- 21JCD [RABICID - (yMAcRMBID + yMBcRAMID 

+ yMACIDRMB + yMBCIDRAM) - yMAD(RMBIC - rMcR NB rBcRMN ) 

- yMBD(RAMIC - rACRNM - rMcRAN ) - yMcD(RAB1M - rAMRNB - rBMRAN )]}. (2.8) 

We are ready now to demonstrate the following general result. 
Theorem: Any Godel-type solution of higher-derivative gravity field equations HAB = - TAB, having as the source of 

the geometry any field with TAB independent of the points of the space-time, is space-time-homogeneous up to a local Lorentz 
transformation. 

Proof The only surviving components of HAB [Eq. (2.7)] related to Godel-type metrics [Eq. (1.5)] are 

~(~/r 

( D ")2 (D ")" D I (D ")/} 2- -2- -2--
D D D D ' 

H'(H')" 3 [(H')/]2 D' HI(H
I
)' D "(H')2 3-- -- - -3--- +6--

DD 2 D DDD DD 
(2.9) 

4D~R '] 

+/3 --- -5--- +4-- +- - --- +4--{ 
9 (H')4 D' H' (HI)' DI(D")' 1 [(H')/]2 H' (HI)" D"(H')2 
4 D DD D D D 2 D D D D D 
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{ 9 (H')4 9 [(HI)']2 (D ")" (D ")2 H' D'(H')' H'(H')" (H')2 D "} +/3 -41> -2" 1> +41> -21> -1>1>1> -51>1> +41> 1>' (2.11) 

1 R A [2 II D',] {3(H')4 (D")2 H33 =-;2"--;+a R -4R -41>R +/3 41> +21> 

-- +2- ---- +2--H'(H')" (D")" D' H'(H')' D'(D")'} DD D DDD DD' (2.12) 

--- +a-2-R---1 (HI)' [ (H')' 2H'R '] 2" D D D 
+/3 -- -9- - +3- -+4-- +- - ---{ (H')III (H')2(H')' (H')' D" H'(D")' (H')'(D')2 D'(H')"}. D D D D D DD D D DD' (2.13 ) 

where 

(2.14 ) 

The assumption of TAB constant, however, implies that 
HAB is constant, too. On the other hand, it is not difficult to 
see from the above equations that H AB is constant in case we 
have 

H'ID = const=2.o, D "ID = const=m2
• (2.15 ) 

These are precisely the necessary and sufficient condi­
tions for a Godel-type metric to be space-time homogen­
eous. 15,16 Q.E.D. 

Thus the whole class of solutions with TAB constant is 
characterized by the two independent parameters m and .o. 
It is not difficult to show that the last parameter is related to 
the vorticity. In fact, in the local frame considered, the rota­
tion may be written as 

{J)AB = H (yDBA - yDAB) + (yDAB<5°B - yDBO<5°A )], 

(2.16) 

for a velocity field given by 

zr4 = e(Alo = <5AO' (2.17) 

As a consequence, the vorticity assumes the form 

{J)12 = - !(H'ID). (2.18) 
It follows then that the vorticity vector {J)A = !eABCD {J)BCVD 
is given by 

{J)A = (0,0,0,.0), 

where 20. =H'ID. (2.19) 

III. A CLASS OF HIGHER-DERIVATIVE GaDEL-TYPE 
SOLUTIONS 

It is reasonable to question, ab initio, what material con­
tent we may consider as source of our geometry, in order to 
obtain the most general higher-derivative GOdel-type solu­
tion, i.e., a solution that includes all known solutions of Ein­
stein's equations related to such geometries. The answer is 
straightforward if we appeal to a recent work of Rebougas 
and Tiomno. 16 There, they exhibit a remarkable class of ex-

1549 J. Math. Phys., Vol. 28, No.7, July 1987 

act solutions of Einstein-Maxwell-scalar field equation 
which is the most general solution of a Godel-type ST -homo­
geneous metric. So we consider a rotating universe (0.#0) 
for which the material content is a perfect fluid of density p 
and pressure p plus a source-free electromagnetic field FAB 

and a massless scalar field S. Consequently, the energy-mo­
mentum tensor in the tetrad frame becomes 

TAB = PVA VB - P(1]AB - VA VB) + T~SJ + T~~M>, 

where 

T (EMl IF F CD F F M 
AB = 4 CD 1] AB - AM B , 

T~SJ = SIASIB - !1]ABSIMSIN1]MN, 

and zr4 is given by Eq. (2.17). 

(3.1 ) 

(3.2) 

The Maxwell equations concerning the source-free elec­
tromagnetic field are given by 

FABIB + ~ MBFMB + yB MBFAM = 0, 
(3.3) 

whereas the zero-mass scalar field equation is as follows: 

1]
AB

SIA IB - i"AB1]
AB

S 1M = O. (3.4) 
The brackets denote total antisymmetrization. 

On the other hand, the fact we are requiring space-time 
homogeneity of the Godel-type models implies that TAB is 
constant (cf. the theorem in the last section). We remark 
also that we have a preferred direction in our universe deter­
mined by the rotation. Taking into account the above consid­
erations we can seek solutions of (3.3) and (3.4), respective­
ly, related to our model. Let us first consider the 
electromagnetic field. Since it is not a pure test field but also 
acts as source of curvature, it must then be compatible with 
the space-time symmetries. As a consequence, we are led to 
take both E and B along the direction of rotation. Thus the 
only non vanishing components of FAB are 

F30 = F03 = E(z), F12 = - F21 = B(z). (3.5) 

Using (2.6) and (3.5), Eqs. (3.3) reduce, respectively, to 

E,3 + (H'ID)B = 0, B,3 - (H'ID)E = O. (3.6) 

But, since H 'I D = 2.0 (ST homogeneity), the general solu­
tion of Eqs. (3.6) can be written as 
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E = Eo cos[20(z - zo)], 

B = Eo sin[20(z - zo)], 
(3.7) 

where Eo and Zo are constants. In the case of the massless 
scalar field it is trivial to show that if we take 

S=az+b, (3.S) 

where a and b are constants, we can satisfy Eq. (3.4) as well 
as the space-time symmetries. 

Now, the non-null components of HAB for the ST homo­
geneous Godel-type metric are 

Hoo = (1Ix) [ 302 + m 2] + (A/x) 

+ a[ - 2004 
- 4m4 + 240Zm 2

] 

+ f3 [ - 6004 + 24mz02 - 2m4], (3.9) 

HII = H zz = (1Ix) [ - 0 2
] - (A/x) 

+ a[ - 1204 
- 4m4 + 160Zm 2

] 

+ f3 [ - 3604 + 16mz0 2 
- 2m4], 

H33 = (1Ix) [02 - m 2
] - (A/x) 

+ a [ 404 + 4m4 - S02m 2
] 

+ f3 [1204 + 2m4 SmZOZ]. 

( 3.10) 

(3.11) 

As a result, the higher-derivative gravity field equations 
reduce to the following set of three equations: 

E6 3 Z A 4 p=---a ---2m (2a+f3) 
2 2 x 

+ 404(a + 3f3) + OZ/x, (3.12 ) 

E6 a2 A 4 
p= --+-+-+2m (2a+f3) 

2 2 x 

+ 1204(a + 3f3) - 1602mz(a + f3) + 02/X, 
(3.13 ) 

m 2/x = 1604(a + 3f3) + 4m4(2a + f3) 

24m zOz(a + {3) + 2(02/X ) - E~ + a2. 
(3.14) 

The positivity of energy and pressure is guaranteed if the 
cosmological constant satisfies the relation 

- 1204(a + 3f3) - 2m4(2a + f3) + 16m202(a + {3) 

E6 0 2 a2 A 4 4 + - - - - -<-<40 (a + 3{3) - 2m (2a + {3) 
2 2 2 x 

E6 3 2 0 2 

+---a +-
2 2 x 

(3.15) 

which implies that 

SO\a + 3f3) + 0 2 [1Ix - Sm 2(a + f3)] - a2/2>0, 
(3.16) 

the equality having as its consequence 

A E6 
-=-
x 2 

(3.17) 
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Equations (3.12) and (3.13) imply in an equation of 
statep = rp for the cosmic fluid, wherein ris a constant. The 
Lichnerowicz condition, 0< r< 1, will be ensured if 

A/x<E6/2 - a2 - 2m4(2a + f3) - 4a4(a + 3f3) 

(3.1S) 

which is consistent with (3.15) and (3.16). 
In the integration of Eqs. (3.12)-(3.14) three cases 

arise, according as m2 is >, <, or = O. In order to make 
easier the comparison of our results with those of the litera­
ture, we express our solutions in cylindrical coordinates. Of 
course, the Godel-type metric in cylindrical coordinates, i.e., 

ds2 = [dt + H(r)d<t>]2 - D 2 (r)d<t>2 - dr - dz2
, 

(3.19) 

is precisely of the form (1.5). The Godel universe corre­
spondsto 

H(r) = (2~/m)sinh2(mr/2), 
(3.20) 

D(r) = sinh(mr)/m, 

where <t> is an angular coordinate. We also call attention to 
the fact that the theorem of Sec. II is valid mutatis mutandis. 

In case I 

[1604(a + 3f3) + 4m4(2a + f3) - 24m20z(a + f3) 

+202/X- E 6 +a2 =mZ >O], 

we obtain 

ds
Z 

= [dt + ~ sinh
2

( ~r )d<t> r 
- ~ sinh2 (mr)d<t>2 - dr - dz2

• 

m 
(3.21 ) 

Here <t> is to be regarded as an angular coordinate. In fact, 
Eqs. (3.21) satisfy Maitra's conditions for regularity near 
the origin, 17 i.e., 

H = rXconst, D = r. 

We also have that the relation 

OZ/x >E6/4 - S04(a + 3f3) 

+ 100zm2(a + f3) - m4(2a + {3) 

holds. 
Case II 

[1604(a + 3f3) + 4n4(2a + f3) 

+ 24n202(a + f3) + 202/x - E6 + a2 

=-n<O, m 2 ==._n2<O] 

corresponds to the following metric: 

ds
2 

= [dt + :~ sin
2

( ~)d<t> r 
The relation 

E6 > 2az + SnZ02(a + {3) + 4n4(2a + fJ) 

(3.22) 

(3.23 ) 

(3.24 ) 

holds. Equation (3.23) is an analytical extension of Eq. 
(3.21) with m -in. We remark that our coordinates are true 
cylindrical coordinates, i.e., they satisfy Maitra's conditions. 
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The remaining case, m Z = 0, may be considered as a 
limit of the first (m2_0) and the second (n2-.0) cases, re­
spectively. The metric is given by 

dsz = [dt + O? d<l>]2 -? d<l>2 - d? - dz2
• (3.25) 

In this case the following relation holds: 

402/x + 3204(a +(J) 

(3.26) 

We have thus succeeded in deriving the most general 
higher-derivative solution concerning ST -homogeneous Go­
del-type universes. As we have anticipated, our solutions are 
such that we can recover from them all known solutions of 
Einstein's equations concerning such geometries. Indeed, as 
a,(J -- 0, we obtain the Rebougas and Tiomno solution, 16 
which includes all known solutions of Einstein's equations 
related to these geometries. (For instance, when 
a,/3,Eo,a -.0, we get the Godel solution 14 with m2 = 202 [cf. 
Eq. (3.20)]. If a,(J,a,m ..... 0 we recover the Som-Raychaud­
huri metric. 18 The Banerjee-Banerji 19 as well as Rebougas20 

solutions are obtained when a,(J,a - 0, noting that the first 
one concerns a charged fluid and thus the electromagnetic 
field is different from that of the second one, but both have 
the same T~IJ,Ml, and so on.21-24

) We also remark that Rie­
mannian Godel-type ST-homogeneous metrics with the 
same value of m 2 and 0 are isometric. 16 

We have analyzed so far the fourth-order gravity solu­
tions from a classical point of view. In this sense, the param­
eters a and(J are quite arbitrary. However, in the framework 
of quantum field theory, the situation is rather different. In 
fact, the higher-derivative theory contains two mass 
scales, 12-14.25 associated with the spin-O and spin-2 particles 
present in the linearized theory. They are given, respectively, 
by 

m~ = 1/4x(3a + /3), (3.27) 

and 

m~ = - 1/2x(J. (3.28) 

The spin-O particle has significance even in the nonlinear 
sector.26 

Thus nontachyionic spin-O and spin-2 particles require 
(3a + (J) to be positive and (J to be negative, respectively. 
Consequently, these restrictions on the parameters a and (J 
must be included in our solutions. 

IV. ROTATING GODEL-TYPE UNIVERSE WITHOUT 
VIOLATION OF CAUSALITY IN HIGHER-DERIVATIVE 
GRAVITY 

It is interesting to consider the question of closed time­
like lines in our solutions. To accomplish this we write Eq. 
(2.38) in the form 

ds2 = dt 2 + 2H d<l> dt - L d<l>2 - d? - dz2
, (4.1) 

where 

L(r) =Dz_H2. (4.2) 

Clearly, if L(r) becomes negative at r l <r<rz, then the 
curve defined by r,t,z = const is a closed timelike trajectory. 
The existence of such curves poses a difficult problem related 
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to the possibility of violation of the well-established causality 
principle. 

In our case, when m2 > 0, Eq. (3.21) leads to 

L(r) = :2 sinh2( ~r)[ 1 - (~22 _ 1 )sinh2( ~r)]. 

Consequently, unless 

m2;;:.402, 

L(r) will become negative for 

. h2(mrl) (40
2 

sm -->--
2 m 2 

1 . 
)

-1 

(4.3) 

(4.4) 

(4.5) 

Thus the limiting case in which the noncausal region 
will disappear corresponds to m 2 = 402

• On the other hand, 
a straightforward calculation gives the following relation in 
the case of our solutions with m 2 > 0: 

402/x;;:.m 2/x - 3204(a + 3(J) 

+40m20 2(a+(J) -4m4(2a+(J). (4.6) 

Undoubtedly, the solution m 2 = 402 is compatible with 
the preceding inequality. It follows then from (3.14) and 
(3.16) that 

202/x = 16(3a + (J)04 - E6 + a2
, 

- 16(3a +(J)04 + 202/x - a2 ;;:.0. 

Consequently, 

E~ =0, 202/x=a 2 + 16(3a+(J)04. 

Now, from Eq. (3.17) we get 

A/x = 4(3a + (J)04 202/x, 

and from Eqs. (3.12) and (3.13) 

p=p=O. 

(4.7) 

( 4.8) 

(4.9) 

(4.10) 

(4.11 ) 

Admitting that 16x2a2 (3a + (J) < 1 and taking into ac­
count that (3a + (J) must be positive in order to avoid the 
tachyonic spin-O particle, we obtain from Eq. (4.9) the fol­
lowing values concerning 0 2

: 

07c) = [1 ~1- 16x2a2(3a +(J) ]/16(3a +(J)x, 
( 4.12) 

O~q) = [1 + ~1 - 16x2a2(3a + (J) ]/16(3a + (J)x. 
(4.13 ) 

When (3a + (J) --0, O~C) -.a2x/2, and we recover the Re­
bougas and Tiomno solution,16 which is the only known ex­
act Godel-type solution of Einstein's equations describing a 
completely causal space-time homogeneous rotating uni­
verse. 

We have thus succeeded in finding two completely caus­
al rotating solutions. We should like to mention that the 
solution concerning !17q ) has no classical analogs, and it is, 
as far as we know, the first known exact solution of higher­
derivative gravity field equations with this characteristic. 
"Classical" here means "from the point of view of general 
relativity." On the other hand, it is not difficult to show that 
in case m<,O we cannot have completely causal solutions. 

Last but not least, it is interesting to question if the caus­
al pathologies of these universes can be avoided in the ab-
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sence of the scalar field. The answer is yes. Indeed, our pre­
vious results provide us with the completely causal rotating 
solution, in case a2 = 0 and m2 > 0: 

1 m2 

=--, 
8(3a+p)x 4 

A= p=p=o. 

(4.14 ) 

We point out that the above solution has no similar one in 
the framework of general relativity. 
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Symmetric tensor spherical harmonics on the N-sphere and their application 
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The symmetric tensor spherical harmonics (STSH's) on the N-sphere (S N), which are defined 
as the totally symmetric, traceless, and divergence-free tensor eigenfunctions of the Laplace­
Beltrami (LB) operator on S N, are studied. Specifically, their construction is shown 
recursively starting from the lower-dimensional ones. The symmetric traceless tensors induced 
by STSH's are introduced. These playa crucial role in the recursive construction of STSH's. 
The normalization factors for STSH's are determined by using their transformation properties 
under SO(N + 1). Then the symmetric, traceless, and divergence-free tensor eigenfunctions of 
the LB operator in the N-dimensional de Sitter space-time which are obtained by the analytic 
continuation of the STSH's on SNare studied. Specifically, the allowed eigenvalues of the LB 
operator under the restriction ofunitarity are determined. Our analysis gives a group­
theoretical explanation of the forbidden mass range observed earlier for the spin-2 field theory 
in de Sitter space-time. 

I. INTRODUCTION 

A renewed interest in field theories in de Sitter space­
time l has been aroused among particle physicists and cos­
mologists since inflationary cosmologies were proposed. 2-4 

Since bosons of definite spin are described by totally sym­
metric, traceless, and divergence-free tensors in Minkowski 
space-time we are led to study such tensors also in de Sitter 
space-time. (Note, however, that particles with arbitrary 
spin can be studied by using Weinberg-type fields. s- 7 ) It is 
particularly interesting to find the conditions for such ten­
sors to form unitary representations ofSO( 4,1), which is the 
isometry group of de Sitter space-time.8 (Recall that unitar­
ity is necessary to avoid negative probabilities.) The author 
has observed before that certain values of (mass)2 are for­
bidden for the spin-2 field theory because of the appearance 
of negative-norm states.9 This implies that the representa­
tions ofSO{4,l) corresponding to those values of (mass)2 
are nonunitary. (The mass gap discussed in Ref. 9 is differ­
ent in nature from the well-known mass discontinuity in 
Minkowski space-time, 10,11 which rules out the possibility of 
the graviton being the massless limit of a massive spin-2 par­
ticle. ) 

The N-dimensional de Sitter space-time is the maximal­
ly symmetric solution of the Einstein equation with a posi­
tive cosmological constant A, 

RILl' - ! gILvR + AgILv = O. (1.1 ) 

The metric can be written as 

ds2 = -dt2+cosh2tds~_I' (1.2) 

where ds~ _ 1 is the line element of S N - I. We have adopted 
the unit in which 

2A/(N - l)(N 2) = 1. (1.3 ) 

a) Present address. 

The metric (1.2) is related to that of SN, 

(1.4) 

by 

x = 1T/2 - it. ( 1.5) 

Consequently, the totally symmetric, traceless, and diver­
gence-free tensor eigenfunctions of the Laplace-Beltrami 
(LB) operator Va va in de Sitter space-time can be obtained 
by the analytic continuation of the symmetric tensor spheri­
cal harmonics (STSH's) on SN, which are defined here as 
the symmetric tensor eigenfunctions hILvK "A of the LB oper­
ator on S N satisfying 

( 1.6) 

where glLv is the inverse of the metric gILv of S N. (It must be 
kept in mind that the symmetric tensors are not enough to 
obtain all the possible bosonic representations for N> 4.) 

With this observation in mind we first study the STSH's 
on S N. The STSH's of rank r< 2 have been studied by Chodos 
and Myers l2 and those of arbitrary rank by Rubin and 
Ordonez l3 by using polynomials of the Cartesian coordi­
nates in (N + 1 )-dimensional Euclidean space. (We leaveN 
arbitrary because no difficulty arises by doing so.) Here we 
show how to construct them in terms of associated Legendre 
functions. This construction is more suitable for obtaining 
the symmetric, traceless, and divergence-free tensor eigen­
functions of the LB operator in N-dimensional de Sitter 
space-time (N;.3) by analytic continuation. Now these ei­
genfunctions form a representation ofSO(N,I). But it must 
be unitary if they are to describe particles in de Sitter space­
time. So we introduce an inner product among these eigen­
functions and determine the allowed eigenvalues for the LB 
operator Va va under the restriction of unitarity. 

The rest of the paper is organized as follows. In Sec. II 
we construct scalar spherical harmonics on S N. In Sec. III 
we discuss the STSH's on S 2. In Sec. IV we rewrite the equa-
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tions satisfied by STSH's in such a way that they are ade­
quate for the recursive construction of the STSH's on S N 

from the lower-dimensional ones. In Sec. V the symmetric 
traceless tensors induced by STSH's are defined and some of 
their properties are derived. These tensors play an important 
role in the construction ofSTSH's. Then in Sec. VI the equa­
tions derived in Sec. IV are examined and the STSH's on S N 

are given in terms of those on SN- J for N;;;.3. Since the 
STSH's on S 2 are constructed in Sec. III, this enables one to 
construct the STSH's on S N with arbitrary N. In Sec. VII we 
analyze the transformation properties of a certain class of 
STSH's under SO(N + 1) and use them to determine the 
normalization factors ofSTSH's in Sec. VIII. Then we go on 
from S N to N-dimensional de Sitter space-time. In Sec. IX 
we study the symmetric, traceless, and divergence-free ten­
sor eigenfunctions of the LB operator in N-dimensional de 
Sitter space-time (N;;;. 3), which are obtained by the analytic 
continuation of the STSH's on S N. There we define an inner 
product among those tensor eigenfunctions and find the al­
lowed eigenvalues of the LB operator by requiring unitarity, 
i.e., the positive-definiteness of the norm. We encounter 
zero-norm eigenfunctions, which are identified with zero in 
the unitary representations, for certain values of the LB op­
erator. We show in Sec. X that these eigenfunctions are ob­
tained by the analytic continuation of symmetric traceless 
tensors induced by STSH's. In Sec. XI we summarize the 
results obtained in this paper. 

II. SCALAR SPHERICAL HARMONICS 

Scalar spherical harmonics on S N have been studied by 
many authors. 12

-
14 Here we write them down in terms of 

associated Legendre functions. 
Let us parametrize the line element ds~ of S N as follows: 

dsi = dO i , (2.1 ) 

ds;, =dO~ +sin2 0n dS~_J (n=2, ... ,N). (2.2) 

Let On be the LB operator on S n 

(2.3) 

where i andj run from Ol to On andg(n)ij is the inverse of the 
metric tensor gijn) on S nand 

.fi<n) = sinn- 1 0nsinn-2 0n_l" 'sin O2, (2.4) 

Then the scalar (Oth-rank tensor) eigenfunctions of the LB 
operator ON on S N, i.e., the scalar spherical harmonics on 
S N, are given by 

[ 

N _I ] 1 
Y1N···1,(ON, ... ,OI) = II nPI:-'(On) __ ei/,e" 

n=2 ~ 
(2.5) 

where /J,l2, ... ,IN are integers that satisfy 

IN;;;.IN_l;;;'·· ';;;./2 ;;;.1/1 1. (2.6) 

Here nP~ (0) is defined by 

pi (0) = cl (sinO)-(n-2)/2P (l+in-2)!2)(cosO) 
n L n L L + in - 2)/2 , 

(2.7) 

where P v-!L(x) is the associated Legendre function of the 
first kind defined by15 
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1 (_1 - X)!L12 P ;-!L(x) = ----
r(1+p) l+x 

XF( -v,v+l;l+p; I~X). (2.8) 

Here F( a,/3;y;z) is the hypergeometric function and net is a 
normalization constant determined by requiring 

JdOl·"dOn.fi<n)Y/" 1 Y/* .... /. =0// ... ·0//., (2.9) 
1'1 I n 1 n nil 

as 

cl =[2L+n-l (L+I+n-2)!]I12. 
n L 2 (L -I)! 

(2.10) 

The following formula proved in Appendix A has been used 
to find the above equation: 

J~ 1 P ;-!L(x)P ;:!L(x)dx 

(v' 

One has 

2sin1T(v'-v) r(1-p+v') 

v)(v'+v+l)1T r(l+p+v') 
(2.11 ) 

[~ + (N 1 )cot 0 a _ l(l + N 
ao 2 ao sin2 e 

= -L(L+N-1)NPue). 

2)] NP~ (0) 

(2.12 ) 

This implies 

On Y/N .. '1, = - In (In + n - 1) YIN' "I,' (2.13) 

In particular, the eigenvalues of the LB operator on S N 

for scalar spherical harmonics are - L(L + N - 1) 

(L = 0,1, ... ). 

III. STSH'S ON $2 

In this section we study the STSH's on S 2. The metric of 
S2 is 

(3.1) 

The scalar spherical harmonics are well known and have 
been given in the previous section. The vector spherical har­
monics (the STSH's of rank 1) y~/m)(O,f/J) are given byl6 

y~lm)(e,f/J) = [1Iv'7(7+ 1)]€!LvavYlm(e,f/J) (1;;;.1), 
(3.2) 

where the totally antisymmetric tensor E!Lv is defined by 

Eee =€",,,, =0, 

Ee", = €",e = sin e. 
It is covariantly constant, i.e., 

( 3.3a) 

(3.3b) 

V!LEvA. 0. (3.4) 

The vector spherical harmonic Y ~/m) (e,f/J) satisfies 

vaVa y~/m)(e,f/J) = [ - /(/ + 1) + 1] y~/m)(e,f/J) (3.5) 

and 

(3.6) 

where dD,2 is the volume element of S2. 
It is well known that the STSH's of rank r;;;. 2 do not exist 
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onS 2 (see Refs. 13 and 16) as we will show below. Suppose 
that hJ.t .... J.t, is a symmetric, traceless, and divergence-free 
tensor of rank r>2. Define 

(3.7) 

where [ ... ] indicates antisymmetrization. The trace of the 
left-hand side (lhs) with respect to v and f.ll is zero because 
hJ.t .... J.t, is both traceless and divergence-free. Thus we have 

fJ.t, ... J.t'_1 =0. (3.8) 

Therefore 

V[J.thvlp'''·lt,_ I = O. ( 3.9) 

By multiplying this equation by VP we find 

(3.10) 

Since Va va is a negative-definite operator on a compact 
manifold, this equation implies that hJ.t, .. 'p, = O. 

IV. EQUATIONS FOR STSH'S 

Let hp , .. 'p, be an STSH of rank ron S N, Then it satisfies 
by definition 

!t'{3ha{3J.t, .. 'p, _ 2 = 0, ( 4.1 ) 

Vahap""P,_' =0, (4.2) 

Dhp, .. 'p, = VaVa hp, ... J.t, = [ - L (L + N 1) + r] hp,. '/-,,' 
(4.3) 

where !t'{3 is the inverse of the metric ga{3 of S N. Here L is 
known to be an integer larger than or equal to r.13 We write 
the metric of S N here as follows: 

ds2 = dX2 + sin2 X 1Jij dO; dOj • (4.4) 

where 1J ij is the metric tensor of S N - I. We denote the covar­
iant derivative on S N - 1 by V k' Below we rewrite Eqs. 
(4.1 )-( 4.3) as tensor equations on S N - I with X dependence 
written explicitly. This is the first step toward the construc­
tion of the STSH's on S N from those on S N - I. 

It is convenient to rescale hJ.t, ... J.t, as follows: 

(4.5) 

where il, ... ,im run from 01 to ON _ I' Then Eqs. (4.1)-(4.3) 
can be written, after a tedious calculation, as follows: 

[~ + (N + m - 2)CotX]h ... ; , 
aX ' m 

[a
2 a o-m] -2+ (N-l)cotx-+-.-2- h""i ax ax SlllX m 

'2 -+ 2m [(cot XI(Slll X) ]VU , h, .. ·jm) 

+ m(m - 1) [(cot2 x)/(sin2 X) J1JU,i, h""im ) 

= - L(L + N - l)h""im' 

(4.6) 

( 4.7) 

(4.8) 

where 0 = V'Vi . Notice that these equations do not depend 
on r, 
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V. SYMMETRIC TRACELESS TENSORS INDUCED BY 
STSH'S 

Let}; "i be an STSH of rank m on S N - I (N)3). It is 
, m 

known that'3 

O}; ... , =[-I(l+N-2)+m]}; ... j, (5.1) 
I m I m 

where I (>m) is an integer. We define the nth symmetric 
traceless tensor T~n)., induced by }; ... j as follows: 

I m+n I m 

Tin) . i is a linear combination of symmetric tensors of the 
1 m+ n 

form 

1J( .. .. '1J. . V "'V r . ) 
',1 2 'Zk_I

'
2k '2k+l lnJi,,+l""m+n' 

where 1Jij is the metric tensor of SN - 'and Vj is the covariant 
derivative there. It is traceless and the coefficient of 
Vi' "'V r. "·m+n) is 1. 11 lnJ in +,' 

For example, 

TiO)'i =}; .. , , 
1 m 1 m 

(5.2a) 

(5.2b) 

= V(i Vi }; ... j ) + [(1- m) (l + m + N - 2) 
I 2 3 1'11+2 

X(N+2m-1)-IJ1J(ii~"")' (5.2c) l.zl i3 m +2 

Our analysis here is on S N - , instead of S N merely for later 
convenience. We will find in the next section that the STSH's 
on S N depend on those on S N - I through tensors T i~). i • 

I m+n 

We introduce the following shorthand notation for a 
totally symmetric tensor T i ,· . im : 

- -k 
V'Tm = V Tki""im I' 

Tr Tm = 1J klTkli ... , • 
I m- 2 

(5.3a) 

(5.3c) 

(5.3d) 

Let us first derive some useful equations using the ele­
mentary formula 

n 

[V- V- ]A i,""n - " R i, Ai,. 'I"'in 
j' k - L.J Ijk S' 

5=1 

(5.4 ) 

where R }kl is the Riemann tensor. The Riemann tensor for a 
sphere is 

(5.5) 

Then by calculating the commutator [Vi, ,0] we have 

OVi , Ti .. i = V, OT, .... ,' + (N - 2)V,. T, ... i 
'If I 2 n I 2 n 

where T i , .. . in _ I is a totally symmetric tensor. By symmetriz­
ing this equation we obtain 

OV(, T, "'i) = V(i OT, .... ,' ) 
I ::: n 1"2 n 

-k 
- 2(n - 1 )1J(i,', V T"""n)k' (5.7) 

which becomes, in the abbreviated notation, 
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OVTn_ 1 = VOTn_ 1 + (2n + N - 4)VTn 1 

- 2(n - l)'T/VT·Tn_ l . (S.8) 

In a similar manner we have 

(n + 1)V'(VTn ) = [0 + n(N + n - 3)]Tn 

- n(n - 1)'T/ Tr Tn + nVV' Tn' 
( S.9) 

Since OT;:~ n and V' T;:~ n are traceless, they are pro­
portional to T;:~ n itself and T;: ~ ~~ l' respectively. We 
will prove below that 

where 

( S.lOa) 

(S.lOb) 

a(n)=n(2m+n+N-4)-I(l+N 2)+m+n, 
(S.lla) 

(n) n N + 2m + n - 4 
c = -----------

m + n N + 2(m + n) - S 

X [ (m + n - 1)( m + n + N - 3) - 1 (l + N - 2)] . 
(S.l1b) 

The proof is by induction. It is obvious for n = O. Suppose 
that these formulas are valid for n ->i, ... ,n - 1. We first note 
that 

T{n) =VT{n-l) _b(n)rlT(n-2) (5.12) 
m + n m + n - 1 "I m + n - 2' 

where b (n) is a constant, because Tr Tr VT;:'; ~ ~ I = O. By 
taking the trace of this equation we find 

b(n)={(m+n l)/[N+2(m+n) S)J}c(n- lJ • 

(S.13) 

Then OT;:~ n and V' T;:~ n can be evaluated by using (5.8) 
and (S.9). We obtain 

a{n) = a(n-I) + 2(m + n) + N - 4, (5.14 ) 

c(n)=[lI(m+n)][a(n-I)+(m+n 1) 

X(N +m +n -4) 

+ (m + n _1)c{n l) _ 2b (n)]. (S.15 ) 

By substituting the explicit expressions of a{n - 1), c(n - 1), 

and b (n) we obtain (5.l1a) and (5.11b). 
As long as m + n>l, c{n) is nonzero. (Notice that 

d2
) = 0 for m = 0 if N = 2. This is why we excluded N = 2. ) 

We conclude from this that T;"n~ n is nonzero for n<) - m. 
If m + n = 1 + I, T;:~ n is both traceless and divergence­
free. This implies that T;:~ n = 0, which can be proved as 
follows. Let us define the inner product of two tensorsA j , . • jm 

and B i .... im by 

(S.16) 

where dflN _ I is the volume element of SN I. Obviously 
(A,A) is positive definite and (A,A) = 0 implies Ai, 'i

m 
= O. 

Since T;: ~ n is traceless, 

( S.17) 
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For m + n = 1 + 1 we obtain (T{n),T(n» = Oby partial in­
tegration because then T;: ~ 11 is divergence-free as well. 
Thus Ti~-Im + I) = O. 

Now this implies that V")m can be expressed as a linear 
combination of tensors of the form 'T/kT;: ~;~ 2k (k> 0) if 
m + n = 1 + I. Then it is clear that vn + 1Jm with any non­
negative integerj can be expressed in a similar manner. Since 
one cannot make a traceless tensor as a linear combination of 
the tensors of the form 'T/kT ;"n~ n (k > 0, m + n<J), T;:~ n 

must be zero for m + n > I. 
Finally, it can readily be shown that two induced sym­

metric traceless tensors are orthogonal to each other if they 
are induced by STSH's of different ranks or by those which 
are of the same rank but orthogonal to each other. 

VI. ANALYSIS OF THE EQUATIONS FOR THE STSH'S 

In this section we derive the formulas which give the 
STSH's on S N in terms of those on S N 1 starting from the 
equations derived in Sec. IV. 

Suppose that the first nonzero component of an STSH 
hp. ... 'p., is hrxi .. ' 'i,' that is, hr 'xi,' 'im = 0 for m < sand 
hr .xi .. i, #0. Then from (4.8) we obtain 

[~+ (N - l)cotX~+ ~ -s]1s 
ax2 aX sm2 X 

= -L(L+N-l)ls, (6.1) 

where we have used the abbreviated notation introduced in 
the previous section. That is, 

( 6.2) 

Because of the completeness of the STSH's on S N 1 we can 
assume without loss of generality that 

Is o:.)!U(eN_p· .. ,el ), (6.3) 

where )~" is an STSH on S N - 1 of rank s with 

O)~U= [-I(l+N-2) +s]J~", (6.4 ) 

where a represents the labels other than I. The nonsingular 
solution of Eq. (6.1) is 

Is = NP~ (X»)!" (L>I>s). (6.5) 

(We do not specify the normalization in this section.) 
To find the other components which accompany Is giv­

en above we postulate that 

where the tensors T;"r 11 ~ik are the symmetric traceless ten­
sors induced by)!u. The coefficients c~n) are functions of X 
only. Since T;,,/- n is zero if s + n > I, we assume here that I>r 
and will discuss the cases where 1< r later in this section. 

Now let us derive the equations satisfied by ckn
). First we 

examine Eq. (4.6), which can be written as 

Trfm+2 = - [1I(sin2 x)lfm' (6.7) 

The trace of (6.6) is 
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[n12) 

Trls+n = L (-I)kCkn)7]k-1 
k=1 

X 2k[N-I+2(s+n-2k)] T(n-2k) 
(s + n - 2k)(s + n 2k _ 1) s+n-2k' 

( 6.8) 

Equation (6.7) is satisfied if 

cin) = (s + n) (s + n - 1) c(n - 2) 

3] . 2 k-I 
2k [N + 2(s + n - k) 

By iterating this equation we find 

(s+n)! cin) 
2kk! (s+ n - 2k)! 

sm X 
(6.9) 

[ 

k 1 ] crin - 2k) 

X JJI N + 2(s + n - 2k + a-I) sin2k X 
(6.10) 

Equation (4.7) can be written as 

V'/m+ 1 - [~ + (N + m - 2)CotX]lm. (6.11) 

To calculate the divergence of (6.6) we first note that 

V'(7]kT(n') )=~7]k-IVT(n') +s+n'7]kV'T(n') 
s + n' S + n S + n' S + n S + n' , 

(6.12 ) 

where n' = n 2k. We find from (S.1Ob) 

V'T(n'),=_n_ N+2s+n-4 
S+n s+n N+2(s+n)-S 

X [(s + n - I)(s + n + N - 3) 

- / U + N - 2) ] T;: -;;-, ~ 1 • ( 6.13 ) 

Here VT~";)n' can be written by using (S.I2) as 

VT;:)n' T;:~'~I +a7]T;";-;;-'~I' (6.14 ) 

where 

a = {n'(N + 2s + n' - 4)/[ (N + 2s + 2n' - 3) 

X (N + 2s + 2n' - S) ]} [ (s + n' - 1) 

X(s+n'+N 3)-/U+N-2)]. (6.1S) 

Hence we have 

V' (7]kT;";)n' ) 

_ 2k k-1T(n'+I) 
---7] s+n'+1 

s+n 

+ n' (N + 2s + n' - 4) 

(N + 2s + 2n' - 3) (N + 2s + 2n' - S) 

X [ (s + n' - 1) (s + n' + N - 3) 

- 1(1 + N - 2) ] 7]kT; "; -;;-, ~ 1 • 

By using this formula Eq. (6.11) can be reduced to 

(n' + I)(N + 2s + n' - 3)[N + 2(s + n - k) - 1] 

(s + n + I)(N + 2s + 2n' - 3)(N + 2s + 2n' - 1) 

(6.16) 

X[(s+n')(s+n'+N-2) /(/+N 2)]cin
+1) 
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2(k+1) (n+l) 
- ck + 1 

s+n+l 

= - [~ + (N+s+n-2)cot x ]c1n ). 

Then substitution of (6.10) yields 

(n' + 1) (N + 2s + n' - 3) 

(s + n' + 1) (N + 2s + 2n' - 3) 

( 6.17) 

x [(s + n') (s + n' + N - 2) -/U + N - 2) ]crin
' + I) 

s+ n' 1 c(n' -I) 

N + 2s + 2n' 3 sin2 X 0 

= -[~ + (N+s+n'-2)Cot X ]c6't'). (6.18 ) 

Notice that nand k appear only through n' = n - 2k. Other­
wise this equation would be inconsistent. By letting 

( 6.19) 

and C6 - I) = 0, cin) for arbitrary nand k can be obtained 
from (6.10) and (6.18) as long ass + n)/, which is the case 
for all n here because we have assumed l)r. Then they satisfy 
Eqs. (6.7) and (6.11). 

Now let us show that Eq. (4.8), i.e., 

K = [~+ (N-l)cotX~+ EJ-m]f 
m ax2 aX sin2 X m 

cotx - coe X 
+2m-'-z -Vlm _ 1 +m(m-I)-'-2-7Jfm Z 

sm X sm X 
+L(L+N-l)/m =0, (6.20) 

is satisfied by 1m obtained by the procedure explained above. 
The proof is by induction with respect to m. Obviously this 
equation is satisfied for m<,s. Suppose it is satisfied for 
m-m - 1 and m - 2. Now Km can be expanded as 

[(m -s)12) 

Km = L gk(X)7]kT;:;' 2k- 2k). (6.21) 
k=O 

It is sufficient to show that the coefficientsgk (X) are zero. If 
Tr Km = 0, thengk(X) =Ofor k #0. IfV'Km is also zero, 
thengo(X) 0. After a tedious calculation we find 

TrKm = - [1I(sin2x)]Km_ z, (6.22) 

V'Km = - [~ + (N +m - 3)CotX] Km I' (6.23) 

which are zero by the assumption of induction. 
Next let us examine what happens if we let 1< r. What 

we will find is that there are no solutions in this case. Since 
Is + n with s + n <,/ can be constructed without any problem, 
we examine the component with s + n = / + 1. Let us write 
J; + 1 as follows: 

(6.24) 

where 

li'+ 1 = - c: l - s+ l)7]Ti~-ls I) + ... 
+ (- I)kcil-s+ 1)7]kTi~-2k~2/-I) + .... 

(6.2S) 

Here 1/+ 1 would be cril - s + \)Tj~-IS+ I) if Ti~-IS+ I) was 
nonzero, The trace and the divergence ofl i + 1 can be found 
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by considering what those of cbl-s+ I)Tj~-ls+ 1) would be. 
Thus we have 

Tr!/+ 1 = 0, ( 6.26) 

VI' _ { 1 cb
l

-
s
-

1
) 

1+ 1 - N + 21 - 3 sinz X 

- [~ + (N+I-2)Cot x] Cbl- S
)} Tjl-s). 

(6.27) 

The coefficient of T j 1- s) on the rhs is nonzero as is shown in 
Appendix B. 

Now we find 

(6.28 ) 

by partial integration because 

VTj'-S) cxT/Tj'--/-l). (6.29) 

(Recall that Tj~-IS+ 1) = 0.) Therefore one cannot find 
!/+ 1 satisfying Eq. (6.27). [In general one can add terms 
proportional to induced symmetric traceless tensors other 
than T j' - s) on the rhs of Eq. (6.27), but the above proof of 
the absence of the tensor! / + 1 satisfying this equation is still 
valid because of the orthogonality of induced symmetric 
traceless tensors.] Therefore one cannot construct an STSH 
starting fromJs = NP~ (X)J~a with 1< r. Hence 

(6.30) 

We have given a prescription for constructing an STSH 
on S N from one on S N - 1. Now it is possible to construct an 
STSH on SN starting from one on SZ which is labeled by 
[/Z,rZ;/I]' where rz is its rank and Iz is the angular momentum 
on S Z and 11 is the angular momentum on S 1. From this one 
can construct an STSH on S 3 of rank r 3 with angular momen­
tum 13' Then one can construct an STSH of rank r4 with 
angular momentum 14 on S 4 from the resulting STSH on S 3, 

and so forth. An STSH on SN thus constructed can be la­
beled by [IN,rN;''';/2,r2;/d. It can readily be shown that 
these STSH's are mutually orthogonal with respect to the 
inner product defined by (5.16). 

The STSH's on S N form a unitary representation of 
SO(N + 1). Equation (6.30) constitutes the branching rule 
under the decomposition SO(N + 1) :JSO(N). From this 
branching rule one can see that the STSH's on S N of rank r 
with 0 = - L(L + N - 1) + r form the unitary represen­
tation which corresponds to the Young diagram labeled by 
[L,r,O, ... ,O] (see Ref. 13). 

VII. TRANSFORMATION PROPERTIES OF STSH'S 
UNDER SO(N+1) 

In this section we investigate transformation properties 
ofa certain class ofSTSH's under SO(N + 1). We will use 
the result of this section to find the normalization factors for 
STSH's in the next section. Since the normalization factors 
for N = 2 are already calculated in Sec. III, we restrict N to 
be larger than or equal to 3. 

Let h ~~lq~~ be an STSH of rank r with 
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o = - L (L + N - 1) + r which satisfies the following 
conditions: 

(i) h i~l~~"'i", = 0 (m' <m); (7.1a) 

(1'1') h Cmlqa) = (sinX)2m-r(sin 0) -my (X 0) 
y-' ·xlJ·j,·i!. L/qa , , 

(7.1b) 

where YL/qa (X,O) is a scalar spherical harmonic on S N of 
which the angular momenta on S N, S N - 1, and S N - 2 are L, 
I, and q, respectively, and 0= (O,ON_l, ... ,OI); and (iii) 
h c mlqa) . is an STSH on S N - 1 that satisfies 

X···Xl.···lm 

Dh i~li~';:"'im = [ -I(l + N - 2) + m]h ~~lq;;~"im' 
(7.1c) 

Here (J" represents the labels other than those explicitly writ­
ten. Clearly, h ~~lq~~ can be labeled by [L,r;l,m;q,O; ... ]. (See 
the end of the previous section. ) 

Next let us parametrize S N in (N + 1) -dimensional Eu­
clidean space as 

Xl = sin X sin 0 sin ON _ 2" 'sin O2, 

X2 = sin X sin 0 sin ON _ 2 ••• cos O2, 

X N = sinx cos 0, 

X N + 1 = cosX· 

(7.2) 

The Killing vectors that form the group SO(N + 1) are giv­
en by 

a a 
XCij) =xi -a -Xj -a . (7.3) 

Xj Xi 

The SO(N + 1) transformations of STSH's are convenient­
ly described by their Lie derivatives with respect to the Kill­
ing vectors. The Lie derivative of a tensor hj.l. ... 'j.I., with re­
spect to a vector Yj.I. is defined by 

Ly = yAaA + aj.l., y AhAj.l.2" 'j.I., + aj.l.2 yAhj.l.,A "j.I., 

+ ... + a" yAh"." A' r-,. .-I.-r - 1 
(7.4 ) 

If yj.l. is a Killing vector, tensor operators such as V j.I. or gj.l.v 
commute with Ly. Therefore, if hj.l. .... j.I., is an STSH with 
0= - L(L + N - 1) + r, so is Lyhj.l. .... j.I.,. Below we will 
study the transformation ofSTSH's h ~',~lq~~ generated by the 
Killing vector X = XCN + I.N) , which can be written as 

X = cos 0 ~ - cot X sin 0 ~ . 
aX ao 

The result is Eq. (7.28). 
Let us define, for a given tensor hj.l., . 'j.I.,' 

hcm) = hY-"xlJ"'IJ' -..­
m 

By definition of the Lie derivative (7.4) we find 

8h Cm ) = LXhcm) = (cos 0 ~ - cot X sin O~) hCm) 
aX ao 

(7.5 ) 

(7.6) 

-m(sinOh Cm _ 1) +cotxcosOhCm» 

sin 0 + (r-m) -'-2-hcm+1)' (7.7) 
sm X 
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We definehm) by 

h(m) = (sinx)2m -l(m)' (7.8) 

Then 

Dj(m) = (cos e ~ - cot X sin e ~)hm) 
aX ae 

+ (r - m)(sin ehm + I) - cot X cos 8f(m) ) 

+ m [(sin e)/(sin2 X)] hm _ I)' (7.9) 

First by lettingj(m) -+j~';:/'!':L on the Ihs of this equation we 
obtain 

Dif(mlqu) = (r - m + 1 )sin elj(mlqu) (m-I) (m) . (7,10) 

Since 

j (mlqu) = (sin e)-I'j(m-I,lqu) (m) (m-I) , (7.11) 

one has 

Dj~';:/'!':l) = (r - m + 1)j~;::= :,;qU). (7.12 ) 

Thus we obtain 

L h (mlqu) = (r - m + l)h (m - I,lqu) 
X PI" 'Pr PI" 'Pr 

+ terms of the form h ~~'::;l, (m';;;'m). 
(7.13) 

STSH's h ~~'::;l, with m' < m - I are absent on the rhs be-
h (mlqu) 'th' d L h t cause X- .. Xi .... im' WI m <m are zero an x c anges a 

most one index of the tensor. Since STSH's h ~~lq~~ form an 
orthogonal basis of a representation of SO(N + 1) as was 
remarked in the previous section, we must have h ~~ .:p.~,iqu) 
on the rhs because of the unitarity of the representation, 
There is no other term proportional to h ~~'lq:; with m' > m 

for the same reason. Thus we expect 
L h (miqu) = (r - m + l)h (m - I,iqu) + c h (m + l,Iqu) 

X JL." 'I-'r PI" 'Pr d PI" 'Jlr 

+ terms of the form h ~~'::~" (7.14) 

To determine the terms of the form h ~~'::~, we examine 
Dj~;::~qu), which is 

Dif(miqu) = (cos e~ - cot X sin e~)j(miqU) 
(m) aX ae (m) 

+ (r - m) [sin 8f~;::i!UI) - cot X cos 8f~;::~qU)]. 
(7.15 ) 

By substituting C6 1
) obtained from (6.18) with s = m in 

j (mlqu) = c(l) ~ (sin e) - my (9) 
(m + I) 0 ae iqu' (7.16) 

we find 

j (miqu) _ m + I 
(m+l) - (l-m)(N+m+I-2) 

X [~+ (N + m - 2)CotX] ~j(miqU). 
aX ae (m) 

(7.17) 

The contribution from (r - m + 1) h ~~ :-:p.~,1qU) in (7.15) is 

(r _ m + 1 )j~;::)- I,iqu) = m (r - m + 1) 
(l-m+ I)(N+m+I-3) 
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X[~ + (N+m-3)CotX] 

X~ (sin elj(miqu». 
ae (m) 

Subtraction of this from (7.15) leads to 
Dif(miqu) _ (r _ m + 1)' r(m - l,Iqu) 

(m) 'J (m) 

(sin e) -m [ (l- r)(I + 1) T(-) 
- 21 + N - 2 (l - m) (l - m + I) 

(7.18) 

U+N+r-2)(l+N-3) ] --'--'--....:.....----'--'----'----....:.....- T( +) YL/qu' 
(I + N + m - 2)(1 + N + m - 3) 

(7.19) 

where 

T(-)= - [~ + (N+I-2)CotX] 

x(sine :e-/cose), (7.20a) 

T( +) = - (~ - 1 cot X) 

X [sin e :e+(N+I-2)COse]. (7.20b) 

One can show by using the formulas given in Appendix C 
that 

T(-)YL/qU = k_ YL,I- I,qu' 

T(+lyLiqu = k+ YL,I + I,qu' 

where 

k_ = [((21 + N - 2)/(21 + N - 4») 

X (l- q)(L + q + N - 3) 

X (L -I + I)(L + 1 + N - 2) ]1/2, 

k+ = [(21 + N - 2)/(21 + N») 

X (l- q + I)(L + q + N - 2) 

X (L -/)(L + 1 +N - 1)]1/2. 

Thus we obtain 

L h (miqu) - (r _ m + l)h (m - I,iqu) 
X (m) (m) 

= c+h ~;;:'/+ I,qu) + c_h ~;;:,/-I,qu), 

where 

(I + N + r - 2) (l + N - 3) c _ = --'---'---'------'--'----'---....:.....-
(l + N + m - 2) U + N + m - 3) 

[ 
(l-q)(l+q+N-3) 

X (2/+N-2)(2/+N-4) 

X (L - 1 + 1) (L + 1 + N - 2) f/2 , 
(l- r) (I + 1) 

c + = - ---'----'-----
(/-m)(l-m + 1) 

x[(/-q+ 1)(l+q+N-2) 
(21 + N) (21 + N - 2) 

X (L - I)(L + 1+ N - 1) ]
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To find the coefficient Cd in (7.14) we use 

olf(mlqcr) = (cos e ~ 
(m+ll aX cot X sin e ~)/(mlqu) ae (m+l) 

+ (r-m 1) [sin elj(mlqcr) (m+2l 

- cot X cos elj(mlqcr) ] (m+l) 

- (m + 1) [(sin e)/(sin1 X) lf~;::~qcrl 
(7.25) 

I 

and 
C l(m+l,lqcr)-olf(mlqcr) -(r-m+l),/,(m 1,lqcr) 

d (m+l) - (m+1) :J (m+1 

- c+/~;::'~+I;,qcr) - c/~;::'~-I;,qcr). 

(7.26) 

Hereli;::lr~) and/i;;:::;: l,;qcr) can be obtained by using the 
formulas in the previous section. Functions li;::lri) and 
li;;:'~±I;,q".) can be found by Eq. (7.17). After a tedious calcu­
lation, of which the details are given in Appendix D, we find 

(m + l)(N + r+ m - 3)(N + m -4)(q - m)(q +m +N 3) Cd = -----.::.-...:..-~'----.:....---'----'--.:....---.:..----.:......:...!..---'--'-!.--'----'---...:..----

(N + 2m - 2)(N + 2m - 4) (l m) (l + m + N - 2) (/ - m + 1) (l + m + N - 3) 

x[(m-l)(m+N-2) -L(L+N-l)]. 

Thus 
L h (mlqcrl (r - m + l)h (m - 1,lqo) + C h (m + I,lqu) 

X f.,t."'J.l,. PI···p..,. d J-l."'J.L,. 

+ C h (rn,1 + I,qcr) + C h (m,l- l,qcr) 
+ J-t!···f.Lr - f-ll"'Jl-r ' 

(7,28) 

where Cd' c_, and c+ are given in (7.27), (7.24a), and 
(7 .24b), respectively. 

VIII. NORMALIZATION FACTORS FOR STSH'S 

In this section we calculate the normalization factors for 
STSH's by using Eq, (7.28). Let J},':'.I~~ be an STSH on 
S N - I that satisfies the normalization condition 

(/- (mlo) 1-(m'I'cr'» = -" -"-" 
, Umm,Ull'Uqq,. (8.1 ) 

As we have seen in Sec. VI,an STSH h ;:'L,,!~:) on S N can be 
constructed by letting 

(8.2a) 

(8.2b) 

and deriving the other components from constraint equa­
I 

Ic(N) 1-2Ic(N-l)I-2 rLrnl mlOq 

(7.27) 

I tions. We denote the normalized STSH by h ~~L.,,!~:} and de­
fine the normalization factor c~f~1 by 

h- (rLmlcr) = C(N) h (rLmlu) 
11-1' •• ftr rLml Ji.l ••. It,. • 

We will determine c~f~1 below by requiring that 

(h (rLmla),h (rL'rn'I'd» = 0LL,Omm'0ll'0crcr" 

(8.3 ) 

( 8.4) 

Due to the invariance of the inner product under 
SO(N + 1) we have 
(Lx h (rLmIO') ,h (rL,rn + 1,lcr» 

+ (h (rLmlu),Lxh (rL,rn + 1.10 » = O. 

By using (7.28) in this equation we find 

Ic~f~II-2Ic~o; 1) 1-2 

r-m+l Ic(N) 1-21 (N-I) 1-2 rL,m 1,1 Cm - 1,10q , 
Cd(m->m -1) 

(8.5 ) 

(8.6) 

where Cd (m ->m I) is what one obtains by replacing m by 
m - 1 in (727) The factors Ic(N-')1- 2 and Ic(N-1) 1-2 

. . mlO9 m - 1,IOq 

are present here because STSH's on S N - I were not normal­
ized in Sec. VII. Iteration of this equation yields 

= (r) eN + 2m - 4)[ (N + 2m - 6)" '(N + 2)N]2(N - 2) [(N + m _ 5)'" (N _ 3)(N _ 4) 1 I 

m (N+r+m-4)"'(N+r-2)(N+r 3) 

X [(q - m + l)(q + m + N - 4)'" (q - l)(q + N - 2)q(q + N - 3) 1 1(1_ m + 1)(/ + m + N - 3) 

x[(l-m +2)U+m +N-4)X'''XU-l)(/+N-1)/U+N-2)]2(/+ 1)U+N-3) 

X [(L - m + 2)(L + m + N - 3)" '(L + l)(L + N - 2)] -11c~f611-2IciJfo; 1)1- 2
• (8.7) 

Here IciJfo; 1) 1-2 is 1 because the scalar spherical harmonics are already normalized. Then Ic~f611-2 and Ic~o; I} 1- 2 can be 
found as follows. Let us set r = m in (8.6). Since Ic~f;ll- 2 = 1, we have 

I (N-l)I-2 - 1 Ic(N) 1-2Ic(N-I) 1-2 
CmlOq - - mL,m - 1,1 m - 1,/09 , 

Cd (m .... m -1) 

Here Ic;,;2,m 1,/1-2 can be directly calculated by using 
h (~L,,,:,-l,/CT) = sinm 2X pi (X),i'(m-:-l,Ia) 

X'.·"'m_l N L 'J '.···'m_1 ' 

---------".>:---:-:---- -+ (N+m-3)cotx NPUX)V(; Ii"'..; l,lul. m sin
m 

X [ a ] - --
(m-l)(m+N-3) /U+N-2) ax ' , m) 

The result is 
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IC(N) 1-2 
mL.m-l,l 

meL -m +2)(L +N+m - 3) 

(/-m+ 1)(l+N+m-3) 
By substituting this in (8.8) we have 

1 (N-l)I- 2 _ (N+2m-6)(l-m+2)(l+m+N-4) 
cmlOq 

- (N+m-5)(q m+1)(q+N+m-4) 

Iteration of this expression yields 

IC(N- IJ I- 2 = (N+2m 6)"'(N-2)(N-4) 
mlOq (N + m - 5) ... (N - 3)(N - 4) 

1 
(N-I) 1- 2 

Cm - l,lOq • 

(8.10) 

(8.11 ) 

(l-m+2)(I+m+N-4)"'IU+N 2)(l+1)U+N-3) 
X--~---------------------------------------------- (8.12 ) 

(q - m + l)(q+ m +N - 4)"'(q-l)(q +N -2)q(q+N - 3) 

We find Ic~f611-2 from this equation by replacing r, L, I, and N by m, I, q, and N - 1, respectively. By substituting these in 
(8.7) we obtain 

1 
(N) 1-2=(r) (N+2r-5)"'(N+2m-l)(N+2m-3) 

C
rLml 

m (N+r+m-4)"'(N+2m 2)(N+2m-3) 

X (L - m + l)(L + m + N - 2)'" (L - r + 2)(L + r + N - 3) . (8.13) 
(l-m)(l+m +N-2)· .. (l-r+ 1)(l+r+N-3) 

IX. APPLICATION OF STSH'S TO THE DE SITTER 
GROUP SO(N,1) 

One can obtain the metric of the N-dimensional de Sitter 
space-time from that of S N [Eq. (1.3)] by putting X = 'TTl 
2 - it as we have shown in the Introduction. The corre­
sponding analytic continuation ofSTSH's on S N yields sym­
metric, traceless, and divergence-free tensors hI', ... I'r in de 
Sitter space-time that satisfy 

Dhl',· .. l'r=[ L(L+N-l)+r]hl', ... I',' (9.1) 

These tensors form a representation of the de Sitter group 
SO(N, 1), or rather the de Sitter algebra. (One can write 
X = 'TT/2 + it as well but the resulting representations are 
equivalent to those for X = 'TT12 - it.) There are no restric­
tions on the value of L. However, it will be restricted once 
one requires the unitarity of the representation. Unitarity is 
very important in applying group-theoretical methods to 
various problems. Especially when one wants to use these 
tensors to describe particles in de Sitter space-time, they 
must form a unitary representation. In this section we will 
determine the values of L for which the representation is 
unitary. All the unitary representations of the SO(N, 1) alge­
bra have been classified by Ottoson. 17 (For N = 3, 4, and 5, 
see also Ref. 18.) But it has not been clear so far which 
representations are realized by the tensor eigenfunctions of 
the LB operator in de Sitter space-time. 

Unitarity is equivalent to the positive-definiteness of the 
norm. As the inner product that gives rise to a norm, we take 

_ h (1 )1'". ·l'r\"'10h (2) ... ] 
V Its"· 'J.1.r ' (9.2) 

where Vo is the covariant derivative with respect to t and 

dt d O~ - g is the volume element of de Sitter space-time. 
This inner product is defined only for tensors with the same 
L. 
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Let us show that this inner product is independent of t 
and de Sitter invariant if L(L + N - 1) is real. Define 

V a = h (2) "'\"'1ah (1)1', .. 1', _ h (l)I' .. ··l'r\"'1ah (2)... (9.3) 
PI"·P, V V Jl-l"'f.l,· 

Then one has 

(9.4 ) 

Hence 

! J dO[=gVo = - J dOJ;([=gV;) =0. (9.5) 

The invariance of this inner produce under SO (N, 1) can be 
shown as follows. Since the Lie derivative with respect to a 
Killing vector YI' commutes with covariant derivatives, the 
change in va under the transformation corresponding to YI' 

is 

(9.6) 

This is a conserved current but its corresponding charge van­
ishes because 

Now we start analyzing the tensors obtained by analytic 
continuation of STSH's. We restrict ourselves to the case 
where N;. 3. We will not discuss the N = 2 case because it is 
much different from other cases and a separate analysis 
would be necessary. 

Since the quadratic Casimir invariant L(L + N 
- 1) + r( r + N - 3) is real for a unitary representation, L 

is either a real number or L = - (N - 1) 12 + i7 (7: real). 
One can assume without loss of generality that 
L;. - (N - 1 )/2 when it is real and that L = - (N - 1)1 
2 + i7 (7) 0) when it is imaginary since the tensor eigen­
functions do not change by letting L ...... - L - N + 1. This is 
because l5 
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P v-JL(x) = P -~-J (x). (9.8) 

Let us start with the scalar case. Define 

P
A 

I (t) _ (cosh t) - (N - 2)/2p - II + (N - 2)/2)(i sinh t) 
N L - L + (N - 2)12 • 

(9.9) 

Next define 
A AI 

YLlo- (t,0) = NP L (t) Y lu (0). (9.10) 

The inner products can be calculated by using l5 

P ;-1«0) = ,[iT 
21<r([(v+f.l)/2] + 1)r( v + f.l + 1 )/2) 

(9.11a) 

The result is 

sin [ ! ( v - f.l ) 1T] r( ( v - f.l) 12 + 1) 

21< - 1,[iTr( (v + f.l + 1)/2) 
(9.11b) 

1T 8 ,8 '. ru L)rU+L+N-I) II (7(T 

(9.12) 

Therefore the representation is unitary if 

L= -(N-I)/2+i1' (1'>0) (9.13 ) 

or 

(9.14) 

When L>O, there are negative-norm eigenfunctions unlessL 
is an integer. If 

L =0,1,2, ... , (9.15) 

then the norms of the eigenfunctions with I<L are zero. 
Zero-norm eigenfunctions do not transform into positive­
norm eigenfunctions under SO (N, 1) transformations be­
cause their norms must remain zero. Therefore one can iden­
tify them with zero without causing any inconsistency. Then 
the positive-norm eigenfunctions form a unitary representa­
tion. 

Now let us go on to the case where r> O. Let h ~:L.m:~) be 

the tensor o~ained from ~e normalized STSH it ~:L.":j.~) by 

replacing NP~ (X) by NP~ (t) and substituting X = 1TI 
2 it. The inner product (h (rLmlo-),h (rLm'I'd» can be deter-
mined by using its invariance under the transformation gen­
erated by the Killing vector X 'I< defined by 

X' = cos e .!!.- - tanh t sin e ~ , at ae (9.16) 

as in the case of the STSH's on SN. The result is 

(h (rLmlul,h (rLm'l'u'» 

( _l)r- ml (N) 1-- 2 

C
rLml 1T 8 ,{) ,{) " (9.17) 

-r-(~I --L-) r:::--:(l-+-L-+-N---l-) mm II 0"0-

where Ic;f';'II-2 is given by (8.13). There is a factor of 
( 1), - m because X 'I< corresponds to - iX I< instead of X I< 

= X ~N + J,N) given by (7.5). Let us extract the L-dependent 
factors as follows: 

(h{rLmlal,h(rLmlu» =K [(m-l)(m+N-2) -L(L+N-l)]"'[(r-2)(r+N 3) -L(L+N-l)] 
rU-L)rU+L+N-l) 

(9.18) 

where K is a positive constant which depends on N, r, I, and 
m. Thus if 

L(L+N-1)< - (N-2), (9.19) 

then the representation is unitary. This condition can be 
written as 

L = - (N - 0/2 + ir (1'>0), 

(N 1 )/2<L < 1. 

Now, if 

(9.20a) 

(9.20b) 

L = - 1,0, ... ,r - 2, (9.21) 

then the norms of the tensors h ~L.m:~) with m <L + 1 are 
zero. Since zero-norm tensors do not transform into posi­
tive-norm tensors, they can be identified with zero. Then the 
positive-norm tensors form a unitary representation if N>4. 
For N = 3, m is either ° or 1. Thus only L = 1 is allowed 
in (9.21) regardless of the rank of the tensors. 

Finally we note that the unitary representations we have 
obtained here constitute a part of those given by Ottoson, 17 

as they should. [The representations realized by scalars with 
- (N - 1) 12 <L < ° are not listed in the final result of Ref. 
15 for odd N. But the condition for unitarity which the au­
thor writes down is satisfied by them.] 

X. ZERO-NORM TENSORS 

We have seen in the previous section that there are zero­
norm solutions toEq. (9.1) ifr = OandL = 0,1, ... , orifr> 0 
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I 
and L = - 1,0, ... ,r - 2. In this section we will show that 
those with r> 0 are given by analytic continuation of sym­
metric traceless tensors induced by STSH's studied in Sec. V. 

Let us consider the symmetric traceless tensor T~"; n on 
S N induced by an STSH hs satisfying 

Oh, [-L(L+N-l) +s]hs ' ( 10.1) 

From Eq. (5.lOb) we find 

(10.2) 

if L = s + n - 1. [Note that one has to replace Nby N + 1 
in (5.11 b) because the analysis was on S N - 1 instead of S N in 
Sec. V.] This led us to conclude that T;"; n = 0 for 
n>L-s. 

Now we putx = 1T12 - it. Then Eqs. (10.1) and (10.2) 
become equations in N-dimensional de Sitter space-time. 
(We denote the tensor obtained by the analytic continuation 
of T;"; n also by T;"; n .) The angular momentum on S N - 1 

can take any integer value larger than s because T;"; n is 
allowed to have a singularity atX = 1T [t = (1T12)i]. If L -I 
is not a non-negative integer, then T;"; n is nonzero even for 
s + n > L. This can be shown by studying the singularity at 
X 1T as follows. Since the component hr "Xi, ";,' of hs with 
the largest number of X behaves like (1T - X) 2r' - s - I near 
X 1T, we have 
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[c ' )r,a(. )-r]n h = sm X ax sm X X" 'xil' .. i~ 

~(1T-x)2r' s-I-n. (10.3) 

This gives the leading singularity of T ~n}'Xi", 'i,. because oth­
er terms have at least one factor of sin2 X which comes from 
the metric tensor and, therefore, are less singular. Hence 
T;"./- n #0. Thus T!"./- n is a nonzero symmetric traceless ten­
sor if L - I is not a non-negative integer. From (5.1Oa) with 
N-N + 1 we have 

DT;"./-n=[n(2s+n+N 3) 

L(L+N-l) +s+nlT~"./-n' (10.4) 

Let L = s + n - 1 so that T;"./- n is divergence-free as well. 
Then 

DT~"./-n = [ (s-1)(s+N-2) +s+nlT;"./-n' 
(l0.5) 

Thus the symmetric traceless tensor T;"./- n induced by 
it y" + n - I,mlu} satisfies the same equations as the tensor 
h ;' + n,s - l,mlu}. Hence the zero-norm tensor h ~rLmlu} with 
- 1 <,L<,r - 2 and O<,m<,L + 1 is nothing but the 
(r - L - l)th symmetric traceless tensor induced by 
h iL++/,r- I,mlu) U>r) up to a numerical factor. Especially, 
for L = r - 2 a zero-norm solution ofEq. (9.1) h/-<, ... /-<, can 
be written as 

( 10.6) 

where A/-<, ... /-<,_ 1 is both traceless and divergence-free and 
satisfies 

DA/-<"'h., = [ (r-l)(N+r-2) +r-ljA!-'t"'/-<,_I' 
(10.7) 

Thus the symmetric, traceless, and divergence-free tensors 
with L = r - 2 are analogous to the corresponding tensors 
with (mass)2 = 0 in flat space-time. 

XI. SUMMARY AND DISCUSSIONS 

In this paper we showed how to construct the symmetric 
tensor spherical harmonics (STSH's) on S N. The symmetric 
traceless tensors induced by STSH's were defined. It was 
found that the STSH's on SN are most simply expressed in 
terms of symmetric traceless tensors induced by the STSH's 
onS N - I • 

We found the symmetric, traceless, and divergence-free 
tensor eigenfunctions of the Laplace-Beltrami operator in 
N-dimensional de Sitter space-time by the analytic continu­
ation of the STSH's on S N. We determined the allowed 
eigenvalues of the Laplace-Beltrami operator under the re­
striction ofunitarity. Those values for the STSH's of rank r 
(for N>4) are given, by defining M2= -L(L+N 

1) + (r - 2)( r + N 3) so that M 2 = 0 for L = r - 2, 
as 

M 2>(r 1)(r+N-4) (m=O,I, ... ,r), 

M2= (r-n)(r+n+N-5) (l<,n..;;;r) 

1563 J. Math. Phys., Vol. 28. No.7. July 1987 

(11.1 ) 

(m = n, ... ,r), 
(11.2) 

I 
M2 > 6 

I x x x X x x X 
I 

M2 = 6 

x x x I x x X 

M2 = 4 

X X r x x 
M2 = 0 

---x-----------------t-----------------x---
rn=3 rn=2 rn=l rn=O m=l m=2 rn=3 

FIG. 1. The states in the unitary representation of the de Sitter group for 
N = 4 and r = 3 with fixed t. 

where 

{D - [M 2 
- (r - 2)(r + N - 3) + r]}h/-<",,/-<, = O. 

(11.3 ) 

Herem is the rank of the SO(N) tensors in the unitary repre­
sentation. For N = 3 only M 2 = 0 is allowed in (11.2). The 
cosmological constant A is given by (1.3) in our unit. 

As an example, the states with fixed angular momentum 
on the spatial section S 3 in the unitary representation for 
N = 4 and r = 3 are given in Fig. 1, whereas the correspond­
ing states in flat space-time are given in Fig. 2. 
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APPENDIX A: PROOF OF Ea. (2.11) 

Notice first that 

{~[(l_X2)~]_~}Pv /-«x) 
dx dx l-x2 

x 

= - v(v + l)P v-/-«x), 

x x 

I 
M2 > 0 

~ 
I 

M2 = Q 

x x x 

---x-----------------t-----------------x---
h=-3 h=-2 h=-l h=Q h=l h=2 h=3 

(AI) 

FIG. 2. The states in the spin-3 representation of the Poincare group with 
fixed momentum, where h is the helicity. 
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and that P y-,u(x) behaves like (1 - X),u/2 for x-l. (Here 
we are assuming that p is positive.) Then we have 

[v' (v' + 1) - v( v + 1)] II P y- ,u(x)P y-: ,u(x)dx 
-I+€ 

where £: is a small positive number. Now let v - p be a non­
negative integer. Then we find 

P -,u(x)_ (-l)Y I' (1 +X),u/2 (x- -1) (A3) 
v r(1 +/-l) 2 

by using (2.8) and the following formula l5
: 

F(a,{3' .z) = r(y)r(y - a (3) 
,~ r(y a)r(y (3) 

XF(a,{3;a + f3 - Y + 1; 1 - z) 

+(1-z)y-a pr(y)r(a+f3 y) 
r(a)r(f3) 

XF(y - a,y f3;y - a - f3 + 1;1 - z). 
(A4) 

By using the same formulas we find 

P -:,u(x)_ r(p) (1 +2 x) 1'/2 
v r( 1 + /-l + v')r(p- v') 

(AS) 

By substituting (A4) and (AS) in (A2) and taking the limit 
£:-+0 we find Eq. (2.11). 

APPENDIX B: PROOF THAT THE rhs OF EQ. (6.27) IS 
NONZERO 

It is sufficient to show that 

[~ + (N +s + n - 2)Cot X] C6n
) 

S + n 1 (n-I)=/=o --co , 
N + 2s + 2n - 3 sin2 X 

(Bt) 

for n<:J - s. We will prove this by showing that the leading 
term of the Ihs in the limit X-+O is nonzero. First we find 
from (6.18), 

C60 l
- aoX

I 
(X-O), 

where a o is a positive number. Let us define an by 

C6n ) = anxl - n + O(X1-n+ I), 

where an is a constant. 
By substituting this in (6.19) we have 

(n + I)(N + 2s + n - 3) 

(s + n + 1) (N + 2s + 2n - 3 ) 

(B2) 

(B3) 

X [l(l + N - 2) - (s + n)(s + n + N - 2) Jan + 1 

s+n 
= (N + s + 1- 2)an - an I' 

N+2s+2n-3 
(B4) 

Assume that 
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(N + s + 1- 2 )an - - __ s_+-n--3- an _ 1 

N+2s+2n 

>~ (N+s+I-2)an, 
2 

(BS) 

which is obviously the case for n = 0 because a _ I = O. Then 
one can show by using (B4) that, unless N 4 and s 0, 
(B5) with n -+ n + 1 is also satisfied as long as n < I s. 
Hence we conclude by induction that Eq. (BS) holds for 
n<:J-s. Then from (BS) we find an >Oand 

s+n 2)an - a n_ 1 >0 
N + 2s +2n - 3 

(B6) 

for n <:) - sunless N = 4 and s = O. But this is nothing but 
the coefficient of the leading term on the lhs of (Bl). For 
N = 4 and s = 0, one can show that 

n n + 1 
(l + 2)an - --an-I >-- (l + 2)an (B7) 

2n+l 2n+l 
for n <:J - s in a similar manner. The rest of the proof is 
exactly the same as the other cases. 

APPENDIX C: RAISING AND LOWERING OPERATORS 
FOR LEGENDRE FUNCTIONS 

The function P y- ,u(x) satisfies15 

[(I-X2)! +vx]py-,u(X) = (v-p)Pv_'\(X), (Cl) 

[O-X2)! -(V+l)xjP y-,u(X) 

= - (v + P + 1)P Y 1 (x), (C2) 

[ (1_X2)1/2~_ px ]p ,u(x) ax (l_X2)1/2 y 

= -Pv-,u+I(X), (C3) 

[ (1_X2)1/2~+ px ]p-,u(X) ax (1 _ X 2 )1/2 y 

= (v-p)(v+p+ l)P
y
-,u-I(X). (C4) 

APPENDIX D: CALCULATION OF THE CONSTANT Cd 

Recall that 

j (m + I.lqu) = (sin e) m - I Y (X 6) (Dl) (m+ I) L/qu , . 

Thus we have to retain only the terms proportional to 
(sine) m-

1YL/qu(X,6) in calculating the rhs of (7.26). 
Now each term in (7.26) is of the form (differential opera­
tor) X YL/qu (X, 6). We first eliminate second derivatives 
with respect to X or e by using the differential equations 
satisfied by YL/qU (X, 6). Then, since the terms which have a / 
ax or a / ae directly applied to YL/qU (X,6) must add up to 
zero, we can make the following substitution: 

a ax -+ - (N + m - 2)cotx, (D2) 

a 
- ..... m cote. ae (D3) 
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We can also let cot X cos Bfl:::1rL -0, 

[(sin B)/(sin2 X)] f~:::~qa) -0. 

(D7) 

(D8) [1I(sin2 X)] YLlqu (X,O) .... 0, 

(sin B) - m + 1 YL1qu (X,O) -0. 

Then we find that we can let 

(D4) 

(DS) Thenfl:::lr~) can be found by using Eq. (6.6) with s = m 
and n = 2 and Eqs. (6.18) and (6.10) as follows: 

and 

f (mlqu) - D T D f(mlq(7) (m+2) - 1 (m+2) - 2 (m) , 
( B a . B a )f(mlqU) ° cos - - cot X sm - (m + \) - , 

ax aB 
(06) 

where 

T =[~_m(m+N-2)-/(l+N-2)]f(mlqU) 
(m+2) aB2 N+2m 1 (m) , 

D
j 

= (m + l)(m + 2) N + 2m - 1 _________________ _ 

2 N + 2m - 2 (m l)(m + I + N - 2)(m -/ + 1) (m + 1+ N 1) 

X[~ +(N+m l)cotx] [~ + (N+m-2)CotX] , 

D2 a: lIsin2 X. 

By following the procedure explained above we obtain 

. Blf(mlqcr) (m + l)(m + 2) N 2m sm (m + 2) - ....:.---'----:..~-.:...----=--
2 N+2m 2 

X 
CNLmq 1 

-----------'....=.:.~-------- (sin B) - m - YLlqcr (X,O), 
(m -l)(m + / + N - 2)(m -/ + l)(m + I + N - 1) 

where 

CNLmq (q - m)(m +q+N - 3)[(m l)(N + m - 2) -L(L +N -1)J. 
Similarly, we have 

f (rn-I,lqu)_ m(m + 1) N 2m - 3 
(m + \) 2 N + 2m - 4 

CNLmq . B 1 X (sm ) m- YLlqcr(X,O). 
(m -/- l)(m + / + N - 3)(m - l)(m + 1+ N - 2) 

By using (7.17) and (7.21a) we find 

_ C f(m,l- I,qcr) = (sin B) - m ____ ~(m_+-'----l::...)(::...l_-_r.....:).....:(_/ +-'----1...:;.) ____ _ 
- (m+l) 21+N-2 (l-m 1)(N+m+I-3)(l-m)(l m+ 1) 

X[~ + (N+m 2)Cot X] [~ + (N+I-2)CotX] 

X(:B -mcotB )(sinB :B -ICOSB) YLlqcr(X,O). 

Then 

- c fl:::'~ -1:,qU) __ _______ --'-(m_+"--I..:...)...:..(l __ r..:...)..:...(l_+"--l...:..) ______ _ 
(21+N-2)(/ m I)(N+m+I-3)(l-m)(l-m+l) 

X CNLmq (sin B) - m I YLlqu (X,O). 

Similarly, we find 

XCNLmq(sinB)-m lyLlqcr(X,O). 

By substituting (D13), (DIS), (D17), and (018) in Eqs. (7.25) and (7.26) we obtain Cd' 
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Exact solutions in 1 +1 dimensions of the general two-velocity discrete IIIner 
model 
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The Illner model is the most general two-velocity discrete model of a Boltzmann equation in 
one spatial dimension which satisfies an H-theorem. It includes, as particular cases, both the 
Carleman and the McKean models. "Solitons" (one-dimensional solutions) and "bisolitons" 
(two-dimensional, space-plus-time, solutions), which are defined as rational fractions, and 
solutions with one or two exponential variables are determined. The model is treated as a 
nonintegrable nonlinear one, and from the solitons the possible class ofbisolitons is guessed. 
Two classes of physically acceptable bisolitons are found. The first class is distributions 
positive only along one semiaxis and identically zero outside. These are interpreted physically 
by introducing elastic walls plus source or sink terms which become negligible at infinite time. 
The second class is periodic solutions which can be seen as damped sound waves. Essentially 
the same tools are used as in a companion paper for the six-velocity Broadwell model, where 
the two bisoliton classes mentioned above also exist. This suggests that general methods for 
obtaining nontrivial exact solutions could exist for the hyperbolic semilinear discrete 
Boltzmann models. 

I. INTRODUCTION 

At the present time, many people think that discrete 
models can provide useful examples for the existing prob­
lems in kinetic theory. Due to the numerous difficulties ap­
pearing in the study of the continuous Boltzmann equation 
(BE), they hope that discrete velocity models may shed 
some light on the solutions of these problems. In this frame­
work, it seems to me a reasonable preliminary condition that 
these discrete models could be studied with similar methods 
providing fairly general results. 

In a companion paper I we determine a class of exact 
1 + I-dimensional (space-x-plus-time-t) solutions of the 
six-velocity discrete Broadwe1l2 model with three indepen­
dent distribution functions. It is the aim of the present paper, 
for a two-velocity discrete model, to see whether methods 
and tools similar to those used for the Broadwell model lead 
to comparable results. 

The most popular two-velocity discrete models are the 
Carleman and McKean3 models. The Carleman model has 
been extensively studied: global existence, uniqueness, bound­
edness, oscillations, and asymptotic behaviors of the solu­
tions.4 Some of these results have been extended to more 
complex discrete models, for instance a 14-velocity model.5 

For obvious reasons, the mathematical results were obtained 
for smooth and relatively small initial data, for instance the 
distributions are integrable when Ixl ..... 00. 

For two-velocity discrete models let us call I"" 7J ± , 
the distributions of particles moving in opposite directions of 
the x axis, with velocities ± 1. The most general binary colli­
sion term Col (/+,f _) is a quadratic form ofthe products 
I", I",·: F± ,f + 1_ with three arbitrary parameters. Illner6 

clarified these mathematical models by supplementing them 
with the physical restriction that they should be compatible 
with the H-theorem. He obtained a two-parameter family of 
models 

(a + c)/+I_ + cI2
_), 

(1.1 ) 

where the restrictions a<;O, c;;'O ensure that 

at II", log I", + ax (/+ log/+ -1_log/_)<;O, 

'tJI+ >0, 'tJI_ >0 

(which is a stronger condition than the usual 'tJt;;.O). 
Throughout the paper, we restrict our study to a<;O, c;;'O. 

The values - a = c = 1 lead to the Carleman model and 
a = 0, c = 1 to the McKean one. Let us introduce 
N = 1+ + I_the density of particles, and J = 1+ - I_the 
stream velocity (1.1) can be rewritten as 

a,N+aJ=O, ( 1.2) 
axN + a,J = J [(a + c)J + N(a - c)] , 

the first linear equation expressing the mass conservation. 
We notice that these models fail to conserve momentum. 

We first want to obtain algebraic exact solutions N, J of 
( 1.2) and second, building N ± J, verify the positivity 01 the 
distributions I",. Note that the conditions 7 N;;'O, N - J;;.O 
are not sufficient to preserve positivity (as we shall see expli­
citly later). We will not consider the homogeneous formal­
ism because, for this simple model, we think that at least the 
spatial dependence must be present. The known exact solu­
tions are mainly those of the Carleman modeC-1O if we ac­
cept the PIatkowski results. 10 All these solutions satisfy the 
ordinary differential equations (ODE's) which can be trans­
formed into integrable linear differential equations. Self-sim­
ilar solutions, with only one variable, are of this type, and 
further they are in one dimension. For the Carleman model a 
more subtle periodic solution9 has been obtained by Bobylev, 
and clarified and extended by Wick. Assuming that Nand J 
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are conjugate harmonic functions, then fez = x + iy) 
N + iJ is an analytic function from which the reduction 

to integrable differential equations is possible. In this way, a 
periodic two-dimensional solution was obtained. Summariz­
ing the results obtained so far, the goal has been to extract 
from the nonintegrable hyperbolic system (1.1) [or (1.2)] 
particular cases which could be reduced to integrable linear 
differential equations. 

Here we want to face (1.2) as a genuine nonintegrable 
system and try methods which have been successful for other 
nonintegrable nonlinear partial differential equations 
(NLPDE's). The continuous homogeneous BE becomes 
through the generalized Laplace transform II a NLPDE of 
this type. Exact solutions were obtained, called "solitons" 
and "bisolitons" because they were defined as rational frac­
tions with one exponential variable W = d exp( rx + pt) or 
two Wi = d i exp(rix + Pit). (With this definition we can 
recover the soliton and bisolitons of the two-dimensional 
completely integrable NLPDE.) Further it turned outl2 that 
the homogeneous BE was generic of a whole class (not in­
cluding the semilinear hyperbolic systems) of nonintegrable 
NLPDE's sharing common properties both for their linear 
operators and their bisolitons. Similarly here, for the semi­
linear hyperbolic systems, by investigating solitons and biso­
litons for different discrete models, we hope that common 
properties will emerge for another class of nonintegrable 
equations. 

For (1.2), the one-dimensional soliton solutions, being 
self-similar solutions, can be obtained directly from integra­
ble differential equations. However, they are useful because 
the bisolitons when dj -.0 must reduce to the solitons 
W = Wi' Consequently they provide some guesses for the 
search ofbisolitons. They are obtained as rational solutions 
with denominators t:.. = 1 + W (Sec. II A). Then asymptotic 
Ixl-. 00 positivity properties are interesting, although differ­
ent from the Broadwell ones. There always exists one of the 
limiting x axis where limf_, limf+ have the two opposite 
signs of a and e. Consequently in general (ae < 0) they can­
not be positive solutions on the full x axis. (This holds for the 
Carleman model a + c = 0, contrary to the Dukek and Non­
nenmacher7 analysis.) However, the particular a = 0 or 
c = 0 models can avoid this difficulty and sometimes these 
soliton solutions can be physically interpreted as shock 
waves. 10 Finally we notice that in all a<;O, c;;;'O cases, a lot of 
positive soliton solutions exist for x on a semiaxis. 

The simplest possible ansatz bisolitons [see Eq. (2.5)] 
have denominators of the type t:.. = I + 2.W; + f.1WIW2. The 
constant f.1 in t:.. represents the coupling between the solitons 
WI and W2• We check the consistency of such solutions with 
the constraints coming from the linear mass conservation in 
( 1.2) and the most singular term (proportional to t:.. - 2) of 
the nonlinear part of (1.2) (see the Appendix). We find that 
the bisolitons without soliton coupling in t:.. or f.1 = 0 are not 
possible. This result is not surprising as it is a consequence of 
the previous nonintegrable NLPDE studyl2 of the f.1 = 0 bi­
solitons. It was shown that the operator of the linear part 
must be factorized, a property not existing for the hyperbolic 
semilinear equations. For the f.1;60 case we find that only 
f.1 = 1 is allowed which means t:.. = (1 + Wi) (1 + w2 ) or 
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equivalently the bisolitons can be written as a sum of two 
solitons. Starting with 

n j. 
N=no + I-' , J=)o+ I-'-, t:..i = 1 +wi , 

t:..i t:..; 
(1.3 ) 

all parameters can be algebraically determined. (Notice that 
in general N ± J .... const when Ix I .... 00 and so are not inte­
grable.) 

The linear mass conservation law in (1.2) can always 
support a superposition of soliton solutions. On the con­
trary, the nonlinear part gives the conditions for the cou­
pling of solitons 

(a+c) + (c-a)(r;!Pi + r/pj)/2 =0, i;6), (1.4) 

and only two different ri1pi values are compatible. "Multi­
solitons" with more than two solitons are not possible; this is 
the main difference between the present class of nonintegra­
ble equations and completely integrable ones (the same dis­
tinction occurs for the Broadwell model). In conclusion the 
bisoliton parameters satisfy the relations of each soliton 
component plus the coupling relation (1.4). It appears use­
ful to define two new parameters VI which reduce to r;!Pi 
for the Carleman model and such that the coupling relation 
(1.4) becomes VI + V 2 = O. We arbitrarily choose v = VI as 
the remaining parameter and the algebraic bisolitons be­
come rational fractions of the Wi with two parameters no (or 
jo) and v. In the remaining sections of the paper we study 
both ri' Pi real or complex (V real or purely imaginary) and 
look at the positivity properties. 

In Sec. III we show that for ri' Pi real no positive bisoli­
tons exist along the full x axis (this is the main difference 
with the Broadwell model I ). However, we can find bisoli­
tons compatible with positivity if we restrict to the semi­
(x;;;'O) -axis. We establish the class of possible positive solu­
tions following the a';;;O, c;;;,O values ofthe parameters of the 
IIIner model. Two classes must be distinguished depending 
whether in (1.3»)0 = 0 orjo;60. Invariance properties allow 
a reduction of the studied intervals for the parameters. 

We distinguish between the asymptotic positivity re­
quirements x -. 00, 1 -> 00 and the 1;;;,0, x;;;'O positivity for 
which we give sufficient conditions on the constants d; of the 
Wi = d; exp( r;x + p;t) soliton components. Specular 
boundary at the x = 0 condition is possible only for the Car­
leman a + c = 0 model. 

In Sec. IV the soliton components Wi are complex conju­
gate W2 = WI and we define W = WI = d exp( rx + pt) with 
d, r, p complex. The above V parameters becomes iVJ and the 
discussion occurs with the two parameters no (orjo) and VI' 

Invariance properties still allow a simplification of the pa­
rameter study. We must distinguish between the two cases 
where the spatial part of W has r complex or purely imagi­
nary. 

0) If r is complex, then no positive solution exists on 
the full x axis. However, positive solutions on a semiline, say 
x;;;,O exist. 

(ii) If r is purely imaginary (see Sec. IV A), then the 
solutions are periodic. For all parameter values a,c (ac;60) 
of the IIIner model there exist positive periodic solutions 
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(exact periodic solutions exist also for the Broadwell mod­
el). For the positive (i) and (ii) solutions, sufficient condi­
tions on the d parameter of W ensure the positivity for t;>O. 

Let us compare the periodic solutions obtained here for 
the Illner model from the bisoliton method, with the Boby­
lev-Wick periodic solution of the Carleman model. For the 
parameter values a + c#O of the Illner model it is shown 
that the N, J functions associated with the bisolitons are not 
conjugate harmonic functions. The same result is true in 
general for the bisolitons of the Carleman model a + c = O. 
However, there exists a particular restriction on the param­
eters I VI I = c for which this property for Nand J holds and 
then the solution coincides with the Bobylev-Wick one. 

For the physical interpretation of the periodic solutions 
we distinguish between two cases. For a + c # 0 they are 
propagating waves with an absorption factor. They can be 
seen as damped sound waves. However, the absorption can 
be so strong that in fact only one or two oscillations in time 
can be seen. We define as a criterion the ratio of the real to 
imaginary part of p. We show analytically and observe nu­
merically that when the modulus of this ratio decreases, then 
the number of effective oscillations in time increases. On the 
contrary for the Carleman a + c = 0 model, the waves are 
nonpropagating with time and the solutions can only de­
scribe damped oscillations in the space variable. 

In Sec. V we try to give a physical meaning for the solu­
tions positive only along a semiline (x;>O for instance). Simi­
larly as what was done!3 for the inhomogeneous Kac model, 
we define new distributions 1", identical to f" for x;>O and 
identically zero for x < O. The new distributions are a solu­
tion of kinetic equations of the Illner type, with two addi­
tional terms at x = 0, that we must interpret physically. For 
the Carleman model, only one supplementary term exists 
which can be interpreted as an elastic wall at x = O. For 
other Illner models, a + c#O, besides this elastic wall, an­
other term is present which, for the Wi real solutions, can be 
interpreted either as a source or as a sink, decreasing expon­
entially in time and becoming negligible compared to the 
elastic wall at infinite time. For the Wi complex conjugate 
solutions, the second term, while decreasing exponentially 
and becoming negligible when t -+ 00, changes sign with t. It 
acts like an oscillating source, a sink term with an interpreta-

TABLE I. Solitons. 

tion not as simple as above. 
In Sec. VI we illustrate the results of the paper with 

numerical calculations. For some examples, we plot the 
N + 1JJ = 2f" relaxation curves for the class of solutions 
positive alongx;>O (Fig. 1) and for periodic solutions (Figs. 
2-4) the N ± J,N relaxation curves and different time oscil­
lations whenpRPI-! decreases. 

II. RATIONAL SOLUTIONS WITH EXPONENTIAL 
VARIABLES 

We seek solutions of the Illner model (a';;;O, c;>O) which 
are rational fractions of either one exponential variable 
W = d exp(yx + pt) (solitons) or two variables Wi 

= di exp( YiX + p;f), i = 1,2 (bisolitons). The study of the 
bisolitons will be performed in two successive stages. First, 
in this section we determine the algebraic structure of these 
solutions, and second, in the following sections, we look both 
at the asymptotic positivity constraints lxi- 00, t- 00 and at 
the positivity 1;>0. A priori the denominators of the rational 
fractions solutions of (1.2) are of the type A q, A being a 
polynomial in w (or Wi) and q unknown. However, we re­
mark that the quadratic nonlinearity is associated with lin­
ear first-order differential operators. If the most singular 
part of the solution, which comes from the A q factor, is 
determined by a balance between linear and nonlinear parts, 
then necessarily q = 1. 

A. Solitons 

The solitons, self-similar one-dimensional solutions, 
with the variable yx + pt, are completely integrable solu­
tions of ODE's. Despite their simplicity, for pedagogical rea­
sons, we briefly present the results (Table I). They will pro­
vide some hints in the search of the possible bisolitons. 
Further the study of their properties, particularly the positi­
vity, will be a guide for the corresponding bisoliton proper­
ties. We start with the ansatz 

N = no + n/ A, J = io + i/ A, A 1 + w, 

W = d exp(yx +pt), d>O, 
(2.1) 

no, n,)o,), y, p, d being real constants, that we substitute into 
the Illner system (1.2). We obtain four relations (Table I, 

A: AnsatzN=no+n/A, J=jo+j/A, A=l+w, w=dexp(yx+pt), d>O 
B: Relations (\) jr + np = 0, (2)jo«a + c)jo + (a - e)no) = 0, (3) and (4) 

(nr+jp) = -2joj(a+c) + (a-e)(jon +jno) =j[(a+c)j+ (a-c)n), a<O, c>o 
C: Algebraic solitons definition rip = (2v - a e)/(e a) 
CI: jo=O:N-J=no(l+(-I+alv)/A), 

N+J=no(l + (-I +c/v)/A). p=no(c a)3/4(a-v)(v-c) 
C2: kI-O:N-J=2jo(a+(v-a)/A)/(e-a) 

N+j=2jo(e+ (v-e)/A)/(c-a), p=jov(e-a)212(v a)(v c) 
D: Physical positive solitons on XE [ - 00, + 00), t>O, condition Ix 1- 00 

(i) a = 0: (i.l)jo = 0, no>O, v>O; N +J~no, no and 0, noclv 
(i.2)jo>0, v>O; (N +J)/2jo~0, 1 and vic, vic 

(ii) c = 0: (i.l)jo = 0, no>O, v<O; N +J-no, no and noalv, 0. 
(i.2)jo<O, v<O; (N +J)12jo-l, ° and via, via 

E: Physical positive soliton onx>O, t>O, with a '1O, c'i-O: 
EI: j = 0: no>O (a + e)/2 <v<c, d>sup(lalvl,c/lvl),p>O, r> O,jv no(c - a)/2A>0 
E2: jo>O: sup(O, (a + e)/2) <v<c, d> Ivlal,p <0, r<O, J =jowlA >0. 
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part B) easily solved. Two classes of solutions occur depend­
ing on whether jo 0 or jo #- O. It appears convenient to in­
troduce a parameter v linked to the ratio Y / P and identical to 
it for the Carleman model c = - a = 1, 

y/p = (a + c 2v)/(a - c). (2.2) 

The solutions, written down in Table I, part C are rewritten 
here in a form appropriate for the positivity discussion 

(N-J)Alno w+a/v, 

(N + J)Alno W + clv, jo 0, 

(N - J) (c - a)A12jo = aw + v, 

(N + J) (c - a)A/2jo = cw + v, jo#-O. 

(2.3a) 

(2.3b) 

These solutions depend on two arbitrary parameters no, v 
(orjo, v) which are important for the asymptotic positivity 
and one more integration constant d> 0 (A> 0) important 
for the positivity at t = O. When Ix I- 00 or (- 00, there exist 
for W only two possibilities: either W - 00 or w ...... 0 which 
when substituted into (2.3a) and (2.3b) will provide asymp­
totic constraints. 

We discuss possible solutions on the full x axis and begin 
with the asymptotic Ixl-+ 00 positivity constraints. For the 
jo 0 solution we note that limeN - J,N + J) is either 
no (1 , I) on one side or (nol v )( a ,c) on the other side. Due to 
ac,;;;;O we see that positivity is violated if ac#-O. Forjo#-O we 
find both limits (2jo/(a - c»)(a,c) and (2jovl(c - a»)(1,I) 
for N + J, leading to the positivity violation if ac #- O. In con­
clusion, positive soliton solutions cannot exist on the full x 
axis if ac < O. (In particular, this result holds for the Carle­
man model a + c = 0.) There remains the possibility ac = O. 
We begin with a = O,c>O:from (2.3a) and (2.3b) it follows 
that positivity (XE [ - 00, + 00], t;>O) is satisfied for the 
jo = 0 solution with no> 0, v> 0 as well as for the jo > 0 one 
with v> O. Similarly, for the model c = 0, a < 0 we find a 
positive solution when jo 0, no> 0, v < 0 as well as for 
jo < 0, v < O. The soliton solutions with the variable 
x + tpy-I are candidates as shock waves if Iplyl,;;;; 1 and the 
total mass N has a jump between the two limits Ix I ...... 00. 

These two limits are no(l,(a + c)/v) for thejo = 0 solution 
and Uo(c a) -I)(a + c,2v) for jo#-O. From (2.2), Ipl 
yl ,;;;; I means vie < 0 or vie> I for the a = 0 model and vi 
a < 0 or via > I for thec = 0 one. Of course the distributions 
N ± J must be positive. It is why our asymptotic Ixl-+ 00 

positivity condition, leading to ac = 0, is a first step in the 
determination of shock-wave solutions. For these models 
ac 0 and one of N ± J, there exists one of the two limits 
Ixl- 00 which is zero (see above) representing an infinite­
Mach-number shock wave. (See the PIatkowski paperlO for 
a discussion.) 

If we restrict our study to a semiline, for instance x;>O, 
then N ± J> 0 (t;>O) exist also for a#-O, c#-O. First for 
jo = 0 (2.3a), in order to satisfy positivity when x or t-+ 00, 

necessarily p and y must be such that (N J) -no, p > 0, 
and y> O. Looking at yin (2.2) andp written down in Table 
I, part Cl we find (a + c)/2 <v<c. On the other hand, for 
any t;>O we notice that (2.3a) leads to the lower bound 
(N J)/no>d -Ialvl, (N +J)lno>d clivi, so that 
positivity is satisfied for Id I> sup( la/vl,cllvi). Second, for 
the jo#-O, jo> 0 solution, a similar analysis when t-+ 00, 
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x-+ 00 leads to y <O,p <0. Then (2.2) and Table I, part C2 
give the constraint c> v> sup(O, (a + c) 12) from which we 
see that N + J is always positive for (;>0. The lower bound 
(N-J)(c-a)A/2jo>v-lald gives the last constraint 
d> lvia!- For the a = 0 or c = 0 models exist of course as 
solutions on the semi-x axis and we have disregarded here 
these particular cases. In Table I, part D EIE2 a summary of 
the positivity discussion is written down. 

B. Possible bisolitons 

We introduce the two-exponential variables Wi 
d i exp(yjx+Pjt) and require 

PlY2 P2YI#-0 (2.4) 

for a true two-dimensional solution. We remark that when 
d2 = 0 (or d I = 0), the bisolitons must reduce to the solitons 
studied above, withw = WI (orw2 ). We notice also that if we 
write the solitons of the above subsection like N I D then N 
and D are linear in w. 

Let us look at the possible denominators A of the bisoli­
ton. It must be of the type 1 + l:Wi plus terms at least qua­
dratic in WI' W 2· However, pure power terms wI: (or Wz), 
p> 1, alone, which do not vanish when d2 = 0 (or d l = 0) 
are not present because they do not exist in the soliton case. 
In other words A must reduce to I + Wi when dj = 0, i#-j. 
Thus A must be of the type A = 1 + l:Wj + w\W2P(W I ,Wj), 
Pbeing a polynomial in WI' W2• For simplicity we assume the 
simplest choice P=p, a constant. 

We write down a possible class of ansatz bisolitons, 

N n J . j A I '" =no+-, =Jo+-, = + ~Wi +pWIW2, 
A A i 

(2.5) 
with n = nOD + l:njw;.j = joo + l:jjwj, We notice that sup­
plementary terms proportional to W\W2 in the numerators n 
and j do not enlarge the class of ansatz because the ratios 
with A still lead to (2.5). The study is done in the Appendix. 
Two different possibilities occur depending upon whether 
p#-O or p = O. We tackle the constraints coming from two 
relations: mass conservation and nonlinear terms propor­
tional to A -2 which necessarily factorize A, 

Nt +Jx =0, (2.6) 

nAx + jAt - j(a + c)j + n(a - c») = O(A). 

The calculations are tedious but the results are simple. 
(i) The assumption P#-O leads necessarily to p 

(Sec. 1 in the Appendix) means that A is the product 
(1 + WI) (1 + W2 ). Furthermore the numerators are of the 
type n = l:n .. ( 1 + Wi), j = 'i.jj (I + Wi)' Consequently, at 
this stage where only the nonlinear constraint (2.6) is taken 
into account, the class of possible P#-O ansatz (2.5) is re­
duced to 

n I 
N=no+2:-', J=jo+2:-' , Ai =l+wj1 (2.7) 

Aj Ai 

where the constants no, nj ,jo,jj, Yj' Pi have to be determined 
from the other constraints of the nonlinear equation in 
( 1.2). 

( ii) The p = 0 case corresponds in A to the vanishing of 
the coupling between the solitons. Such bisolitons appear 
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naturally in the study of the continuous homogeneous BE. 
The class of NLPDE noncompletely integrable leading to 
such bisolitons has been investigated. 12 They correspond to 
factorizations of the operators associated with the linear part 
of the nonlinear equation. For the inhomogeneous discrete 
BE such factorization of the linear operator does not occur 
and we expect that such bisolitons do not exist here. The 
calculations are done in Sec. 2 of the Appendix. Taking into 
account the constraints (2.6) and with a lot of cumbersome 
calculations, we find that bisolitons with I-l ° do not exist. 

In conclusion, among the class (2.5), then (2.7) is the 
only possible subclass ofbisolitons. In the following subsec­
tions we shall first substitute the ansatz (2.7) into the non­
linear Illner system (1.2) and determine explicitly the pa­
rameters of the bisolitons. Second, with the help of 
invariance properties we shall show that it is sufficient to 
consider the parameter values in reduced intervals. Finally 
in the other sections we shall establish the asymptotic 
Ixl- 00, t- 00, and (;;.0 positivity constraints. 

C. Algebraic forms of the bisolitons 

The substitution of the ansatz (2.7) into the Illner sys­
tem and the vanishing of the coefficients of const I::.. i- I, I::.. i- 2, 

(1::.. 11::..2) I provide five relations (some of them are double) 
which are written down in Table II, part B. The four first 
relations are the soliton ones associated with the soliton 
parts Wi of the bisolitons. Notice that the bisoliton ansatz 
(2.7) is formally written as a linear superposition of two 
solitons Wi' The last relation [see also (1.4)] coming from 
(1::.. 11::..2 ) I represents the coupling between the two solitons 
such that the bisoliton exists. If, as in the soliton case (2.2), 
we introduce for each soliton a new parameter Vi associated 
with the ratiopJri (and reducing it for the Carleman mod­
el), i.e., rJpi = (a + c - 2Vi )/(a - c), then the condition 
for the existence ofa double soliton (called bisoliton) is sim­
ply VI + V 2 = 0. We arbitrarily choose 

2v = 2vI = a + c (a c)rl/PI (2.8) 

as the new parameter and V 2 becomes - v. This simple con­
dition for the existence of bisolitons traduces the fact that 
discrete Boltzmann models represent weakly nonlinear 
models called semilinear by the mathematicians. It is much 
more difficult to obtain similar objects in the continuous BE. 

TABLE II. Bisolitons. 

Once the coupling between the two solitons has been found 
then the algebraic determination of the solution in terms of 
v,jo, no is easily done. We still have two classes depending on 
whetherjo = ° orjo¥=O, written down in Table II, part Cl-2, 
and rewritten here in a slightly different way: 

(N - J)l::.. j I::..2/no - 1 + W1W2 + a(w2 - w1)/v, 

PI = no(c - a)3/4(v - c)(a - v), (2.9a) 

(N + J)l::.. j I::..2/no - 1 + WIW2 + C(W2 - w\)/v, jo = 0, 

(N - J) 1::..1 1::.. 2 (c - a)/2jo 

= (- a)(1 - WIW2 ) + v(wz - WI)' 

(2.9b) 

(N+J)1::.. 11::..2(c-a)/2jo=c(w lw 2 -1) +v(w2 -w\), 

jo ¥= 0, 

convenient for the positivity study. In both thejo = ° and 
jo¥=O cases we have from (2.8) rl = PI (a + c 2v)/ 
(a c) and for the second component part of the bisoliton 
the simple relations v - - v: P2 = PI ( - v), r 2 r I ( - v). 
The fact that these solutions (2.9) sustain a two-dimensional 
space [or (2.4) is satisfied 1 is verified by the relation r I ( v) / 

PI (v) ¥=r2/P2 = rl( - v)/r2( - v). We check now that if 
one soliton component vanishes then the bisoliton is reduced 
to the soliton of the other component. Starting from Table 
II, part C2 forjo¥=O, letusdefinew = WI' no = 2jov/(a - c), 

P = PI and perform the limit d2 -->0 or W2---0; then the bisoli­
ton is reduced to the soliton Table I, part C2 for j = 0. Con­
versely, starting from Table II, part Cl for jo = 0, defining 
W = WI' jo = (a - c)no/2v, and letting d2 ..... O we find the 
solitonjo¥=O of Table II, part C2. In conclusion the bisoli­
tons obtained are really the two-dimensional extension of the 
solitons of Sec. II A. 

D. Invariance properties 

The bisolitons (2.9a) and (2.9b) depend on the two pa­
rameters no(jo), v which are the coefficients ofthe Wi'S and 
on the two arbitrary constants di contained only in the Wi' In 
fact, two invariance properties for N ± J allow a reduction of 
the no(jo), v intervals which must be studied. 

(i) For the bisolitons jo = ° or jo¥=O let us define the 

A: Ansatz N = no + !.nJa;, J =jo + !.jJa;, a.; 1 + w; w; = d; exp(y;x + Pit) 
B: Relations (l)j;y; +n;p; =0, (2)jo[(a + c)jo + (a c)noJ =0, (3) and (4) 

(n;y! + j,P!) = 2joj! (a + c) - (a - c) (jon! + ino) = j;{(a + e)i + (a c)n;), (5) a + e + (a - e)/(YI/P, + Y2/P2)!2 = 0 
C: Algebraic solutions definition: y,/p, = ( 2v + a + e)/(a e), Y2/P2 = (2v + a + e)/(a - e) 
CI: jo=O,N-J=no(1 + (-I +a/v)/A, (I +a/v)/a2),p, =no(e-a)3/4(v-e)(a v) 

N + J = no(1 + ( - 1 + c/V)/A, (I + C/v)/A2),P2 =p,( - v) 
C2: kl-O, N - J = 2jo[a + (v- a)/a, (v + a)/a2l1(c - a),p, =jov(a - e)2/2(v a}(v - e), 

N+J=2jo[e+(v-c)/a, (v+e)/a2]1(c-a),P2=p,( v) 
D: Invariances:.:TI : {no- - no (orjo- - k), d; -d ,-', v fixed}, 

.:TIl: {no (orjo) fixed.d,~d2' v- v} 
E: Positive solutions on a semiline X;;. 0 with real A; 
EI: jo=O,a+c<O,O<v<inf{e, (a+e)/2),I<e/v<d2<d" 

p, >P2>O, y, >Y2>O, 2J = note - a)(w2 - w,)/va,a2<0 if d I = d2, N-no 
E2: jo>O, a + e<O, O<v<inf{e, (a + c)!2), I <c/v<d2, d,<d2, 

PI <O,P2>O,PI + P2 <0, y, <0, Y2>O, YI + Y2 <O,J = jO(WIW2 - l)/a,a2 <o, N-2jov/(a - e) 
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transforms Y, with the following changes in the param­
eters: 

Y r {no---> no (or)o---> -)0)' di --->d I~ I, V fixed}. 

With the transforms Y r we obtain Pi ---> - Pi' Yi ---> Yi' 
Wi --->Wi I, a i ->Wi~ lao and finally Y 1 (N ± J) -N ±J. 

(ii) Similarly let us define a second class of transforms 
Y n , 

Y n {no-no, d l ~d2' v- v}. 

With Y n we find PI~PZ' YI~Yz' al~a2 and finally 
Y n (N ± J) -+ N ± J. Without loss of generality we can, lat­
er on, restrict our study to no> 0 (jo> 0) and v> O. The 
properties corresponding to other domains no <0 (jo <0), 
v < 0 can be obtained by applying Y 1 and Y n . 

III. BISOLITONS WITH REAL EXPONENTIAL 
VARIABLES 

The properties discussed up to now for the bisolitons 
were algebraic and valid for Yi' Pi real or complex. Here we 
assume that Yi,Pi are real no>O (jo>O), v>O, d; >0 (or 
a i #0) and discuss the physically acceptable solutions. 

A. Physical solutions on the full line XE[ - co, + co] 

We study the asymptotic positivity lxi- 00 noticing 
that if one a i ...... co for one limit, necessarily the same a i ...... 1 
for the other. Two possibilities can occur. 

(i) For both ai the limits are + 00 and 1. For)o = 0 we 
find (N + J) -+ no for one limit and - no for the other, for 
)0#0 we find for N + J the two opposite limiting values 
± 2)oc/ (c - a) and for N - J the two opposite limiting val­

ues ± 2)oa/ (c a). In all cases the positivity is violated. 
(ii) Let us assume that a l -> 00, a 2 -> 1 for one asympto­

tic limit and a l ---> 1, a 2 ---> 00 for the other. Then for)o 0, 
N - J (or N + J) has two opposite limiting values ± noa/v 
(or ± noc/v) , for )0#0, similarly we obtain N - J (or 
N + J) -> ± 2)ov/(c - a), the only escape v = 0 leading to 
Yi = Pi = 0, Wi = const. 

In conclusion, the bisolitons with real Yi' Pi cannot be 
physical solutions on the full line. This means that the escape 
ac = 0 for the solitons do not hold for the bisolitons. 

B. Physical solutions on a semiline x>o (we recall that 
no>O, v>O, dl>O) 

1. Solutionsio=O 

First, looking at the asymptotic positivity for either 
t ---> 00 or x ---> 00 we show that necessarily Yi > 0, Pi > O. It is 
sufficient to notice that when x ...... 00, (i) ifYI > 0, Yz > 0, then 
N +J ...... no; (ii) if YI>O, Yz>O, N-J- -noa/v, 
N + J -noc/v < 0, except for the particular case c = 0; (iii) 
if YI<O, Y2<0, N +J- -no<O; (iv) if YI<O, Y2<0, 
N - J -+ noa/ v < 0 except for the particular case a = O. The 
same proof works for PI'PZ' Can we have solutions for these 
particular cases c = ° in (ii) and a = 0 in (iv)? Looking at 
the explicit expressions (2. 9a) of the Yi ,Pi as functions of no, 
v we find that the Yi' Pi do not have the signs prescribed in 
these particular cases. On the contrary we find v values for 
which the Pi and the Yi are positive. We obtain PI > ° if 
a<v<c,pz>Oif -c<v< -a,YI>Oif(a+c)/2<v<c, 
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Yz>o if - c<v< - (a + c)/2. Consequently on the one 
hand we have the restriction a + c < ° on the parameters of 
the Illner model and on the other hand the condition ° < v <inf{c, - (a + c)/2) on the v parameter. 

Second, for the last positivity constraint N ± J> ° for 
any t>O values we seek the signs of PI - Pz, YI - Yz for no, v, 
a, c satisfying the previous conditions: from (2.8) and (2. 9a) 
we have 

no(c - a)3v (a + c) 
PI -pz = 2(v _ cZ)(a2 _ v2) , 

no(c - a)Zv(v2 (a z + c2 )/2) 
YI Yz= 

(vz _ c2 )(aZ - v) 

(3.1 ) 

and findpl>pz>O, YI>YZ>O in the v assumed interval. 
Then from (2.9a) we easily obtain two lower bounds \7'x;;'O, 
\7't;;.O, 

alaz(N - J)/no> - 1 + d1dz a(dl dz)/v, 
(3.2) 

6. 16.z(N + J)/no> - 1 + d2c/v - d l (d2 - c/v) , 

from which we see that the positivity \7'x;;'O, \7't;;.O is satisfied 
if d I ;;.dz > c/ v> 1. In conclusion there exists solutions)o = ° 
positive on the semiline x;;.O. 

2. Solutions io> 0 

First we look at the asymptotic positivity when either 
t- 00 or x- 00 and show that necessarily YI <0, PI <0, 
Yz > O,Pz > 0. It is sufficient to notice that whenx- 00: (i) if 
YI>O, Yz>O, N+J-2)oc/(c-a) >0, N J->2)oa/ 
(c-a)<O (except if a=O); (ii) if YI>O, Yz<O, 
N±J ...... -2Jov/(c-a)<O; (iii) if YI<O, Y2<0, 
N-J ...... -2)oa/(c-a) >0, N+J---> 2)oc/(c-a) <0 
(except if cO); (iv) YI <0, Y2>0, N - J [or 
(N+)]-2)ov/(c-a) >0. Concerning the particular 
a = ° and c = ° cases, from the explicit expression (2. 9b) of 
the y"p" we do not find v values such thatthepi> Yi have the 
appropriate signs. On the contrary for ac < 0, we find v such 
that YI,PI are negative and Yz,Pz are positive. From (2.9b), 
for the above Pi signs we see that v must satisfy 
O<v<inf(c,-a) and for the y, signs,O<v 
< inf{c, (a + c)/2). Finally we have the same restrictions 
as for the )0 solution, i.e., a + c < ° and ° < v < inf­
(c, - (a + c)/2). 

Second, from (2.9b) we want to deduce lower bounds 
such that restrictions on the d, will give sufficient positivity 
conditions \7'x;;.O, \7't;;.O. Here we must have information on 
the signs of PI + Pz. Yl + Y2' 

)ov(a - c)2(a + c) 
PI +pz = (v _ a2)(V _ c2) , 

)oV(c - a)(2v a2 - c2
) 

YI+Y2= (V_a Z )(v_c2) 

(3.1') 

and we find 0<P2< -PI' O<Yz< -Ylo The two lower 
bounds are easily deduced 

6. 16.2 {N - J) 

>[(1-dld 2 )( -a) +v(dz -dl )]2Joc/{c-a), 

alaz(N+J) (3.2') 

> [ - 1 + vdz/c + WI (d2 - vic) ]2Joc/(c - a), 
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from which we obtain that the positivity V x;>O, V t;>O is sat­
isfied if d l<d2, d 1d2< 1, d2 > elv> 1. A summary of the re­
sults of this subsection is quoted in Table II, Part E 1.2. For 
bothio = 0 andio:;;60 solutions the sufficient positivity con­
ditions and the restrictions on the parameters belonging to 
other intervals no < 0, io < 0, v < 0 can be deduced with the 
help of the Y r and Y n transforms. 

C. Specular reflection boundary condition at x=o 
Let us requireN - J = N + Jatx OorJ = Oatx = O. 

Necessarily we consider theio = 0 solution and from (2.9a) 
obtain al(x=o,t) =a2(x O,t) or d l =d2 and PI =P2' 
From (3.1) we see that for the bisolitons the only possibility 
is a + e = 0 for which YI + Y2 = O. This means that for the 
present class of solutions, the Carleman model is the only 
possible one with this type of boundary. 

D. Multisolitons? 

Can we have more than bisolitons or can we find solu­
tions containing N solitons with components Wi 

= di exp Pi (t + XYJPi)' N> 2, yJpi different values? Re­
quiring that when dj -0, i> 2 the solution reduces to the 
previous bisoliton, the simplest ansatz is N = no + ~nJ a j , 

J =jo + ~ii I ai' a i = 1 + Wi' The linear mass conservation 
givesjiYi + niPi = 0 and from the coefficient of (aiak)-I 
in the nonlinear Illner equation we find 

a+e+ (a e) (!2.+~)=0, Vi,Vk,e:;;6k. 
2 Yi Yk 

For the bisoliton N = 2 there is only one relation which ex­
presses the coupling between the two soliton components. 
On the contrary for N> 2 the set of relations leads Vito Yi I 
Pi = const independent of i or to an impossibility. 

IV. BISOLITONS WITH COMPLEX CONJUGATE 
EXPONENTIAL VARIABLES 

Let us come back to the algebraic bisolitons written 
down in (2.3a) and (2.3b) (or Table I, part C1.2), assume 
that the v parameter is purely imaginary v = iv, and recall 
that P2 =PI( - v), Y2 = YI( - v). We have PI PI (ivd, 

TABLE III. Bisolitons with complex t;.: v = iv, . 

P2 = PI ( - ivr ) = pT, Y2 = Yr. Let us definep = PI' Y = YI' 
W = wl,d dl>w = d exp(yx +pt), and choose d2 = d*. It 
follows that W 2 = w*, a 2 = a *, and N ± J are real. We no­
tice that these solutions could as well be obtained directly 
starting with an ansatz N = no + 2 Re(nla), 
J =jo + 2 Re(j/a), a = 1 + w, n,j, Y,P being complex. 

The invariance of Sec. II D is still valid and the trans­
forms can be written {no- -no (orio- -jo),d-d I, 

Y, fixed} and Y n {no (or io) fixed, d -d *, v, - - va. 
Consequently we still restrict our study to no> 0 (orjo > 0) 
andvr >0. Westillrestrictourstudytono>O (orio> 0) and 
VI >0. We still have two classes ofsolutions:io = 0,io:;;60, 
however, the last one violates positivity as we show. The 
solutionsjo:;;60 can be written as 

(N - J) lal 2 = qo(a( IwI 2 
- 1) + 2vlwd/(e - a), 

WI = 1m w, ( 4.1 ) 

(N + J) lal 2 = qo(e( IwI2 - 1) + 2v, wrl/(e - a), 

io=/=O. 
When either t or Ixl go to infinity there exist two possible 
asymptotic behaviors: (i) either Iwl-O(), N-J-+2joal 
(e - a) which violates positivity unless a = 0, (ii) or 
Iwl-O, N + J - - 2joel(e - a) still violating positivity un­
less e = O. Further if a = 0 (or e = 0), then N - J (or 
N + 1), proportional to WI changes sign for x and t varying. 

Hereafter we always consider theio = 0 solution that we 
write (see also Table III, part B) 

(N - J) lal 2 = no( - 1 + Iwl 2 2aw1Ivl ), 

(N + J) lal 2 = no( - 1 + Iwl 2 
- 2ewr/vl ), 

no(e a)3(vi-ae-ivda+e») 
P = ------------

4(e2 + vi)(a2 + Vi) 

(4.2) 

no(e a)2(a + e)(vi + ae) + iVr (2vi + a2 + e1 ») 
Y = ------.:----"--------=---=-----..:.-

4(e2 + vi)(a2 + vi) 

withp = PR + ip" Y YR + iYI' Let us show thatifYR :;;60, 
physical positive solutions on the full x axis are not possible. 
When Ix I- 0() , on one side I w I- 0() , N - J - no while on the 

A: Ansatz N = no + 2 Re n/ t;.,J =)0 + 2 Rej/ t;., t;. = I + d exp( yx + pt) no,)o real, n,), Y, P, d complex 
B: Algebraic solutions)o = ON - J = no[l- 2 Re t;. -, + (2alv,)lm t;. -'] N +J = no! 1- 2 Re t;. -, + (2c1v,)lm t;. -'] 

no(e-a)3[v.-ae-iv,(a+e» . 
P= , r=p(a+e-2LV,)/(a-c) 

4CV. + c2 )(V. + a2) 
C: Invariances Y lI : {no~ - no Cor)o~ - )0)' d~d -', VI fixed}, 

Y-n : {no (or )0) fixed, d ~d *, v, ~ - VI}' 
D: Periodic solutions no> 0, v, > ° 
DI: VI = ±~-ac'PR =no(e-a)/2>Oforno>0,forv,>0,p, =no(a2 e2 )/4!=IiC, 

r, =no(a-c)2/4!=IiC, N+J ~ no>O,n±J>Oifldl>sup(~ +~l+ai)' 
t_~ 

a, = Ie/al. a 2 lalcl; for no<O,Pn <0. N ±J>Oifld I <inf( - ~ + ~1 +ai )· 

D2: a+e=O,y,/V, =2noe
2/(c2+ 0) =PR/C'YR =PI =O,N±J ~ no>O 

t_~ 

N ± J> ° if Id I > Ie/v, I + ~ I + Ie/v, 12; If v, = e, Nand J harmonic conjugate 
E: Positive soliton on a semiline x;>O 

1573 

no>O.Pn >0, YR >0. no restriction on V, if a = Oor e = 0, v. > - ac if a + C<O, 

0< - ac if a + c <0, Id I > SUP.8i + ~l + .8; • .8, = la/v.l,.82 = le/vd, 
J(x = O,t) = no(c - a)v,-' 1m t;. -, changes sign, N~no. 
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other side Iwl-O,N - J- - no' There remains twopossibi­
lities: either YR 0, and at fixed t, the solutions are periodic 
on the full x axis, or Y R =f. 0 and we must restrict our study to 
some semi-x axis (for instance x;>O). 

A. Periodic solutions Y R = 0 

From (3.2) weseethatYR = Oeitherifvi + ae = Oorif 
a +e=O. 

1. vt=-ac (a+c~O, a~O, c~O) 

We choose VI = ~ - ae> 0, and begin with no> 0 and 
find 

PR = no(e - a)/2>0, PI no(a2 - e2)/4-.f=(iC, 

YI = no(a - e)2/4-.f=(iC (4.3) 

(PR>O even if VI <0). When 1-00, Iwl-oo, 
N + J - no> 0, let us seek sufficient conditions on d such 
that the positivity is satisfied for any t>O. From (4.2) we 
deduce two lower bounds, (N+J)IAI 2/no +l-lwI2 

greater than either - 2Iwl~la/el or 2Iwl~le/al from 
which we obtain 

Recalling P R > 0, it is sufficient that the inequality (4.4) 
holds at t = 0 for Id I alone. For the other sign choice VI < 0, 
with the help of the transform .7 II' we must replace d by d * 
leading to the same result for I d I. We notice that in (4.4) the 
sup is larger than 1 so that Id I > 1 avoids the possibility 
A = 0 for some x, t values. 

For no < 0, we want to check the validity of our invar­
iance properties applied to the positivity constraints. First as 
above, we deduce directly the sufficient positivity condition: 
no<O leads to PR <0, N ± J- - no and we deduce from 
(4.2) two lower bounds (N +J)/( - no) - 1 + Iwl 2 

greater than either - 2Iwl~la/CT or - 2Iwl~le/al. It fol­
lows that 

no < 0, t;>O, x;>O, ( 4.4') 

with the same a i as in (4.4). Here also it is sufficient to apply 
(4.4') at 1 = 0 for Id ,. Second we apply the transform.7I to 
our above result obtained for no> O. In (4.4), for 1 = 0 we 
replace d by d - 1 .It is trivial to verify that we obtain the same 
condition (4.4') for t = O. We notice also that in (4.4') the 
infbeing less than 1 avoids the possibility A = O. 

2. a+c=O, Carleman model 

We begin with no> 0 and find 

YrVI-1 = 2noe2/(vi + e2
) = PRe-I> 0, 

YR =Pr =0, w=dexpYdeYI-lt + ix) 
(4.5) 

and N ± J - no. Lower bounds, easily deduced from 
t_ '" 

(3.2), lead to sufficient t;>O, x>O, positivity conditions, 
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(N ±J)IAI2no-
1 > - 1 + Id 12 - 2cld IVI-

I >0 
(4.6) 

if Id I > Ie/VI I + ~ 1 + Ie/VI 12 . 
For the other choices VI < 0, no < 0 we use the transforms 
.71 , .711 and proceed as above. For instance for no < 0 we 

find Id I < - Ie/VI I + ~ 1 + Ie/vI 12 . 
Let us consider the restricted class of solutions such that 

VI = e. Then YI = P R and the condition p2 + r = 0 is satis­
fied. In the case Nand J are harmonic conjugate functions. 

In (4.6) the positivity condition becomes Id I> 1 + {i for 
no> O. If we require further that d is real then the solution 
becomes identical to the one determined previously by 
Wick. 9 However, let us recall that the solution exists for any 
VI real values for which Nand J are not, in general, conjugate 
harmonic. Further when VI crosses the value c, nothing spe­
cial happens for the solutions. 

3. Physical Interpretation of the periodic solutions 
We write down the total mass N and the current J and 

look at their large time behavior 

N /no - 1 = 2 Re(1 + i(a + e)/2vdA- 1 

=e -PRtAN cos(y1x + Prt + <PN)' 

J /no = 2 Re(a - e) (2vIA) 1 

=e -PR'Aj cos(Yrx + Pit + <PJ)' 

(4.7) 

with AN' AJ being positive constants and <PN' <PJ constant 
phase factors. They represent damped (p R > 0) oscillating 
and propagating (if PI =f.0) waves. Notice that for the cur­
rent IJ I --+ 0 when t - 00 and in the mean the flux of particles 
is equivalent to zero. We discuss the two different cases 
a + e=f.O (see Sec. IV A 1) and a + e = 0 (see Sec. IV A 2). 

(i) a + c=f.O. The solutions correspond to damped 
sound waves. Nno- 1 - 1 = (exp - PR t)COS(YI (x - vot) 

+ <PN), where the sound speed IVoi = la + el/(e - a), de­
pendent only on the Illner parameter values a, c, is the same 
for all solutions [p R, YI are written down in (4.3)]. For a 
periodic solution, the asymptotic mass value no is fixed and 
we have only one sound mode. In the dispersion relation YI 
wave number versusPI frequency we have only one value. If 
the ratio of the absorption coefficientpR by the frequency PI 
is not small, we have very few effective oscillations when the 
time is growing. A good criterion for sound waves (not too 
strongly damped) is 

( 4.S) 

For c fixed taking Illner models with a increasing we 
must observe more and more effective oscillations in time of 
N for a fixed x value. Choosing c = I, and a = - 9, - 225, 

625, 2500 with ratios PR/PI = 0.75,0.13, O.OS, 0.04 
we observe an increasing number 1, 3, 6, 13 of oscillations 
(see Sec. VI). 

(ii) For the Carleman model PI = 0, the oscillations are 
not propagating. The periodic solutions cannot correspond 
to sound waves, they are damped oscillating waves. 

B. Physical solutions on a semiline x>O 

We assume no>O (for no<O we use.7r ). In order to 
avoid a positivity violation when x or t goes to infinity [see 
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(4.2)], we must, in both limits have Iwl-oo or PR >0, 
YR >0 (N +J-no>O). However, PR is always positive 
while, with Y R having the sign of (a + c) (vi + ac), we find 
Y R > 0 either for a + c > 0, vi > - ac or for a + c < 0, vi 
< - ac. In the following, we assume that these restrictions 
are satisfied, still choosing no> O. 

In order to find sufficient t;..O, x;"O positivity conditions 
we deduce two lower bounds from (4.2): (N - J) ja l2no- I 

+ 1 - Iwl 2 greater than either - 21walvr I or - 21wclvI I, 
with Iwl = Idlexp(yRx+PRt). We find N±J>O, 'tit',O, 
'tix;"Oif 

We emphasize that such solutions exist for all parameters 
values a<O, c;..O of the Illner model. Note that for a = 0 or 
c = 0 we have no restrictions on VI while in the other cases 
the restrictions written above exist. For a 0 or a + c> 0, 
the sup in (4.9) is given by the second term, while if c = 0 or 
a + c < 0, it is the first one. The Carleman model solution 
(Sec. IV A 2) for whichpR > 0, YR > 0 is for x;"O a particu­
lar case of the present class of solutions. 

Can we have a specular reflection boundary at x = 0 or 
J(x O,t) = O? We must choose the jo 0 solution and 
from (4.2) we find that 1m w 0 or d real PI = O. Once 
more, the only possible model is the Carleman one 
(a+c)=O. 

C. Conjugate harmonic N,J functions 

Let us assume that in addition to the mass conservation 
law Nt +Jx =0, Nand J satisfy Nt -Jx =0 or (a;2 
+ a~,) (N, J) = (0,0). Then Nand J become harmonic 

conjugate functions. For the ansatz (2.7) this means r7 + P; 
= 0, which is not possible for real Yi' Pi' In the present 

section, where the Yi and the Pi are complex conjugate, we 
must havep2 + r = 0 or the two conditionsPRPI + YRYI 
= 0, p~ + rl = pi + ri· 

Let us check on the explicit P, Y written down in (4.2) 
for these two conditions. From the first condition we find 
two possibilities: either a + c = 0 (Carleman model) or vi 
+ 2viac + ac(a2 + c2 

- ac) = O. The second condition for 
a + c = 0 gives IVI I = c for the Carleman model (see Sec. 
IV A 1). On the contrary, the second condition, for 
a + c#O in the first condition, leads after some algebraic 
calculation to the result vi = ac which is impossible for the 
Illner model ac < O. Finally the possibility of constructing 
explicit Nand J harmonic conjugate functions exists only for 
a particular value of the parameter of the Carleman model. 
For instance we can directly check, for the periodic solutions 
vi = - ac of III A 1, that r + p2#0. 

V. PHYSICAL INTERPRETATION OF THE POSITIVE 
SOLUTIONS ON A SEMILINE, x;..O 

In analogy with a previous physical interpretationl3 of 
the inhomogeneous Kac model solution, which was positive 
only inside a well-defined interval, we define new distribu­
tions f71 e(x) 171 which are identically zero for x < 0 (out-
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side the semiaxis x;"O). Starting with the kinetic equations 
for IT}: (at + 17 ax ) IT} = 17 col( Ij-,J-) we deduce the cor­
responding kinetic equations for 171 

(at + 17 ax)f71 = 17 Col(f+,f_) + 17S + So, 

17S + So = 170 (X) 171 (x = O,t), (5.1) 

2S o(x)N(x = O,t), 2S0 = o(x)J(x = O,t). 

We must interpret physically the two supplementary 
terms So and 17S. For a positive additional term, like a gain 
term in the collision term, it is interpreted as a source term at 
x 0, while a negative term, like a loss term, is interpreted 
as a sink atx = O. 

(i) The term 170(x)N(x = 0,t)/2, which, due to the po­
sitivity of N, has the sign 17 = ± 1, is interpreted as a source 
for particles of velocity + 1 and a sink for particles of veloc­
ity - 1. The amount of incoming and outgoing particles 
being the same, 17S can be viewed as an elastic wall at x = O. 
In general N(x = O,t) -const when t - 00, so that the elastic 
wall is always present. For a perfect specular reflection 
boundary condition at x = 0, then J =0 or So =0, the elastic 
wall is the only supplementary term on the rhs of (5.1). 
(This happens only for the Carleman model choosing 
d l = d2 if a is real and d real for a complex.) 

(ii) The second term o(x)J(x = 0,t)/2, which is the 
same for both particles of velocities ± 1, has not necessarily 
a definite sign. 

If J(x = O,t) does not change sign, then So can be inter­
preted as a source (J> 0) or as a sink (J < 0). If it changes 
sign for different time values t l,t2, ... , then it acts like a source 
(or a sink) during the time intervals [ti ,ti + I ] in which it is 
positive (negative). Nevertheless, in general, we find that it 
decreases exponentially in time, such that for infinite time, it 
becomes negligible compared with the elastic wall17S. 

We discuss the different possibilities with the restric­
tions no>O (orjo>O) v>O (or VI >0). For the other sign 
cases we must use the transforms Y I and Y n . 

A. Solutions with real 'Y/, Pi andjo=O (see Sec. III B 1) 

From (2.9a) we find for J and N 

2J = no(c - a) (_1 ___ 1_) 
V a l az 

no(c - a)(w2 - WI) N = , -">no, t- 00. 

valaz 
(S.2a) 

We recall that a + c < 0, 0 < V < inf(c, - (a + c)/2), 
PI >Pz>O, or w2w\ 1_0 when t- 00. Ifwe choosed t = dz, 
then W2 - wl<O, j<O while IJ I =O(exp - pzt). Thus So 
looks like a sink which, when the time increases, becomes 
negligible compared with the elastic wall 17S, ISoi 
17S I =O(exp - P2t)· 

B. Solutions with real 'Yo PI andjo>O (see Sec. III B 2) 

From (2.9b) we find for J, N 

( _1 ___ 1_) =)'0 ( - 1 + W I W 2 ) , J=jo 1 
al a2 ala2 

N-2jovl(c - a)t- 00. 
(S.2b) 

We recall that for a + c, V we have the same restrictions as 
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above. Further here PI <0,P2>0,P! +P2<0, d 1d2,1, or 
J,O. As above So looks like a sink and due to 
IJ I =O(exp P2t) it becomes, at infinite time, negligible 
compared with the elastic wall, ISoI1]S 1 =O(exp - P2t)· 

C. Solutions with complex conjugate "I" PI (see Sec. 
IVB) 

From (4.2) for the solutions withjo = 0 we have 

J =no(c-a)vI-1Imt..-I 

= - no(c - a) ffR'Im(diP•
t

) N-.no. (5.3) 
VIIt..12 ' 

We recall that PR >0, YR >0, and IJi =O(exp-PRt)· 
However, when t increases, J changes sign an increasing 
number of time. So So acting alternatively like a source or 
like a sink has dropped oscillations and still becomes negligi­
blecompared with the elastic wall: ISoI1]S 1 =O(exp - PR n. 

D. Solitons on a semiaxisx;;;.O for 8#0 c#O (see Sec. 
II A) 

For the jo = 0 solution, we recall that no> 0, P> 0, 
(a+c)/2<v<c. N(x=O,t)-.no when 1-+00, 

J = no(c - a)/2vA having the same sign as V and 
IJ 1 =O(exp pt). So So can beseenasa source (v>O) or a 
sink (v < 0) which becomes negligible ISol1]S I 
=O(exp - pt) when t- 00. 

For the jo> 0 solution, we recall that P < 0, 
sup(O,(a + c)/2) <v<c, J =jowlt..> 0, IJ 1= O(exppl), 
N-+2jov(c - a). In this case So can be viewed as a source 
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0.5 
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......... t = 0.1 
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4 

X 
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t = 0 
t = 2 
t = 6 
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6 
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! X, 
I 

which becomes negligible ISoI1]S I =O( exp pt). 
Let us define the average flow velocity, < V) = J(x,t)1 

N(x,t); we remark that for the four above cases studied in 
Sec. V A-V D we have I < V) I =O(exp - const I) -+0 when 
t-. 00. 

VI. NUMERICAL CALCULATIONS FOR BISOLITONS 

In Fig. 1 we quote the relaxation curves for distributions 
N ± J> Oonasemilinex;;;.O. In Fig. 1 (a) we present a model 
jo = 4, Yi and Pi reals, for the values a = - 3, c = 1 of the 
Illner model with v = 0.5, d I = 0.5, dz = 2. In Fig. 1 (b) the 
Yi' Pi are complex conjugate and jo = o. We choose the 
McKean model a = 0, c = 1 with no = 1, VI = 0.5, and 
d = 4 + i1.5. In Fig. 1(c), the Y;,P; are real butj o. The 
Illner parameters are a = - 4, c = 1 while no = 1, V = 0.5, 
d 1 =d2 = 1.5. 

In Figs. 2-4 we quote the relaxation curves for periodic 
solutions (damped sound waves) with the period spatial 
variable x' = YI xl2E [0,1], where c = 1 is fixed and - a in­
creasing, - 9, - 225, - 625. We plot different relaxation 
curves for N - Jin (a), N + J in (b), Nin (c). In (d), the 
spatial variable x = 0 being fixed we plot different oscilla­
tions of N (x = O,t) which are effective. When the ratio P R 1 
PI decreases 0.75, 0.13, 0.08, the damping becomes less im­
portant, allowing the possibility to observe an increasing 
number of oscillations. 

VII. CONCLUSIONS 

Two different one spatial dimensional discrete velocity 
models, the two-velocity Illner model and the six-velocity 

N-J (c) 
2.0 

1.5 

1.01-= ....... .:..30..--

0.5 

0.5 

I 

0 

-- t =0 
......... t = O.OS 
---- t .0.15 
-'- t .0.70 

01=-". c= 1 
jo. a no· 1 v" 0.5 
d,= 1.5 dz= 1.5 
Y, '" 11.11 '12= 2.38 
P,.13.9 Pz :: 5.95 

N+J 

-- 1=0 
......... t. 0.2 
-.- t .0.6 

X 
! • 

FIG. 1. Plots of N ± J against XE[ 0,00 1 
for differentt values (al a = - 3, c = I, 
jo = 4, V= 0.5, d. = 0.5, d2 = 2, 
Y. = 6.8, Y2 = 1.06, P. - 9.1, 
P2=4.26; (b) 0=0, c= I, jo=O, 
no = I, VI = 0.5, d = 4 + il.5, 
Y = 0.2 + iO.6, P = 0.2 - iO.4; (e) 
a = - 4, c = l,jo = 0, no = I, V = 0.5, 
d. = d2 = 1.5, P. = 13.9, P2 = 5.25, 
Y. = 11.11, Y2 2.28. 
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N-J (a) N 

a=-9 (=1 
io=O no=1 "1=3 
9=5.20/3 
l=i25/3 
d=6.2i 
911 / 91=3/4 

D,S 

0 

N.J (b) 

0,8 

0,5'--____ -.1..--_____ _ 

o 0,5 o 

Broadwell model, have been studied with the same method. 
We have found two types of exact two-dimensional positive 
solutions: either periodic or half-space solutions. In addi­
tion, for the Broadwell model, there also exists positive exact 
non periodic solutions on the full x axis. It could be interest­
ing to investigate more complex discrete models and see 
whether this method of solitons and bisolitons leads to simi­
lar classes of physically acceptable exact solutions. 

For the Broadwell model, there also exist models in two 
and three spatial dimensions. I am investigating the two spa­
tial one and, although the algebraic resolution is very te­
dious, I hope to find acceptable physical solutions. 

N-J (a) N 
a=-22S (=1 
io=O no=1 
9=113.i843 
l=i853 
d=30.i{f 
911 / 91=0,13 

D,S 

0 

0 
N(x=O,t) 

1,3 
N.J (b) 

1.1 
t=2.10-) t=O 

(c) 

FIG. 2. Plots of the periodic solu-
tions against x rI X (21T) -I 
E[O.I], for the IlIner model c= 1, 
jo = 0, no = I, VI =,;::a and dif-
ferent - a values. (a), (b), (c) 
N - J, N + J, N vs x' for different t 
values, (d) N, a= 9, 

0,5 X' P = 5 + 120/3, r= i25/3, 
d=6+2i,PRPI I =0.75. 

(d) 

0,5 

Another interesting by-product of the determination of 
exact solutions is the possibility to check the fluid dynamical 
limit with the introduction of the mean free path into the 
collision term. 

ACKNOWLEDGMENTS 

It is a great pleasure to thank Pro R. Balian for his great 
help in the physical interpretation of the solutions. 

APPENDIX: POSSIBLE ANSATZ BISOLITONS 

We study the class of possible bisolitons (rational func­
tions) 

(c) 

t=O 

FIG. 3. Plots of the periodic solutions 
against x' rIX(21T)-IE[0.1], for the 

D,S X' Illner model c I, jo 0, no= 1, 
V, = Fa and different - a values. 
(a), (b), (c) N - J, N + J, N vs x' for 
different t values, (d) N, for x = 0 fixed, 
against t. a = - 225, P 113 + i843, 

r iS53, d = 30 + i.j2, PRP.- I = 0.13. 
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n 
N=no+-, 

t::. 
J 

. j 
=Jo+-, 

t::. 

W; = d; exp(y;x + pJ), 

solutions of the Illner system 

1 + I W; +J.l~IW2 = t::., 

(Al) 

N, +Jx =0, N x +Jt =J[(a+c)J+N(a-c)], 

a<O, c>O, (A2) 

no,jo, noo,joo, nuj;. Y;.p; being constants. In a two-dimen­
sional space we must require 

(A3) 

We assumeJ.l:;;<,Oin Sec. 1,J.l = Oin Sec. 2. We investigate the 
full constraints coming from the linear differential equation 
(A2) and for the nonlinear one, we retain only that the term 
proportional to t::. -2 must factorize t::., 

j[ (a + c)j + (a - c)n] + nt::.x + jt::.t = O(t::.). (A2') 

We find thatJ.l:;;<'O requiresJ.l = 1 whileJ.l = 0 is not possible. 

1 . ...,¢0 

1.1: N, +Jx =0 leads to the identity (n, +jx)t::. 
- (nt::., + jt::.x ) = O. We prescribe that the coefficients of 

Wi' w;, Wl W2 ' W7Wj into this identity are zero. We obtain 

k :;;<,i, 

(A4) 

and two possibilities, either J.l = 1 or J.l:;;<' 1 and n1YI 
- n2Y2 = O. We look at the possibility J.l:;;<' 1, so that we can 

rewrite (A4), 

n=n1[I(Yi+WiYk)]. k= -ii1[I(p;+WiPk)]' 

iii = n j lY2 (A3') 
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and substituting into (A2') we want to know whether the 
assumption J.l :;;<' 1 is still possible. 

1.2: Nonlinear constraints. Equation (AI2') can be re­
written 

j(a + c)j + n(a - c») + nt::.x + jt::., =(bo + I b;w;)t::.n1, 

iiI = n 1/Y2' (Al") 

with bo, bi unknown to be determined. We prescribe that in 
(A2") the coefficients of const, Wi' WI W2' W;, W;Wj are zero. 
We obtain bo, bi ; bo = iil~Pt! (a + c)~p; - (a - c)~y;), b; 
=Yj(YI +Y2) -Pj(Pl +P2) and three relations where we 
define new variables X; =p;iy; [(A3) meansx 1:;;<,x2 ], 

nl=(x;-l)/(a+c+xj(c a»), i=I,2, 

( J.l - 1)( 2 (1 - X IX2 ) 

+ nj(2(a + c) + (c - a) (X IX2 »)) O. (AS) 

We discard the J.l 1 case and the coefficient of (J.l - 1) 
gives another expression for nl' Still assuming XI :;;<'X2 we 
find 

(a + c)x; + (c - a) (1 + x7)/2 = 0, 

(a + c)(x1 + Xl) + (a - c) (1 + X1X2) = O. 

If a + c:;;<,O the only possibility is XI = X2 = ± 1, while if 
a + c = 0 we have Xl = X 2 = ± i. Finally, (A3) cannot be 
satisfied for J.l:;;<' 1. 

2 . ...,=0 

Without loss of generality we redefine the constants in 
(Al), 

N 
(AI') 

n noo + nlwt , j = joo + j2W2' 

2.1: N, + Jx = O. From the vanishing of the coefficients 
ofw;, w7, Wl W2' W;Wj we find 
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n=n1(w1(Y2-YI) +Y2)' j=n l (W2(P2-PI) PI)' 

nl = n 1/(Y2 - Yl)' (A6) 

2.2: Nonlinear constraint. We use (A2"), n l being de-
fined in (A6). The coefficients of const, Wi' W1W2' w; deter­
mine bo, bi and give three expressions for ni' 

bo = n l PI«a + C)PI - (a - C)Y2)' bl = YI (Y2 - YI)' 

b2 = n l (a + c)( P2 - PI)2 + P2( PZ - PI), (A7) 

n
l

= (P2-PI)2 (YI-Y2)2 

(P2-PI)(a-c)(Yz-YI) - (a+c)(p2-PI») 

p~-y; 
= , i = 1,2. 

Pi(a - C)Yi - (a + C)Pi) 
(AS) 

Introducing Xi = P;!Yi and first assuming x;# 1, we find 
either X I = X2 or 

(a+c)(x i +x2) + (c-a)(1 +XIX2) =0, 

2x i (a + c) + (c - a) (1 + x~) = 0. 
(A9) 

If a + c#O the only possibility is x; = 1 while if a + c = ° 
we have Xl = X z = ± i. Second, if both x~ = 1, the denomi­

I 

nators of the last Eq. (AS) vanish leading to a = c = 0. [If 
only x~ = 1 the last i = 2 relation in (AS) gives 
X2 = (a - c)/(a + c) while the other relations lead to xt 
= 1.] Finally, (A3), for the IIIner model, cannot be satis­

fied for f.l = 0. 
2.3: Instead o/the Illner model we consider the most gen­

eral quadratic nonlinearity. 14 This means ± (aN2+ 
+ 2bN +N _ + cN 2_ ) in (1.1) or Nt + Nx = AN2 + BJ 2 

+ CNJ in (1.2) with A = b + (a + c)/2, B = - b + (a 
+ c)/2, C = a-c. (The Illner model corresponds to 

2b + a + c = 0, a < 0, c> 0.) We want to show that if we 
restrict our study, as here, to nonlinear il -2 terms, the only 
possiblef.l = ° solutions require a = c = 0, b #0. For the an­
satz (AI'), then (A6) is still valid. Equation (A2") be­
comes fB + n2A + njC + nilx + jilt = (bo + ~biWi )iln l 
and the vanishing of the WAj powers, as above, give 

bo=nl(Bpi+Arz PIY2C ), 

b l = YI(Y2 YI) + nIA(YI - Y2)2, (AT) 

b2=P2(P2-P,) +n IB(p2 PI)2, 

n
l 
= - (P2 _PI)2 + (Y2 - YI)Z 

(A(yz - YI)Z +B(pz -PI)Z - C( PZ -Pl)(Y2 - YI)1 
(AS') 

As above, introducing Xi P;!Yi and first assuming xi# 1, 
we find either x I = X 2 or 

(Xj + Xi) (A + B) - C( 1 + XjXj ) = 0, 

- 2x i (A + B) + C(x; + 1) = 0. 
(A9') 

We can check in the Illner model A = 0, B = a + c, 
C = a - c that (A7')-(A9') reduce to (A7')-(A9). If the 
determinant of (A9') is different than zero then 
A + B = C = ° or a = C = ° and the only possibility to satis­
fy (A3) is to have a term like N +N _ in the collision term 
(without N 2+ terms). The model of Ruijgrok and Wu 15 is of 
this type and there exist for this model solutions with f.l = 0. 
If the determinant of (A9') is zero, then either Xi = Xj or X7 
= 1. Second, if both x; 1, the denominators of the last 
(AS') relations vanish leading to A + B = CXi or Xl = X2' 
[If only x~ = 1, the last (AS') relation gives x 2C = A + B, 
and substituting into the other (AS') relations we find xi 
= 1.] 

In conclusion only quadratic terms of the type N +N _ 
could allow f.l = ° bisolitons. 
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The effect of a one-dimensional potential of finite range on the statistical 
parameters of an incident ensemble of particles. I. Pure states 
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If an ensemble of particles moving parallel to the x axis in the positive direction impinges on a 
piecewise continuous potential confined to the interval [ - a,a] (a> 0) it will divide into a 
transmitted ensemble and a reflected ensemble. It is shown that the classical results for the 
means, variances, and covariance of position and velocity of the transmitted and reflected 
ensembles hold in quantum mechanics if the incident state is assumed to be pure and defined 
by a Coo wave function whose Fourier transform has bounded, positive support, on which the 
modulus and argument of the transmission and reflection coefficients are Coo' 

I. INTRODUCTION 

We shall consider the problem of an ensemble of parti­
cles initially moving freely parallel to the x axis in the posi­
tive direction, which subsequently impinges on a piecewise 
continuous potential V which vanishes outside some finite 
interval [ a,a] (a > 0). If the particles obey CM (classical 
mechanics) the velocity Vin (t) and positionxin (t) ofa parti­
cle of the ensemble at time t ~ - 00 are given by 

Vin (I) V, 

X in (t) = Xin + vt, 

( 1.1a) 

(l.1b) 

where v, Xin are real constants and v > O. An observable A is a 
(possibly time-dependent) function on the two-dimensional 
phase space n, and its expectation value (A ) in is obtained by 
averaging over some time-independent probability density 
Ilin on n. The following results for the incident ensemble 
follow easily from the fact that expectation is a linear func­
tional: 

mean velocity = (vin (t) ) in (v) in' ( 1.2a) 

mean position = (X in (t» in (Xin >in + (V )in t. (1.2b) 

Ifwe write Varin A for the variance «A (A >in )2)in' then 

variance of velocity = Varin Vin (t) = Varin V. (1.2c) 

If we write COVin (A,B) for the covariance 
«A - (A >in) (B - (B >in »in' then 

covariance of position and velocity 

COVin (Xin (t) ,Vin (t») 

COVin (Xin,V) + tVarin V, 

variance of position of the incident ensemble 

Varin Xin (t) 

= Varin Xin + 2t COVin (X in ,V) + t 2 Varin V. 

( 1.2d) 

( 1.2e) 

Suppose now the particles obey QM (quantum mechan­
ics). An observable A is now a self-adjoint operator in the 
Hilbert space JZ'" = Lz(lR). In particular, if/is a real-valued 
function on JR, multiplication by / is self-adjoint; we shall 
denote this operator by }: So also is F *]F, where F is the 
Fourier transformation; we shall denoteF *]Fby}: In partic­
ular, the position operator isx. If k is the wave number, m is 
the mass, v flk 1m is the velocity, and u = F*vFis the ve-

locity operator, then k is the momentum in units of fl. 
To obtain the results in QM corresponding to the results 

( 1.1) in CM, we use the Heisenberg picture. The velocity 
and position observables at time t - - 00 are then given by 

Vin (t) = U, 

Xin (t) = X in + ut, 

( l.3a) 

(1.3b) 

respectively, where Xin = X. The results (1.2) (with V re­
placed by u on the right-hand sides) for the statistical param­
eters of the incident ensemble can be shown to be valid in 
QM, provided Varin X and Varin U exist. 1 

We shall obtain the formulas corresponding to (1.2) 
when t -> + 00 for the transmitted and reflected particles. 
First we do this for the CM case, and in subsequent sections 
for the QM case. For simplicity we shall assume that, in the 
QM case, the statistical state of the incident ensemble is a 
pure state described by a Coo wave function tPin whose Four­
ier transform F¢in has compact support in the positive inter­
val {kElR: k> O}; thus (A >in = (tPin JA JtPin >. In a subse­
quent paper we shall show that this assumption is not so 
restrictive as it appears. 

The establishment of ( 1.3) and (1.2) is straightforward 
given the assumption that tPin is Coo-in fact, a member of 
the set Y of Schwarz testing functions. For now by elemen­
tary Fourier analysis iJ = - ifzD 1m on Y, where D is the 
differentiation operator. Also the free evolution operator U, 
= F* exp( - i@t)F, where exp( i@t) is multiplication by 

exp( - iwt) (w flk 2/2m). Thus 

v(t) = U~uU, = U, 

which is (1.1a), while 

x(t) = U~xU, = F* exp(i@t)iDexp( - i@t)F 

= F*iDF + F*vtF = X + ut, 

which is ( 1.1 b). Equations ( 1.2) now follow from the linear­
ity of ( . ) in' if the covariance COVin (A ,B) of two (possibly 
time-dependent) observablesA,B of the incident ensemble is 
defined by 

«A - (A )in)o(B- (B)in»in, 

where CoD denotes the symmetric product!( CD + DC) of 
two operators C and D. 
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II. CLASSICAL RESULTS 

We are assuming that the potential is piecewise contin­
uous, hence bounded above. It follows that there is a thresh­
old velocity Vthresh such that if the velocity v of a particle in 
the incident ensemble exceeds Vthresh it will be transmitted, 
while if v < Vthresh it will be reflected. If no particle initially 
has the exact velocity Vthresh the incident ensemble divides 
into two subensembles, one of which is transmitted, the oth­
er reflected. 

Consider a particle with v> Vthresh' When f ~ - 00 its 
orbit in n is described by (1.1). When t ~ + 00 the particle 
has been transmitted. Its position Xtr (t) and velocity Vtr (t) 
at time t ~ + 00 after transmission are now given by 

Vtr (t) = v, (2.1a) 

Xtr(t) =Xtr +vt, (2.1b) 

where xtr is a shifted time zero position. In fact, if ttr is the 
time delay due to transmission-that is, the difference 
between the times spent in the interval [ - a,a] with, and 
without, the potential-then 

(2.2) 

where ttr is a function of v. 
If A is a classical observable, then its expectation value 

(A ) tr over the transmitted particles is obtained by averaging 
over Ptr' the probability density on n of the transmitted par­
ticles. Here Ptr is obtained by multiplying Pin by the prob­
ability of transmission, which equals unity if v > vthresh and 
zero if v < Vthresh' and then normalizing. The results corre­
sponding to ( 1.2) are easily derived from (2.1) and the lin­
earity of expectation. They may be written down from (1.2) 
by replacing Vin (t) by Vtr (t), Xin (t) by Xtr (t), Xin by X t" 

(. )in by (- )tr' Varin by Vart" where Vartr A 
= «A - (A )tr )2)tr, and COVin by Covtr> where 

Covtr(A,B) «A - (A )t,)(B- (B)tr)}tr' 
If v < Vthresh the particle is reflected. For t ~ + 00, when 

reflection is complete, its velocity and position are, respec­
tively, given by 

Vre (t) = - v, 

Xre (t) = Xre - vt, 

where 

(2.3a) 

(2.3b) 

(2.4 ) 

f re being the reflection delay time-that is, the difference 
between the time spent by the particle in [ - a,a] with, or 
without, the potential. The results for the reflected particles 
for the statistical parameters are obtained from (1.2) by re­
placing Vin (t) by Vre (t), Xin (t) by Xre (t), v by - v, (. )in by 
(. )re' Xin by Xre ' Varin by Varre , and COvin by Covre , where 
(A ) re is the expectation value of A over the probability den­
sity Pre of the reflected particles, etc. Here Pre is obtained 
from Pin by multiplication by the probability of reflection 
and normalizing. 

III. QUANTUM TRANSMISSION 

Let 1" be the transmission coefficient, a function of the 
wave number k. The unnormalized transmitted wave packet 
is F *rFrPin frPin (using the notation introduced in Sec. I). 
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The probability of transmission is W tr = IIfrPin W. A freely 
evolving observable is represented by the self-adjoint opera­
tor AU) = UrAU" where U, is the evolution operator for 
free motion. The expectation value of A (t) for the transmit­
ted particles (when t ~ + 00) is 

Wt; 1 (7rPin IA (t) IfrPin >. (3.1) 

Let Str = F* exp(i arg r)F be the unitary operator of 
multiplication by exp(i arg 1") in the k representation, and 
171 = F* I1-IFbe the operator of multiplication by 171 in the k 
representation. Then f = Str 171 and so (3.1) can be written 

{A tr (t) )tr (rPtr IA tr (t) IrPtr), (3.2) 

where 

Atr(t) =S~A(t)Str 

and rPtr is the normalized wave function defined by 

rPtT = W t; 112171 rPin . 

(3.3 ) 

(3.4 ) 

Here Str produces a unitary transformation of the space of 
observables, mapping A (t) into A tr (t) according to (3.3). 
For reasons which should become clear in the sequel we shall 
call it the transmission shift operator. 

The shifted velocity at time t is VIr (t), where, by (3.3), 

Vtr (t) = S;';Vin (t)Str' 

Since Vin (t) = v and Str> V commute, we obtain 

VIr (t) = V. (3.Sa) 

Equation (3. Sa) is the Q M analog of (2.1 a) -the velocity 
observable is unaffected by transmission. 

The shifted position operator at time t is Xtr (t), where, 
by (3.3), 

Using (1.3b) we get 

Xtr (t) = Xtr + vt, 
where 

(3.Sb) 

(3.6) 

Equation (3.Sb) is formally analogous to the classical 
result (2.1b). In order to show that it is indeed the QM 
analog we must show that X tr is given by (2.2) with ttr the 
transmission delay time. We can do this very easily if we 
make the following assumption: 11"1 and arg 7 are Coo on the 
support of FrPin . For this assumption means that we can ex­
press Xin = X as F*iDF, and then by (3.6) 

Since Str = F * exp (i arg r) F, where exp (i arg r) is the op­
erator of multiplication by exp(i arg 7), we easily obtain 

(3.7) 

where 
ttr = v-1D arg 7. (3.8) 

[By hypothesis the support of FrPin consists only of positive 
numbers, and so (3.8) is well defined.] 

The quantity ttr is none other than the well-known Ei­
senbud-Wigner delay time. In nonrigorous language it is the 
time delay of the peak of the transmitted wave packet rela-
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tive to the peak of the incident wave packet.2 Thus (3.7) is 
indeed the QM analog of (2.2). 

The results (1.2) now follow for the transmitted parti­
cles in QM, on using (3.5) and the linearity of ( . ) tT; in them 
Xin (t) and Vin (t) are replaced by Xtr (t) and Vtr (t), respec­
tively, Xin by Xtr' (. )in by (. )tr' Varin by Vartr' COVin by 
COVtr' and v by V. 

In the CM case discussed in Sec. II the probability den­
sity f.-lIT used in calculating (.) IT was obtained from f.-lin by 
multiplying by the probability of transmission and normaliz­
ing. In the QM case discussed in this section ( . ) tT is calculat­
ed from a wave function tPtr obtained by mUltiplying the 
momentum amplitude FtPin by the square root Irl of the 
probability of transmission and normalizing. 

IV. QUANTUM REFLECTION 

Let p be the reflection coefficient, again a function of k. 
The unnormalized reflected wave packet is F * PpFtPin' 
where Pis the parity operator. Since P commutes with F and 
F * this can be written PptPin' The probability of reflection is 
wTe = /lPptPill 112 = IlPtPin 112. The expectation value for the re­
flected particles of A ( t) is 

Wr~ 1 (PPtPin IA (t) IPptPin ). (4.1) 

Define the unitary operator Sre by 

Sre = F* exp(i argjJ)F, (4.2) 

where exp(i argp) is the operator of multiplication by 
exp(i argp), and let Ipi = F*lpiF in the usual notation. 
Then p = Sre Ip I, and so (4.1) can be written 

(Are (t) )re == (tPre IAre (t) ItPre)' 

where 

Are (t) = S ':ePA (t)PSre 

and tPre is the normalized wave function defined by 

( 4.3) 

( 4.4) 

tPre = w;; 1I2lpltPin' (4.5) 

Here (4.4) shows that Are (t) is obtained from A (t) by a 
reflection followed by a unitary transformation. Again we 
shall show that the physical meaning of this unitary transfor­
mation is a shift, and so Sre may be called the reflection shift 
operator. 

The velocity observable becomes 

vre(t) =S':ePvin (t)PSre , 

which reduces to 

vre(t) = - v. ( 4.6a) 

1582 J. Math. Phys., Vol. 28, No.7, July 1987 

Equation (4.6a) is theQM analog of (2.3a)-reflection sim­
ply reverses the sign of the velocity. 

Similarly the position observable becomes 

X re (t) = S':ePxin (t)PSre 

and use of ( 1. 3b) reduces this to 

Xre(t) =Xre vt, 

where 

(4.6b) 

(4.7) 

As with transmission (4.6b) will be the QM analog of 
the CM result (2.3b) provided the QM analog of (2.4) can 
be proved. We now assume Ip I and arg pare Coo on the 
support of FtPin' Then Xin = i = F*iDF, and since PxinP 
= PiP - i = - X in , (4.7) yields 

- S':eF*iDFSre · 

If we use (4.2) this reduces to 

( 4.8) 

where 

tre v-1D argp. (4.9) 

(Again our assumption about the support of FtPin means 
that tre is well defined.) The quantity tre is the Eisenbud­
Wigner delay time for the reflected particle-that is, the 
time delay of the peak of the reflected wave packet relative to 
the peak of the incident wave packet. Thus (4.8) is the QM 
analog of (2.4 ) . 

Comparison of (4.6) with (1.1) shows that the results 
( 1.2) are valid for the reflected particles obeying QM if ( . ) in 
becomes (. >re' Vin (t) and xin (t) become vre (I) and X re (t), 
respectively, xin becomes x r., v becomes - V, Varin becomes 
V ar re , and COvin becomes Cov re . Since V ar re ( v) 
= Varre v and COVin is linear in v, we obtain 

mean velocity = - (v)re' 

mean position = (xr.>re - (v>ret, 

variance of velocity = Varre v, 
covariance of position and velocity 

= - Covre (xre,v) + t Varre v, 

variance of position 

= Varre Xre 2t Covre (xre,v) + t 2 Varre V. 

IJ. E. G. Farina, Int. J. Theor. Phys. 21, 83 (1982). 
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If an ensemble of particles moving parallel to the x axis in the positive direction impinges on a 
piecewise continuous potential confined to the interval [ - a,a] (a> 0) it will divide into a 
transmitted ensemble and a reflected ensemble. It is shown that the classical results for the 
means, variances, and covariance of position and velocity of the transmitted and reflected 
ensembles hold in quantum mechanics if the position and momentum probability densities of 
the incident ensemble are assumed to be sufficiently localized, both in momentum and 
position. It is also assumed that the support of the probability density of momentum is 
bounded and positive, and on it the moduli and arguments of the transmission and reflection 
coefficients are sufficiently well behaved. 

I. INTRODUCTION 

In the previous paper I (whose notation we shall use 
here, and to which we shall refer to as 'I') we discussed the 
effect on the statistical parameters of an ensemble of parti­
cles moving parallel to Ox of their passage across a potential 
V confined to the interval [ - a,a]. We assumed there that 
the statistical state of the incident ensemble was pure. Such 
an assumption, however, cannot be justified for an ensemble 
occurring in nature. Such an ensemble would have the prop­
erty that every subensemble would have the same statistics, 
and it is difficult to believe that is so. More importantly, we 
only have limited information about such ensembles-for 
example, the shape of the momentum probability density 
Pmom,in may be known, or the region of space outside which 
the position probability density Ppos,in is negligible. Infinitely 
many states will be consistent with our information, and not 
all of these will be pure. It therefore becomes important to 
replace the assumption that the state of the incident ensem­
ble is pure by one which may be reasonably supposed to hold 
for an actual ensemble. The assumption which we will make 
is the very reasonable one that IxlvPpos,in (x) and 
Ik IVPmom,in (k) (k = mv/fl = momentum in units offl) are 
bounded for all v;:;'O. (For example, if Ppos,in andpmom,in were 
Gaussians this assumption would be satisfied.) 

We also assumed that ¢in was Coo' We shall show that, 
although the state may not be described by a wave function 
(ifit is not pure), nevertheless all wave functions occurring 
in the Gleason expression2 of the state as a convex linear 
combination of pure states are Coo-indeed, as we shall 
show, they are testing functions in the sense of Schwarz. 

In I an assumption was made about the support of F¢in , 
viz. that it was bounded and positive. We shall make the 
same assumption about the support of Pmom,in' That is, we 
shall assume that Supp Pmom,in is contained in some interval 
[k 1,k2 ] (O<k l <k2< (0). 

This last assumption is quite natural. For the particles of 
the incident ensemble are moving to the right, and so their 
velocities are positive. Classically the lower bound v I = flk II 

m on the velocity ensures that the time a particle would 
spend in [ - a,a] in the absence of the potential is bounded, 

In practice it is consistent with our information to assume 
that the probability of the velocity of an incident particle 
being greater than some velocity V2 = flk21m is zero. 

We shall also assume that points where Ipl, argp, 171, or 
arg 7 are singular are not in supp Pmom,in' For example, at a 
resonance when D arg 7 becomes infinite we might well ex­
pect the variance of position of the transmitted ensemble to 
become infinite. In practice the assumption that Ipl, etc., are 
Coo where they are not singular is satisfied, so our assump­
tions about them are reasonable. 

II. EXPECTATION VALUE IN QUANTUM MECHANICS 

A state J.l in QM is a probability measure on the lattice 
'll (cW') of projectors on a Hilbert space cW'. A set of weight­
ings {wj}j" 1 is a countable set of positive numbers that sum 
to unity; its cardinal number N is either a positive integer, or 
00. Gleason's theorem2 states that given a state J.l3 a set of 
weightings {Wj }j"~ 1 and a corresponding set of unit vectors 
{¢j }j"~ 1 in cW'such that, if J.l (E) is the probability assigned 
by J.l to E in 'll (cW'), then 

N 

J.l(E) = L wjIlE¢jIl2. (2.1 ) 
j~l 

The sets {w)f~ 1 and {th}f 1 determine the state J.l, but the 
converse is not necessarily true. 

Definition 2.1: We shall call the pair ({Wj}f~ 1> 

{¢j}f~ 1) a representation ofJ.l. 0 
Definition 2.2: J denotes a positive integer such that 

J<N. 0 
Observables in QM, which we shall denote by A, B, C, 

etc., are self-adjoint operators in cW'. We shall denote the 
expectation value of A in the state J.l by (A ), etc. 

Proposition 2.1: If (A 2) exists so does (A ). Further each 
¢j is in the domain ffl (A) of A, and 

N 

(A ) L Wj (¢j IA I ¢j ), (2.2a) 
j~l 

N 

(A 2) = L Wj IIA¢j 112. (2.2b) 
j~ 1 
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Prool See Ref. 3, Chap. 3, or Ref. 4. 0 
Proposition 2.2: Suppose t/JjE.f!J (A) for eachj. Then if 

N 

I Wj1lAt/Jj1l2 
j=1 

is convergent both (A ) and (A 2) exist and are given by 
(2.2). 

Prool Let E j be the member of the spectral family of A 
corresponding to the finite interval I of R. Then EjAE[ is a 
bounded self-adjoint operator, and 

N N 

«E[AE[)2) = I Wj IIE[AE[t/Jj 112,;;;; I wj IIAt/Jj Il 2, 
j=1 j=1 

so when I expands to fill up R «E[AE[ )2) has a unique 
limit; that is, (A 2) exists. By Proposition 2.1 so does (A ), 
and (A ) and (A 2) are given by (2.2). 0 

If A 0 B = ! (AB + BA) is an observable, t/Jj E.f!J (A 0 B) 
for eachj, and N < 00, its expectation value is given by 

N 

(A 0 B ) = I Wj (t/Jj IA oBI t/Jj ), 
j= I 

which can be written (since A and Bare observables) 
N 

(AoB) = I Wj Re(At/JjIBt/Jj)' (2.3 ) 
j=l 

These assumptions are, of course, too restrictive so we take 
(2.3) as a definition of (AoB ). 

Definition 2.3: We say that (AoB) exists if the right­
hand side of (2.3) is convergent, in which case (2.3) defines 
the value of (AoB). 0 

Proposition 2. 3: If (A 2) and (B 2) exist then so does 
(AoB ). 

Prool 
J 

I WjIRe(At/JjIBt/Jj) I 
j=l 

J 

,;;;; I wjllAthllllBt/JJ (Schwarz's inequality) 
j=1 

J 

= I (wY
Z
IIAt/Jj ll)(wJ!

2
1IB t/JJ) 

j=1 

,;;;;(tl WjIlAt/JjIl2)1I2(tl Wj IlBt/JjIl2Y12 

(Schwarz's inequality) 

,;;;;(A 2)II2(B2)1/2 [by (2.2b)]. 

Thus the right-hand side of (2.3) is absolutely conver­
gent, so (AoB) exists by Definition 2.3. We also obtain 

I (AoB ) I,;;;; (A 2) 1/2(B 2) 1/2. (2.4) 

III. COVARIANCE IN QUANTUM MECHANICS 

In Ref. 4 certain results were obtained on the hypothesis 
that aA + bB is an observable for a pair of nonzero real 
numbers a and b. These results are not of the right form for 
our purposes here. In this section we shall derive these re­
sults in a modified form, ready for subsequent application. 

Definition 3.1: We shall say that two observablesA and 
B are equal on f1 if they satisfy the following condition: if 
({Wi };"= I , {t/Jj };"= I ) is a representation of f1 then, for each 

1584 J. Math. Phys., Vol. 28, No.7, July 1987 

value of j, t/JjE.f!J(A)n.f!J(B), and At/Jj = Bt/Jj. We shall 
write this equality as A = p. B. 0 

Proposition 3.1: If (A 2) and (B 2) exist and C = p. aA 
+ bB then (C) and (C 2) exist and 

( C) = a (A ) + b (B ), C3.1a) 

(3.lb) 

Proof' Recalling Definition 2.2, C = p. aA + bB implies 
that 

J J 

I wjllCthl12 = a2 I Wj1lA'h1l2 + 2ab 
j= I j= 1 

J J 

X I Wj Re(At/Jj IBt/Jj) + b 2 I IIBt/Jj 112. 
j=1 j=1 

If N < 00, set J = N, otherwise let J -+ 00 and use Propo­
sitions 2.1 and 2.3: in either case we obtain 

N I Wj IICt/Jj 112 = a2 (A 2) + 2ab (AoB) + b 2(B 2). (3.2) 
j 1 

The right-hand side of (3.2) is finite, hence so is the left­
hand side. Thus (C 2) exists by Proposition 2.2, and (3.1 b) is 
obtained from (3.2) using (2.2b) and (2.3). Now (3.la) 
follows by the facts that C p. aA + bB implies that 
(C) = (aA + bB), and (-) is linear. 0 

Proposition 3.2: If (A 2) and (B 2) exist and 
C = p. aA + bB then, if (D 2) also exists, 

J 

(CoD) = a(AoD) + b (BoD), 

(DoC) = a (DoA ) + b (DoB). 

Proof' Since C = p. aA + bB, 

(3.3a) 

(3.3b) 

I Wj Re(Ct/JjIDt/Jj) 
j= 1 

J J 

= a I Wj Re (A t/Jj IDt/Jj ) + b I Wj Re (Blh IDt/Jj ). 
j=l j=1 

If N < 00 set J = N, otherwise let J -+ 00. In either case 
we get, using Proposition 2.3, 

N 

I Wj Re(C'hIDt/J) =a(AoD) +b(BoD). (3.4) 
j= I 

The left-hand side of (3.4) therefore exists, hence (3.3a) 
follows by the definition of (CoD). Then (3.3b) follows 
from (3.3a) by the fact that (coD) (DoC), etc. 0 

Remark 3.1: Proposition 3.2 establishes the bilinearity 
of (-0'). 0 

Proposition 3.3: If Var A and Var B exist, C = p. aA 
+ bB, and a,b are both nonzero then 

«A - (A »o(B (B») 

is independent of the representation of f-l. 
Prool If we subtract (3.1a) from C = p. aA + bB weget 

C- (C) =p. a(A - (A» +b(B- (B». (3.5) 

Since Var A and Var B exist we can replace A, B, and C in 
(3.1b) by A (A ),B (B ), andC - (C), respectively, to 
obtain 

Var C = a2 Var A + 2ab «A - (A) loeB - (B») 

+ b 2 Var B. (3.6) 

Since ab #0 we can use (3.6) to express 
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«A - (A ) ) 0 (B - (B») in terms of quantities which are 
independent of the representation of J-l. 0 

Definition 3.2: If «A - (A) loeB - (B») is indepen­
dent of the representation of J-l the covariance of A and B, 
Cov(A,B), may be defined by 

Cov(A,B)=«A (A»o(B-(B»). (3.7) 

Proposition 3.4: If Var A and Var B exist, and 
C = fL aA + bB, where a and b are nonzero, then 

Var C = a2 Var A + 2ab Cov(A,B) + b 2 Var B. (3.8) 

Proof: Definition 3.2 is applicable, so insert (3.7) into 
(3.6). 0 

Proposition 3.5: IfVar A and Var B exist, and C = f.L aA 
+ bB, where a and b are nonzero, then 

Cov(C,B) = a Cov(A,B) + b Var B. (3.9) 

Proof: Since Var A and Var B exist and C = fL aA + bB, 
(3.5) is valid, so again replace A, B, and C in Propositions 
3.1 and3.2byA - (A ),B - (B ),andC - (C),respective­
ly. Thus Var C exists and by (3.3a) with D = B - (B) 

«C- (C»o(B- (B») 

=a«A-(A»o(B (B») 

+b«B- (B»o(B- (B»). 

Since C = !l aA + bB, where a and b are nonzero, Proposi­
tion 3.3 enables us to use (3.7) for the first term on the 
right-hand side. Also «B - (B) )o(B - (B») 

«B- (B»2) =VarB so we get 

«C- (C»o(B- (B») a Cov (A ,B) +bVarB. 
(3.10) 

The right-hand side of (3.10) is independent of the represen­
tation ofJ-l, so the left-hand side equals Cov( C,B) , and (3.9) 
results. 0 

IV. LOCALIZED STATES IN ONE DIMENSION 

The results derived in Secs. II and III are general; in this 
section we return to the special case of one degree of free­
dom. 

Definition 4.1: A state J-l is localized if Ixlvppos (x) and 
Ik IVPmom (k) are bounded for all v;>O. 0 

Remark 4.1: As we pointed out in the Introduction it is 
reasonable to suppose that a state ft, which can be taken to 
describe an ensemble of particles in nature, is localized. 0 

Proposition 4.1: Let.Y denote the set of Schwarz testing 
functions JR-C; then, if J-l is localized, forj = 1, ... ,N, '1h and 
Hh belong to .Y while 

X1h =F*iDF1h· 

Proof: First we note that,5 a.e., 
N 

Ppos(x) = L wjl'lh(x)12, 
j=l 

N 

Pmom (k) = L Wj IHh (k) 12. 
j= I 

Since Wj > 0 for each value of j, (4.2) implies that 

l'Ih(x) 12<Wj Ippos (x) a.e.; 

IF¢j (k) 12<Wj- Ipmom (k) a.e. 
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(4.1 ) 

(4.2a) 

( 4.2b) 

The hypothesis that J-l is localized now implies that, if v;>O, 
jxjVI¢j (x) 12 and Ik IVIF¢j (k) j2 are essentially bounded. It 
follows (Ref. 6, Chap. III) that ¢j and F¢j are equal a.e. to 
C'" functions; they can therefore be redefined so that they 
are C '" functions, and (4.1) is valid pointwise. 0 

The following result is obvious. 
Proposition 4.2: If J-l is localized then (X2), (1?), Var X, 

and Var v all exist. 

V. FREE MOTION IN ONE DIMENSION 

In the Heisenberg picture the state J-l is fixed at its time 
zero value, while an observable represented at time zero by A 
is represented at time t by A (t) = U ~ A Up where U, is the 
free evolution operator. Thus 

.A-

U, = F* exp( - iwt)F, (5.1 ) 

where exp( - iwt) is the operator of multiplication by 
exp( iwt) (w=fzk 2/2m=mv2/2fz). 

Proposition 5.1: If J-l is localized the velocity observable 
v(t) at time t and position observable .x:(t) at time t satisfy 

v(t) = fL v, (5.2a) 

x(t) =!l x + vt. (5.2b) 

Proof: See Sec. I of I. 0 
Remark 5.1: The result expressed by Proposition 5.1 for 

the free evolution of velocity and position in the Heisenberg 
picture is, of course, well known. We have proved it here for 
localized states. 0 

Proposition 5.2: If J-l is localized then the means, var­
iances, and covariance of position and velocity at time tare 
given by 

(v(t» = (v), 

(x(t» = (x) + (v)t, 

( 5.3a) 

(5.3b) 

Var vet) = Var v, (5.3c) 

Cov(x(t),v(t») = Cov(x,v) + t Var v, (5.3d) 

Var x(t) = Var x + 2t Cov(x,v) + t 2 Var V. (5.3e) 

Proof: Since J-l is localized (v2
) and (x2

) exist, so we can 
use the result proved in Ref. 4. 0 

Remark 5.2: The results (5.3) are valid under more gen­
eral conditions,4 but the hypotheses of Proposition 5.2 are 
adequate for our purposes. 0 

Remark 5.3: Proposition 5.2 may be proved directly by 
use of (5.2) combined with (3.1a), (3.8), and (3.9). 0 

VI. ASSUMPTIONS 

We now return to the problem of an ensemble incident 
on a piecewise continuous potential confined to [ - a,a]. 

Assumption 6.1: The initial state is localized and has 
representation 

({win,)f= P {¢in,)J" 1)' 

Assumption 6.2: The probability density of momentum, 
Pmem,in' of the incident ensemble, has support contained in 
[k 1,k2 ], where 0 < k) < k2 < 00. 

Assumption 6.3: If 
N 

Wtr = L win,jllr¢in.jIl2, 
j=1 

( 6.1a) 
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then Wtr is the probability of transmission, and the state of 
the transmitted ensemble has representation 

({w;;:-lwin,jllft/l;n,}1I2}f~ I> {linpin,jll-ift/l;n,)f~ I)' 

Remark 6,1: This is a natural generalization of Sec, III 
of!. 

Assumption 6,4: If 
N 

Wre = I Win,j IlPtPin,j 11
2, (6.1b) 

j 1 

then Wre is the probability of reflection, and the state of the 
reflected particles has the representation 

({wr~ lWin,jIIPtPin,jI12}f~ l' {llptPin,jll-1PPtPin,)f~ 1)' 

Remark 6.2: This is a natural generalization of Sec, IV 
of I. 

Assumption 6,5: 11"1, arg 1", Ipl, and argp are C = on 
Supp Pmom,in' the support of Pmom,in ' 

Remark 6.3: It follows from Assumption 6.1 and Propo­
sition 4,1 that tPin,jEY (j = 1 , ... ,N), Therefore by (4,2b) 
applied to the initial state Supp FtPin,} C Supp Pmom,in 

(j = 1, ... ,N), Hence by Assumption 6,5 ftPin,} and PtPin,} 
also belong to Y (j = 1, ... ,N). 

VII. THE INCIDENT ENSEMBLE 

We shall denote by Itin the state of the incident ensem­
ble, and by = in "equality on Itin" (cf. Definition 3.1). We 
shall also denote by ( . ) in' Varin ., and COVin ( . , . ) the expec­
tation value, variance, and covariance over Itin' respectively. 
The conditions of Proposition 5.1 are satisfied so we get the 
following proposition. 

Proposition 7. 1: The velocity observable Vin (f) and posi­
tion observable Xin (t) at time t satisfy 

Vin (t) = in V, 

Xin (t) in Xin + Vf, 

where Xin = x, 

(7.1a) 

(7.1b) 

The conditions of Proposition 5.2 are also satisfied so we 
have the next proposition, 

Proposition 7. 2: The means, variances, and covariance of 
position and velocity at time t of the incident ensemble are 
given by 

(vin (t) )in = (V)in' 

Varin Vin (t) = Varin V, 

COVin (Xin (t),Vin (t)) = COvin (Xin,V) + t Varin V, 

(7.2a) 

(7.2b) 

(7.2c) 

(7.2d) 

Varin Xin (f) = Varin Xin + 2t COVin (Xin ,V) + t 2 Varin V. 
(7.2e) 

VIII. EXPECTATION VALUES OVER THE TRANSMITTED 
ENSEMBLE 

Suppose an observable is represented by A (t) = U~ AU, 
at time t, and the expectation value of [A (t)] 2 over the trans­
mitted particles is finite. Then by Proposition 2.1 and As­
sumption 6.3 the expectation values of A (t) and [A (t)] 2 

over the transmitted particles are given by the expressions 
N 

I W ,-; lWin,j (:rtPin,j IA (t) l:rtPin,})' ( 8.1a) 
j 1 
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N 

I Wtr lwin,}IIA (t)ftPin,} 112. (8.1b) 
j 1 

Using the transmission shift operator S,r defined in I (8.1) 
can be written 

N 

I W,r,} (tPtr,j IAtr (t) I tPtr,} ), 
} I 

N 

I Wtr,} IIA tr (t)tPtr,} 11
2

, 
} J 

where 

WIT,} = wt-; lWin,} II:rtPin,} 11
2

, 

tPtT,} = II f tPin,JII-
1
1:rltPin,J' 

(8.2a) 

(8.2b) 

(8.3 ) 

(8.4 ) 

A tr (t) S;';A(t)Str' (8.5) 

The set {Wtr.}}f~ I is a set ofweightings, and {tPtr.)f~ 1 

is a set of unit vectors in Yr. 
Definition 8.1: IttT is the state defined by the representa-

tion 

({Wtr,)f~ 1> {tPtr.)f~ I); 
expectation value, variance, and covariance over Ittr are de­
noted by (- )tr> Var'T " and Covtr (- .. ), respectively, and 
equality over Ittr by = tT' 0 

Expressions (8.2) and Definition 8.1 lead to the follow­
ing proposition. 

Proposition 8.1: If the expectation value of [A (t) f ex­
ists over the transmitted particles then the expectation val­
ues of A (t) and [A (t)]2 over the transmitted particles are 
(A tr (t) > tr and ([A (t) ] 2) tTt respectively, where ( . ) tr is de­
fined by Definition 8.1 and A tr (t) is the observable defined 
by (8.5), 0 

Proposition 8.1 has a converse. 
Proposition 8.2: If qAtr (t)]2)tr exists then AU) and 

[A (t) F have expectation values over the transmitted parti­
cles, and these are given by (AtT(t»tr and ([A tr (t))2)tr> 
respectively. 

Proof If ( [ Atr (t) ] 2) Ir exists then by Proposition 2.1 the 
series (8.2b) converges. It follows thatthe series (8,lb) con­
verges, and so by Proposition 2.2 A (t) and [A (t) r have 
expectation values over the transmitted particles, given by 
(8.1), and therefore by (8,2); that is, by (A tr (t) ) tr and 
([A tr (t)]2)tr. 0 

Now Str and U, commute, and A (t) U~ A U" so 
(8.5) gives 

Atr(t) = U~AtrU" 

where 

( 8.6) 

( 8,7) 

Proposition 8.3: If Covtr (A tr (t), B,r (t)) is defined then it 
is the covariance of A (t) and B (t) over the transmitted parti­
cles. 

Proof Covtr{Atr (t), B'T (t») is given by 
N 

I W,r,j Re{(A,r(t) - (A tr (t»tr)tPtr,jl(Btr (t) 
j~l 

(Btr (t» ,r)tPtr.})' 

This may be rewritten 
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N 

L Wtr lWin,j Re«(A(t) - (A tr (t»tr)7tPin,j i(B(t) 
j 1 

(8.8) 

By Proposition 8.1 (A tr (t» tr and (Btr (t» tr are the expecta­
tion values of A (I) and B(t) over the transmitted particles. 
Since Covtr(Atr (I), Btr (I)) is defined the expression (8.8) is 
independent of the representation, and hence by Assump­
tion 6.3 defines the covariance of AU) and B(t) over the 
transmitted ensemble. D 

IX. STATISTICAL PROPERTIES OF POSITION AND 
MOMENTUM FOR THE TRANSMITTED PARTICLES 

Forj = 1, ... ,N, tPtr,jEY, SuppFtPtr,j ~ [k l,k2 ], while 171 
and arg 7 are C oc on Supp FtPtr,j' Hence the proofs of Sec. III 
of I relating to the shifted position and velocity observables 
go over, and we obtain the following results: 

Vtr (t) tr V, 

X tr (t) = Ir X tr + vt, 
where 

where 

fIr = v-1D arg 7. 

(9.1a) 

(9.1b) 

(9.1c) 

(9.1d) 

(9.1e) 

Proposition 9.1: Vartr V, Vartr v1lr , Vartr X, and Vartr Xtr 
all exist. 

Proof: The probability density Pmom,tr for momentum for 
the state !-ltr is given by 

N 

Pmom,tr (k) L Wtr,j IFtPtr,j(kW (Definition 8.1) 
j=1 

Now by (4.2b) 

N 

L Wt~ lWin,j 17(k) 12 IFtPin,j (k) 12 
j= 1 

[by (8.3) and (8.4)]. 

N 

Pmom,in (k) = L Win,j IFtPin,j (kW 
j=1 

(9.2) 

is the probability density of momentum in the initial state 
!-lin' SO 

Pmom,tr (k) = Wt~ 117(k) 12Pmom.in (k). (9.3 ) 

Equation (9.3) shows that Supp Pmom,tr ~ Supp Pmom,in' 
and so by Assumption 6.2 Supp Pmom,tr is bounded, hence v is 
bounded on this support; thus (v2 )tr exists, and hence so 
does Var,r V. 

By (9.1e) v ttr = D arg 7, and so by Assumption 6.5 is 
bounded on Supp Pmom tr' hence «vttr )2)tr exists. Thus 
Vartr vttr exists. ' 

To prove that (x2
) tr < 00, first note that x = tr F* iD F, 

so by (8.4) 

IlxtPtr,j 112 = IlTtPin,j 11-211D IrlFtPin,j 112; 

using (8.3), this gives 

Wtr,j IlxtP,r,j 112 = Wt~ lWin,j II (D 171 )FtPin,j + 171DFtPin,j 112. 

Now Assumption 6.5 implies that 171 and D 171 are 
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bounded on Supp Pmom,in ~ Supp FtPin,j' They are therefore 
both less than or equal to some positive number M, which is 
independent ofj. Thus 

Wtr,j IIxtP'r,j liZ 

= w,~ IWin,j [ II (D 171 )FtPin,j 112 

+ 2 Re( (D 17!>FtPin,j 1171DFtPin,) + 11171DFtPin,j1lZ] 

<WI~ lWin,jM2(II FtPin,jll2 + 211FtPin,JIIDFtPin,jll 

+ IIDFtPin,jl12) (using Schwarz's inequality) 

= Wt~ lWin,jM2(1 + 211xtPin,jll + IlxtPin,jW), (9.4) 

since x = in F* iDF. 
Summing the inequality (9.4) forj= 1, ... ,Nusing 

N 

L Win,j = 1, 
j=l 

we obtain 
N 

L Wtr,j IlxtPtr,j 112 
j= 1 

<Wt~ IM2( 1 + 2 jI
1 
wf:'~ 'wf:'~ II x tPin,j II 

+ jtl Win,jllXtPin,jll2) 

and so by Schwarz's inequality and (9.5) 
N 

L Wtr,j IIXtPtr,j 112 
j=1 

<Wt;-IM 2
[ 1+ 2(tl W;n,jIIXtP;n,jW)1I2 

+ jtl Win,j IlxtPin,j 112 ] 

= Wt~ IM2[ 1 + 2( (X2 )in) 1/2 + (X2 );n] < 00. 

(9.5) 

Therefore (x2 )tr exists by Proposition 2.2. The existence of 
«x,r )2)'r now follows by (9.1d) since Xin = X. D 

Proposition 9.2: The means, variances, and covariance of 
position and velocity at time t of the transmitted ensemble all 
exist and are given by 

(vtr (I) ),r = (V)I" 

(Xtr(t»lr = (x,r)tr + (V)lr t, 

Vartr Vtr (I) Var,r V, 

Covtr(xtr (t),vtr (l») = Cov,r (xtr>v) + t Var,r V, 

(9.6a) 

(9.6b) 

(9.6c) 

(9.6d) 

Var,r Xtr (t) = Vartr Xtr + 2t Covtr (xtr,v) + t 2 Vartr V. 
(9.6e) 

Proof' By Proposition 9.1 (v2
) Ir exists, hence the right­

hand sides of (9,6a) and (9.6c) exist. Thus by (9.1a) 
(vtr (t) )Ir and Vartr Vtr (t) exist for all t, and are given by 
(9.6a) and (9.6c). Thus ([ Vtr (t) ] 2) If exists so by Proposi­
tion 8.2 these yield the mean and variance of velocity of the 
transmitted ensemble at time t. 

Equation (9.6b) follows from (9.1b) by (3.1a), since 
(v2 ),r and «xtr )2)lr exist by Proposition 9.1. 

Equation (9.6d) follows from (9.1a) and (9.1b) using 
Proposition 3.5. That the left-hand side equals the covar-
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iance of position and velocity of the transmitted particles 
follows from Proposition 8.3. 

Finally (9.6e) follows from (9.1a) and (9.1b) using 
Proposition 3.4. 0 

Proposition 9.3: 

Cov,r (xtr,v) = Cov'r (xin,v) - Cov'r (vrtr>v). (9.7) 

Proof' It is easy to show from (9.1d) using Proposition 
3.2 that 

«x" - (x t• )tr )o(v - (v)tr) )tr 

= «xin - (xin}tr)O(v- (v)tr)}tr 

«vttr - (vt,r)tr)O(v- (v),r»tr' (9.8) 

The left-hand side of (9.8) is Covtr (xtr>v), and the second 
term on the right-hand side equals 

f(vt,r (k) - (vt,r >,r)(v - (v)tr )Pmom,'r (k)dk, 

which is clearly independent of the representation of !-ltr' It 
follows that the first term on the right-hand side of (9.8) is 
independent of the representation of !-ltr' and so defines 
Cov'r (xin ,v) by Definition 3.2. Now (9.7) follows. 0 

X. THE REFLECTED PARTICLES 

The statistical properties of the reflected particles are 
derived in a similar way, and we state the results without 
proof (cf. Sec. IV of I). 

Definition 10.1: !-lre is the state defined by the represen­
tation 

({wre.j}f~ I '{tPre,)r~ I)' 
where 

Wre,j w;; IWin,j IIptPre,j 11
2

, 

tPre,j IIPtPin,jll-llpltPin,j; 

(10.1 ) 

(10.2) 

expectation value, variance, and covariance over !-lre are de­
noted by (. > re' V ar re " and Cov re ( . , . ), respectively, and 
equality over !-lre by = re' 0 

Definition 10.2: 

Are(t) S~PA(t)PSre' (10.3) 

Proposition 10.1: If the expectation value of [A (t) f ex-
ists over the reflected particles then the expectation value of 
A (t) and [A (t) F over the reflected particles are (Are (t) > re 
and ( [Are (t) ] 2) re' respectively. 

Proposition 10.2: If ([Are (t)] 2)re exists then A (t) and 
[A (t) F have expectation values over the reflected particles, 
and these are given by (A re (t) ) re and ( [ A re (t) ] 2) re' respec­
tively. 

Proposition 10.3: 

Vre (t) re - v, 
X re (t) re X re - vt, 
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( lO.4a) 

( lO.4b) 

where 

where 

tre v-ID argp. 

( lO.4c) 

( lO.4d) 

( lO.4e) 

Proposition 10.4: Varre v, Varre Vlre' Varre X, and 
Varre x re all exist. 

Proposition 10.5: The means, variances, and covariance 
of position and velocity at time t of the reflected particles all 
exist, and are given by 

(vre (t) )re = - (v)re' 

(Xre (t) )r. = (xre )re - (v)re t , 

Varre Vre (t) = Varre v, 

( 1O.5a) 

( 1O.5b) 

(l0.5c) 

( 1O.5d) 

Varre X re (t) = Varre X re - 2t Covre (Xre,v) + t 2 Varre V. 
( 1O.5e) 

Proposition 10.6: 

Covre (xre,v) = - Cov,e (Xin,v) + Covre (vttr>v). 

XI. DISCUSSION 

Assumption 6.1 could be relaxed by not requiringppos,in 
and Pmom,in to fall off to zero so fast at infinity; however, this 
assumption is physically reasonable as it stands. 

Assumption 6.2 could also be relaxed, by removing the 
upper bound on Supp Pmom,in and replacing it by a require­
ment of sufficiently rapid fall-off when k -+ 00. However, as 
pointed out elsewhere,5 the initial state is experimentally in­
distinguishable from one in which Pmom,in satisfies Assump­
tion 6,2, so further relaxation of this assumption is not re­
quired by physical considerations. 

Rigorous justification of Assumptions 6.3 and 6.4 are 
outside the scope of the present paper. 

Finally, the requirements imposed by Assumption 6.5 
can be relaxed. Our arguments remain valid if we only re­
quire 171, arg 7, Ipl, argp, and their first derivatives, to be 
defined and bounded on Supp Pmom,in' In this case rtPin,j and 
PtPin,j may no longer be Coo, but they are still differentiable 
andL2• 
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On partial differential equations related to Lorenz system 
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Partial differential equations are constructed such that a truncation scheme as adopted by 
Lorenz [J. Atmos. Sci. 20, 130 (1963)] will lead to Lorenz equations. The partial differential 
equations are much simpler than those of the Rayleigh-Bernard problem and are essentially of 
the mixed type. Various aspects of the partial differential equations are explored. It is 
suggested that the switching back and forth between the elliptic and hyperbolic regimes 
represents the chaotic behavior of the system in the context of partial differential equations. 

I. INTRODUCTION 

When LorenzI first proposed the set of equations that 
would later bear his name, he obtained those equations by a 
drastic truncation to three spatially periodic modes from the 
complicated system of nonlinear partial differential equa­
tions of the Rayleigh-Bernard problem. Without going into 
the details of the development, it is sufficient for our pur­
poses to state that for the Rayleigh-Bernard problem, we 
have two coupled high order and highly nonlinear partial 
differential equations for the streamfunction ljJ(x,z,t) and 
temperature e(x,z,t). Lorenz proposed, in essence, to let 

ljJ = X(t)sin ax sin Z , (1) 

e = Y(t)cos ax sin z - [Z(t)/.J2] sin 2z , (2) 

and then substitute into the partial differential equations. By 
retaining only those spatial modes as represented in Eqs. ( 1 ) 
and (2), he obtained the following Lorenz equations: 

dX 
aX + O"Y, 

dt 

dY 
Y+rX +XZ, (L),(Lf3 ) = 

dt 

dZ 
(1 + 3{J)Z +XY, 

dt 

where 0", r, and (1 + 3{J) are positive parameters. We shall 
refer to this system by (L) or (Lf3 ) when (J is assigned some 
particular value. 

The rich contents of the Lorenz equations have been 
explored extensively. 2 The bifurcations of the solution, the 
appearance of strange attractors, the chaotic behavior of the 
solutions, and the phenomena of period doubling and inter­
mittency have all been associated with the study of Lorenz 
equations. Thus the Lorenz equations can stand alone with­
out their historical association with the Rayleigh-Bernard 
problem. However, it is still legitimate to ask the question in 
what sense and to what degree the Lorenz equations repre­
sent a valid description of the original Rayleigh-Bernard 
problem. In a larger context, since most physical problems 
are formulated in terms of partial differential equations, we 
may also ask in what sense the approximation with a finite 
number of modes by truncation or other means can reveal 
the behavior of the original problem. Numerical solutions of 
the Rayleigh-Bernard problem3 have shown that some of 
the salient features of the Lorenz system disappear when 

more modes are retained than the number Lorenz retained. 
It seems also that the occurrence of certain phenomena de­
pends on the number and which modes are retained. 

Now the Rayleigh-Bernard problem Lorenz studied 
originally is a system of two highly nonlinear partial differ­
ential equations of three independent variables (x,z,t). One 
equation is first order in t and fourth order in (x,z), while the 
other is first order in t and second order in (x,z). Except for 
the linearlized problem, it is difficult to analyze those equa­
tions in any way besides the numerical computation. There­
fore, in order to clarify the larger question raised above, it 
would be useful if we could have a manageable partial differ­
ential equation with an interesting reduced system of ordi­
nary differential equations. Then we shall be able to make a 
comparative study of the original partial differential equa­
tion and its reduced systems. 

With the celebrated Lorenz equation in mind, we are 
thus led to construct such a system of partial differential 
equations. We shall try to construct a system that is as simple 
as can be found. Most importantly, if we use a truncation 
scheme similar to (1) and (2), as en visaged by Lorenz, we 
should again obtain the same Lorenz equations. Then the 
rich contents of the Lorenz system are presumably also con­
tained in the solution of these partial differential equations. 

In the following, we shaH first construct such a system of 
partial differential equations, then various properties of the 
partial differential equations will be studied. 

II. THE PARTIAL DIFFERENTIAL EQUATIONS 

Consider the following system 
equations for ljJ(x,t) and e(x,t): 

of partial differential 

aljJ ae at = - O"ljJ - 0" ax ' 

ae 

at 

where a and r are positive parameters, and D<{J< 1. 
Let us now take 

ljJ = (1/.J2)X(t) sin x, 

e = (l/.J2) Y(t)cos x + ~ Z(t)cos 2x , 

(3) 

(4) 

and substitute (3) and (4) into the system (G f3 ). If we re­
tain only the coefficients of sin x, cos x, and cos lx, it is 

1589 J. Math. Phys. 28 (7). July 1987 0022·2488/87/071589·09$02.50 @ 1987 American Institute of Physics 1589 



                                                                                                                                    

straightforward to verify that we obtain the Lorenz system 
(L/3) . 

The variable e can be eliminated from the system (G /3 ) 
by differentiating the second equation with respect to x, and 
we obtain 

a~ a~ a~ a~ - + a(r - /3) - - 2t/J -- - /3--
at 2 ax2 ax at ax2 at 

+ (a+ 1-/3) at/J 2 at/J at/J 
at ax at 

4at/J at/J + a(1 - /3)t/J = 0 . (H/3) 
ax 

The partial differential equation (H/3) is a third-order 
equation. However, for the case/3 = 0, Eq. (Ho) is a second­
order mixed-type equation. The third-order term - /3(a 3t/JI 
ax2 at) has the regularization effect of smoothing things out, 
while the underlying feature may be largely represented 
through the mixed-type behavior. For the case of/3 = 1, Eq. 
(Hd can also be simplified in some cases. 

It is possible to detect some traces of the Rayleigh-Ber­
nard system in (G /3 ). But (G /3 ) is a system of partial differ­
ential equations of only two independent variables (x,t) and 
the order of the equations are also much lower than the Ray­
leigh-Bernard system. It is a much simpler system, yet is still 
a rich system, at least as rich as the Lorenz system. 

III. THE LINEARIZED PROBLEM 

It may be recalled that the Lorenz system (L) has the 
following equilibrium points: 

(0): X= y=Z O. 

(CI,C2 ): X=y= ±[(1+3/3)(r-l)]1/2, Z=r-l. 

The equilibrium point (0) is stable for r < 1, and becomes 
unstable for r> 1. The equilibrium points (C1,C2 ) emerge 
only for r > 1. The linearized problem of the system (G /3 ) or 
Eq. (H/3 ) would thus correspond to the behavior of the solu­
tion in the neighborhood of (0) for the Lorenz system (L). 

Take Eq. (H/3)' The linearized equation is 

a 2t/J a 2t/J a 3t/J - + u(r - /3) - - /3--
at 2 ax2 ax2 at 

+ (a+ 1-/3) at/J +u(1-/3)t/J=O. (5) 
at 

Let us use the method of normal modes and take 
t/J = w(t)eikx

, thus (5) becomes 

d 2w dw 
-+B-+Cw=O (6) 
dt 2 dt 

where 

(7) 

and 

C=a[(1-/3) - (r-/3)k 2
]. (8) 

Thus 

(9) 

and 

v =1[-B+(B 2 _4C)1/2]. 1,2 2 _ ( 10) 
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Now since a and r are positive and 0</3< 1, it is clear that 
B> O. Thus VI and V2 both have negative real parts if and 
only if C>O. In other words, the problem is linearly stable if 
and only if 

r</3 + (1 - /3)lk 2 , (11) 

Therefore the system is linearly stable if r</3, whatever the 
value of k is. The larger the value of k, the more unstable is 
the system. When k = 1, which corresponds to the Lorenz 
problem, the criterion (11) becomes 

(12) 

The criterion (12) agrees with the stability criterion for the 
equilibrium point (0) of the Lorenz system. 

IV. THE STEADY STATES 

The equilibrium points of Lorenz system (L) would 
correspond to the steady states for Eqs. (H/3) or (G /3 ). Let 
us consider the time-independent solutions of (H/3)' Take 
t/J t/J(x), then (H/3) becomes 

a(r f3) d2~ -4CTt/J dt/J +a(1-/3)t/J=O. (13) 
dx dx 

Equation (13) can be rewritten as two coupled first-order 
equations. Introduce ¢(x) by 

dt/J 
dx 

¢. 

Thus (13) becomes 

d¢ 

dx 
_1_ [4ip - (1 -/3) Jt/J. 
(r - /3) 

(14) 

(15) 

The system (14) and (15) can be readily integrated, since 

dt/J (r-f3)ip 
-= , 
d¢ [ 4ip - (1 - /3) J ¢ 

(16) 

which is separable, and we obtain 

(_2 _) ¢2 _ ip _ (1 - /3) In 11 -~ I = A . (17) 
r-/3 4 1-/3 

It may be seen from (17) or the system (14) and (15) that a 
particular solution is 

ip = (1 - /3) 14 , (18) 

For large lip I, the orbit as given by (17) is a parabola given 
approximately by 

[2/(r - /3) Jt/J2 - ip = const, (19) 

For r </3, there is no closed orbit, and the orbits are schema­
tically shown in Fig. 1. 

For r > /3, the orbits for ip < (1 - /3) 14 are closed, while 
those for ip> (l - /3)/4 are not. They are schematically 
shown in Fig. 2. 

The qualitative features can also be seen by taking a 
closer look at the equilibrium point t/J = ip = O. For small 
lip I, if we expand the log function in (17) in terms of power 
series in ip, Eq. (17) is given approximately by 

[2/(r - /3) 1 ¢2 + [2/0 /3) lip 2 = A . (20) 

Thus the equilibrium point ip = ¢ = 0 is a center for r > /3 
and a saddle point for r </3. 

The closed orbits represent the periodic solutions for 
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FIG. I. Schematic orbits of the steady states for r</3. 

t/J(x), which in turn correspond to equilibrium points of the 
Lorenz system. Combined with the results from Sec. III, we 
see that the system (H13 ) is linearly stable for r < (3, and 
linearly unstable for r > (3. However, for r < (3, there is no 
bounded nontrivial steady state solution. Bounded spatially 
periodic steady state solutions emerge only when r exceeds 
(3. So there is a correspondence between these qualitative 
features in system (L) and system (H13 ). 

FIG. 2. Schematic orbits of the steady states for r>/3. 

1591 J. Math. Phys., Vol. 28, No.7, July 1987 

FIG. 3. Schematic solution of a steady state for r> /3. 

Making use of ( 17), we can obtain ip (x) and t/J(x) by 
direct integration. Denote 

<I> = 4ip 1(1 - fJ) , 

then Eq. (17) can be rewritten as 

t/J2 = [(1 - (3) 18 ( r - (3)] 

X [ 4A 1(1 - fJ) + <I> + In 11 - <I> I] . 
Thus we obtain from (15) and (21) that 

d<l> = _ [2 (1 - fJ) ] 112 (1 _ <1» 
dx (r-(3) 

( 
4A )112 

X -- + <I> + In 11 - <1>1 . 
1-(3 

(21) 

(22) 

Equation (22) can be directly integrated. Let us concentrate 
our attention on periodic solutions, i.e., r > (3 and <I> < 1. A 
typical solution is represented in Fig. 3. Let t/JM and ipM be 
the maximum value of It/JI and lip I, respectively. Then we see 
from (17) and (20) that 

t/JM ~ [! (r - (3)A ] 112, 

¢M ~ {[1 (1 - (3)A 1112
, for A small, 

A, for A large. 

For A ~ 1, we see from Eq. (20) that the (ip,t/J) orbit is 
an ellipse and the solutions for t/J and ip are 

t/J= [~(r-(3)A 11l2 sin([(1-fJ)I(r-(3)11/2x ), 
(23) 

ip = [~ (1 - (3) A ] 1/2 cost [(1 - (3)/( r - (3)] '/2x) . 
(24) 

The wavelength of these periodic solutions A is given by 

A=21T[(r-(3)/(1-(3)]'/2. (25) 

For the Lorenz system, we have A = 21T. Thus only for 
r;:::::, 1 can a close correspondence between the steady state 
solutions of the system (H13 ) and the equilibrium points 
(C"C2 ) of the system (L) be established. 

As A increases, the wavelength A increases also. For 
A ~ 1, it may be established that 

A=O(t/JM)=O([(r-(3)A]'/2). (26) 
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Thus for large r, the wavelength of the periodic solutions 
will be proportional to r'/2, and cannot be maintained 
around the value of 21T, which is implied in the Lorenz sys­
tem. 

V. STABILITY OF THE STEADY STATES 

Let us now investigate whether the steady states, in par­
ticular the spatially periodic steady state, are stable. Take 
1/Jo(x) to be the steady state solution, we may discuss the 
stability problem from two approaches. 

(i) The regular perturbation approach: Write 

1/J(x,t) = 1/Jo(x) + 1/J1 (x,t) . (27) 

Substitute (27) in (H[3)' Since1/Jo(x) satisfiesEq. (13), 
we obtain, after retaining only terms linear in tP" the follow­
ing equation: 

a2tP, + O'(r-{3) a2tP, -2tPo a2tP, -{3 a3tP, 
at 2 ax2 ax at dx2 at 

+ (0' + 1 - {3) atP, _ 2 atPo atP, _ 4O'tPo atP, 
at ax at ax 

- 40' atPo tP, + 0'(1 - {3)1/J, = ° . (28) 
ax 

Although Eq. (28) is a linear equation, it is not easy to 
solve it analytically. Since tPo(x) is a periodic function with 
period A, we may also look for solutions that are spatially 
periodic with period A. The term{3(a 31/J,/ax2 at) has a ten­
dency to smooth out the solution. If we neglect this term, Eq. 
(28) is either elliptic or hyperbolic depending on the relative 
magnitude of 0'( r - {3) and tP~, because the characteristics of 
the equation are given by 

~~ = tPo ± [1/J~ - O'(r - {3)] . (29) 

Thus the equation is elliptic where 1/J~ < 0'( r - f3), and 
hyperbolic where 1/J6 > O'(r - {3). Ellipticity is usually asso­
ciated with instability. Since the maximum of ItPol is roughly 
[! (r - {3)A JII2 as indicated by (17), thus the equation is 
elliptic when A is small. On the other hand, lower-order 
terms have a damping effect. Hence the ellipticity needs to 
overcome the damping mechanisms to cause instability. But 
it is perhaps reasonable to state that for large O'(r - {3) and 
small A, the system is unstable. The term {3(a3tP1lax2 at) 
may smooth things out eventually. But perhaps it will not 
alter the general qualitative behavior in the short run. 

For large A, the maximum of tP6 will be larger than 
0'( r - {3). Thus in much of the region the equation is hyper­
bolic, which will imply stability. But there are still regions of 
ellipticity in the neighborhood of 1/Jo(x) = 0. Numerical 
studies are needed to study the behavior of the solution of 
this mixed type equation. 

(ii) The multiple scale expansion approach: The spa­
tially periodic steady state solution tPo can be written as 
tPo(x;A), where A is a measure of amplitude. We can look for 
a solution of the type tPo(xl A (t);A (t»), where A (t) and A (t) 
are slowly varying function of t. Whether A (t) and A (t) 
remain in the neighborhood of constant values of A andA as t 
increases determines the stability of the spatially periodic 
steady state. 
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The analysis can be carried out by a multiple scale ex­
pansion. The details are presented in the Appendix. The sta­
bility criterion can be expressed in the form ofEq. (A14), 

d 2A dA --+ G(A;r,{3,O') - = ° , 
dt 2 dt 

where G can be computed in terms of tPo(x;A). 
For finite A, since tPo(x;A) is not a simple function, nu­

merical computation is needed to calculate G. However, for 
small A, since tPo is given by (23), it may be shown that the 
spatially periodic steady state is stable. 

VI. THE SPATIALLY PERIODIC SOLUTIONS 

It is reasonable to expect that the connection between 
the partial differential equations (G [3 ) or (H[3 ) and the Lor­
enz system is to be found in spatially periodic solutions. Let 
the period be A. Denote 

(tP) = { tP(x,t)dx. (30) 

Other averages over the period A, (8), (tP2
), and so on, can 

be defined likewise. Let us now consider the case that both tP 
and 8 and their derivatives are all periodic in x with period A. 
Let us integrate the first equation of (G[3) with respect to x 
over the period A. We then obtain 

d 
- (tP) = - O'(tP) . 
dt 

(31) 

If we multiply the first equation of (G[3) by (2¢/O'), add to 
the second equation of (G[3)' and then integrate with re­
spect to x over the period A, we obtain 

~ [(tP2
) +0'(8)] = -2O'[(tP2) + (1-{3) (8)]. 

~ 2 
(32) 

From (31), we see that (1/J) --+0 as t --+ 00. Thus asymp­
totically not only tP is periodic in x, but f x tP dx is also peri­
odic in x. However, it does not imply that J1/JJ--+ ° as t --+ 00 . 

To discuss the implication of (32), let us denote 

p = (tP2
) + 0'(8), q = (tP) + [(1 - {3)/2] (8) . 

Thus (32) can be rewritten as 

dp = _ 2O'q. 
dt 

In Figs. 4 and 5, we have plotted lines of constant p and q 
in the (tP2

) - (8) plane for the cases 0'> (1 - {3)/2 and 
0' < (1 - f3) 12, respectively. At any point where q > 0, p has 
a tendency to decrease; while at any point where q < 0, p has 
a tendency to increase. It is not clear how p decreases or 
increases. However, when the state reaches a point on q = 0, 
it tends to stay there. Take the case of 0'> (1 - {3)/2 (Fig. 
4). Consider any point a for which q < 0. The motion tends 
to remain in the region D, which is bounded by the lines 
p = pea), (tP2) = 0, andq = 0. Thus for subsequent motions 
we have 

1(8)1<(1/O')lp(a)l, (33) 

(tP2 )<I[(1-f3)1{2O'- (1-{3)} ]p(a)l· (34) 

Thus for 0' > (1 - {3) 12 any motion initiated with q < ° 
tends to be bounded all the time with the bound given by 
(34). 
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<8> 

0 < 1/,2> 

p= I 

p=o 

p=-I 

q=-2 

FIG. 4. Tendency of motion of the system in the «8), <if.?» plane for 
u> (1 - {3)12. 

The same result is valid for any motion initiated with 
q > ° when (J < (1 - {J)/2, as represented in Fig. 5. 

The state q = 0, i.e., (I/l) + [(1 - (J)/2] (8) = 0, if 
ever reached, will be the asymptotic state for large t. It may 
be mentioned that for steady states 

rp = [lI(r - (J)] [2t/J2 + (1 - {J)8] . (35) 

Thusq = Ois equivalent to (rp ) = 0, which is indeed the case 
for periodic steady states. 

VII. ELLIPTICITY AND HYPERBOLICITY 

Following the original study of Lorenz, most numerical 
studies of the Lorenz equations (L) set the parameters 
(J = 10 and{J = §, while varying the parameter r. Except for 
the requirement that (J> 2 + 3{J, most of the qualitative be­
haviors of the Lorenz system seem to be insensitive to the 
variation of {J or (J. However, for Eq. (Hp), it is clear that 
the problem is somewhat qualitatively different when {J = ° 
or {J = 1. When{J = 1, from Eqs. (13 )-(17), it may be seen 
that no bounded periodic steady state solution exists. On the 
other hand, when{J = 0, the order ofEq. (Hp) is reduced by 
1. The term a 3t/J/2x2 at in (Hp) is a "good" term, whose 
presence can smooth out irregularities that may arise other­
wise. Still it may be illuminating to consider the case that 
{J ~ 1 or even when {J = 0, since the underlying irregulari­
ties, if they exist, may reveal some intrinsic properties of the 
system. 

If we set (J = 0, then Eq. (Hp) is of the mixed type. The 
characteristics ofEq. (Ho) are given by 
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<8> 

0 

1-/3 u<-
2 

< 1/1 2> 

p=O 

FIG. 5. Tendency of motion of the system in the «8), <if.?» plane for 
u < (1 - {3)12. 

(36) 

Thus the equation is elliptic when t/J2 < (Jr and hyperbolic 
when t/J2 > (Jr. When r is large or when t/J is small, Eq. (Ho) is 
elliptic. Ellipticity is associated with instability of the sys­
tem. More precisely, for initial value problems, solutions of 
the elliptic equations tend to depend sensitively on initial 
data. The instability due to ellipticity will make t/J2 grow with 
t. But when t/J2 exceeds the value of (Jr, Eq. (Ho) becomes 
hyperbolic. Hyperbolicity implies stability of the system. 
Therefore the initial unstable growth will be arrested. The 
solution will start to exhibit some wavelike features. How­
ever, the system (Ho) is dissipative. The dissipative mecha­
nisms in the lower-order terms in Eq. (Ho) will tend to di­
minish the magnitude of t/J2, and drive the system back to the 
elliptic regime. When the equation is elliptic, the instability 
mechanism will operate again and raise the magnitude of t/J2 
over the value of (Jr, thus push the system to the hyperbolic 
regime. This type of switching back and forth from ellipticity 
to hyperbolicity may be what corresponds to the chaotic be­
havior of the Lorenz system. The sensitive dependence on 
initial data inherent in the elliptic equations is certainly con­
sistent with the trademark of the chaos. The boundedness of 
the solution as established in Sec. IV may indicate the exis­
tence of some strange attractors. What the meanings of these 
concepts are in the context of partial differential equations is 
still not clear. 
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Numerical studies of Eq. (Hf3) should shed light on 
these intriguing questions. To carry out numerical studies, it 
may be noted that the boundary line between ellipticity and 
hyperbolicity for Eq. (Ho) is given by t/! = (ar) 1/2. It can 
also be shown that on the hyperbolic side the characteristics 
form cusps at the boundary line. In the hyperbolic regime, 
shocks may appear. Thus from a numerical point of view, it 
is better to work with Eq. (Hf3) with {J> O. Whether finite 
values of {J would add too much diffusion is also a point 
worth noting. 

VIII. A REDUCED SYSTEM AND HODOGRAPH 
TRANSFORMATION 

The method of hodograph transformation is sometimes 
useful in dealing with mixed type partial differential equa­
tions. Let us consider a reduced system by dropping the two 
damping terms in (Go): 

at/! = _ a ae , ae = r at/! + 2t/! ae . (G R ) 

at ax at ax ax 

The corresponding single partial differential equation is 

a
2

t/! + ar a
2

t/! _ 2t/! a
2

t/! _ 2 at/! at/! = 0, (H
R

) 

at 2 ax2 ax at ax at 

and the corresponding reduced Lorenz system is 

dX dY dZ 
-=aY, -=rX-XZ, -=XY. (LR ) 
dt dt dt 

Equation (H R) is also of the mixed type. But the lower­
order damping terms are not present. System (LR ) has the 
following first integrals: 

2aZ-X2=D (37) 

and 

(Z _ r)2 + y2 = B 2. (38) 

These integrals define a two-parameter family of periodic 
solutions in t. 

To solve the system (GR ), let us introduce the hodo­
graph transformation by interchanging the roles of (x,t) and 
(t/!,e) as independent and dependent variables. Denote the 
Jacobian of the transformation: 

J = a(x,t) , 
a(t/!,e) 

we obtain 

at/! _ 1 at ae 1 at 
ax - 7 ae' ax - 7 at/! ' 

at/! = 1 ax ae 1 ax 
at -7 ae' at-7 at/! 

Thus system (GR ) becomes 

ax = -a~, ax =r~-2t/!~. (G
h

) 

ae at/! at/! ae at/! 
If we eliminate t, then we obtain 

a
2
x +~ a

2
x _.2..". a

2
x _.2.. ax =0. (H) 

at/!2 a ae 2 a or ae at/! a ae h 

Equations (G h ) and (H h ) are both linear, but they are still 
of the mixed type. The boundary between the region of ellip­
ticity and hyperbolicity is again V = ar. 
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There are particular solutions of the form 

x(t/!,e) =f(t/!)eaB
• 

Ifwe substitute (39) in (Hh ), we obtain 

d
2
f -~t/! df + (ra

2 
-~)f=O. 

dt/!2 a dt/! a a 

Denote 

0) = (ala)t/! 

and 

2n = ar - 2a la, 

or 

a = 2al(ar - 2n) . 

Then Eq. (40) becomes 

d Y _ 20) df + 2nf = 0 , 
d0)2 dO) 

(39) 

(40) 

(41 ) 

(42) 

(43) 

which is the Hermite equation. When n is an integer, a solu­
tion is the Hermite polynomial of order nH n' Therefore a 
particular solution of (H h ) is 

(44) 

Any linear combination of xn's is also a solution. Using 
(Gh ), we may obtain particular solutions for t: 

tn = - 2 e20BICUr-2n)J'" Hn ( 2t/! )dt/!. 
ar- 2n ar- 2n 

(45) 

These particular solutions should be helpful to guide the 
numerical studies of the problem especially in the neighbor­
hood of the transition between elliptic and hyperbolic re­
gimes. 

IX. ASYMPTOTIC STATES FOR LARGE r 
For the Lorenz system (L), Robbins4 has found a stable . 

periodic solution as the parameter r becomes very large. Let 
us introduce a small parameter E and set 

t=er, r=1!~. (46) 

Now let 

X(t,E) = (lIE) [Xo( 7) + EXl (7) + ... j , 

Y(t,E) = (1!~) [Yo( 7) + EYl (r) + ... ] , 
Z(t,E) = (1!~) [Zo(r) + 1 + EZl(r) + ... j, 

then the zeroth order of the Lorenz system becomes 

dXo _ y. dYo - -X' 7 dZo -X y. -- - a 0' - ()L'O, - 0 o· 
dr dv dr 

We may note that (LA) is really the same as (LR ) in the 
last section, if we let Z - r = ZOo By carrying out the next­
order expansions, Robbins has shown that a stable periodic 
solution exists for finite r, and as r decreases, period-dou­
bling bifurcations appear. 

Let us take the same scaling for Eq. (Hf3) and let 

t/!(X,t,E) = (l/E)[ t/!o(x,r) + Et/!l (x,r) + "'j. (47) 

Then the zeroth- and first-order equations of (Hf3) are 

a 2t/!0 + a a 2t/!0 _ 2t/!0 a 2t/!0 _ 2 at/!o at/!o = 0 , ( 48) 
ar ax2 ax a7 ax ar 
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a
2

t/JI +0" a
2
t/JI -2t/Jo a

2
t/JI -2 a

2
t/Jo t/JI 

aTI ax2 ax aT ax aT 

_ 2 at/Jo at/JI _ 2 at/Jo at/JI 
ax aT aT ax 

= (3 a :t/Jo _ (0" + 1 _ (3) at/Jo + 4ut/Jo at/Jo,.... (49) 
ax aT aT ax 

Equation (48) is the same as Eq. (H R ) of the last sec­
tion when r = 1. In the last section, we have explored some 
aspects of this equation. Now to make connection with the 
periodic solutions of (LA ), we should look for solutions pe­
riodic both in x and t for Eq. (48). It is not clear whether 
such solutions exist. Even if there are such doubly periodic 
solutions, what would be the corresponding period-doubling 
bifurcation in the context of partial differential equations is 
also not clear. Much work is still needed to clarify these 
issues. 

Now if, instead of (46), we introduce a different scaling 
and let 

t = ET, r = liE, 

and further, let 

X(t,E) = (lIE) [Xo( T) + EX1 (T) + ... j , 

Y(t,E) = 1/E2 [Yo(T) +EYI(T) + "'j, 
Z(t,E) = 1/E2 [Zo( T) + EZI (T) + ... j , 

(50) 

then the zeroth order or the Lorenz system again is (LA ). 

However, if we now apply the scaling (50) and the expan­
sion (47) to Eq. (Hp), the zeroth-order equation becomes 

a 2t/JO _ 2t/Jo a 2t/JO _ 2 at/Jo at/Jo = 0 . (51 ) 
aTI ax at 2x aT 

Equation (51) is different from Eq. (48). While (48) is a 
mixed-type equation, (50) is a hyperbolic equation. In fact, 
Eq. (48) can be integrated once to give 

at/Jo _ 2t/Jo at/Jo = C(x) . (52) 
aT ax 

To make connection with the Lorenz system, the function 
C(x) in (52) should be a periodic function. Equation (52) 
has been investigated recently by Salas et al.s They studied 
also specifically the case that C(x) = sin 2x, and found mul­
tiple steady states for characteristic initial value problems. 
Whether there are solutions periodic both in x and t is again 
not clear. 

If we use another different set of scaling and let 

t=E2t', X=EX', r= liE, t/J=t/J'IE+ "', 

then the leading-order equation of (Hp) becomes 

a 2t/J' ,a 2t/J' a 3t/J' at/J' at/J' 
--2t/J ---(3 -2--=0. 
at' 2 ax' at' ax' 2at' ax' at' 

(53) 

Equation (53) can be integrated once to yield 

at/J' _ 2t/J' at/J' _(3a
2
t/J' = C(x). (54) 

at' ax' ax' 2 

The homogeneous equation of (54) is the well-known 
Burgers equation. This equation has recently been investi­
gated by Kreiss and Kreiss. 6 
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X. THE TRAVELING WAVE SOLUTIONS 

Traveling wave solutions are solutions such that 

t/J(x,t) = t/J(7]), O(x,t) = 0(7]) , (55) 

and 

7] = x - et, (56) 

where e is a real constant. If there exist periodic traveling 
wave solution, then the solutions will be periodic in both x 
andt. 

When we substitute (55) in (Gp ), we obtain 

e dt/J = O"t/J + 0" dO , (57) 
d7] d7] 

_ e dO = _ 1 ( _ (3){) + (3 d 20 + r dt/J + 2t/J dO . 
d7] d7]2 d7] d7] 

(58) 

We may recast the system (57) and (58) into the following 
first-order system: 

dt/J 0" dO 
-d =-(t/J+X), -d =X, 

7] e 7] 

(3 dX = - O"r t/J + (l - (3)0 - (Or + e) X - 2t/JX . 
d7] e e 

(G T ) 

The system (G T ) has only one equilibrium point at 
t/J = 0 = X = O. To investigate the stability about this equi­
librium point, consider the linearized equation, and take so­
lutions proprotional to eVTI. Then we found that 

F(v)=(3v3+ [(O"le)(r-(3) +ejv 

- [(1-(3) +O"jv+ (O"le)(1-(3) =0. (59) 

Again, we are only interested in cases where 0" and rare 
positive, 0<(3< 1, and r> (3. Take e > 0, then after investigat­
ingthe behavior of F( v),F' (v), andF" (v), itis readily con­
cluded that for the three characteristic roots of (59), say 
VI'V2'V3' we have 

VI <0, Rlv2 > 0, Rlv3 > O. (60) 

Therefore, except for exceptional cases, the equilibrium 
point is unstable. When (3 = 0 or /3 = 1, the third-order sys­
tem is reduced to a second-order system. For (3 = 0, the 
characteristic condition (60) becomes 

vl<O, v2>0. 

For the case (3 = 1, then (60) becomes 

vl<O, v2=0, V3>0. 

(61) 

(62) 

For (3 = 1, the system (G T ) reduces to a second-order sys­
tem for t/J and X. Although there is another equilibrium point 
at t/J = - X = - e/2, which is stable, yet since dO /d7] = X, 
it is not an equilibrium point for (t/J,O,X). 

Some preliminary numerical computation failed to find 
any periodic solution for the system (G T ). 

XI. DISCUSSIONS 

We have constructed a system of partial differential 
equations (G p) or the partial differential equation (Hp) 
which are among the simplest that contain Lorenz system 
(L) in some approximation. We have analyzed and dis-
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cussed various aspects of these partial differential equations. 
Certain qualitative features of these partial differential equa­
tions correspond with those of the Lorenz system. Others are 
difficult to say without entensive numerical studies. A nota­
ble feature of these partial differential equations is that in the 
limit of [3 -+ 0, the equations are of the mixed type. It is sug­
gested that the switching back and forth from the ellipticity 
and hyperbolicity may correspond to the chaotic behavior of 
the reduced system of Lorenz. Again, detailed numerical 
studies are need to confirm this suggestion, and work is in 
progress towards this goal. 

Qualitatively for r>[3, Eq. (Hp) has those properties: 
When the amplitude is small, the system is not stable due to 
the ellipticity. For large amplitude, it becomes hyperbolic. 
The system has lower-order damping terms as t progresses. 
It also has spatially diffusive mechanism. The ellipticity 
tends to make the system unstable and the hyperbolicity to 
cause wavy behavior, while the damping and diffusion 
would smooth out the irregularities. These are indeed also 
qualitative features contained in the Lorenz system. 

Given the Lorenz system, there is of course, no unique 
"simplest" parent partial differential equation. In fact, the 
system 

~~ = - utP - ~: ' 

a() _ (1 _ [3)() + [3 a 2() + r atP + ~ (()tP) , 
at ax2 ax ax 

if we take 

tP = Ji X(t)sin x, 

() = Ji Y(t)cos X + 2Z cos 2x , 

(63) 

(64) 

and use the same truncation scheme, will again lead to the 
Lorenz system (L). The system (Kp) may be simpler than 
(Gp ) in some aspects, but may be less simple in other 
aspects. For one thing, it is difficult to obtain a single partial 
differential equation as simple as (Hp )' 

Finally, it may be pointed out that one can detect the 
qualitative similarities between the system (Gp ) and the 
partial differential equations of the Rayleigh-Bernard prob­
lem. Physical problems can also be found that are described 
approximately by the system (G p ). 

APPENDIX: MULTIPLE SCALE ANALYSIS OF 
STABILITY OF STEADY STATES 

Let us write (Hp) as follows: 

u( r - [3) a 2tP - 4utP atP + u(1 - [3) tP 
ax2 ax 
I a 2tP a 2tP a 3tP 

= - -; at 2 + 2tP ax at + [3 ax2 at 

_ (u+ I-fJ) atP + 2 atP atP , 
at ax at 

(AI) 

where the order parameter E is introduced artifically in the 
first term on the right-hand side. Let us assume the following 
expansion of tP: 

tP = tPo(y,T) + EtPl (y,T) + ... , 
where 
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(A2) 

T = Et, (A3) 

and 

y = k( T)X . (A4) 

Substituting (A2) into (AI), we obtain, to the succes­
sive orders of E, that 

0(1): u(r-[3)k2 a2tPo 
ay2 

- 4ak tPo atPo + u( I - [3)tPo = 0, 
ay 

O(E): L [tPl] = FI , 

: , 
where 

L [tPI]==k 2 a
2
tPI _ 4k tPo atPI 

ay2 (r - [3) ay 

(A5) 

(A6) 

+ [(1 - [3) - 4k(atPol ay)] tPI' (A7) 
(r - [3) 

and 

FI == I [ _ a 2tPO + 2ktPo a 2tPO 
a(r - [3) aT2 ayaT 

+ k 2 a 3tPO _ (u + I _ [3) atPo + 2k atPo atPo] . 
~2~ ~ ~ ~ 

(A8) 

The solution of (A5), as given by (22), can be repre­
sented as 

(A9) 

and for the case of our interest with r > [3, tPo is periodic iny. 
Moreover, the function JY tPo dy is also periodic in y. Here 
k( T) is chosen so that the period in y is independent of T. 

Thus k = k(A) and the period can generally be set to be 21T. 
It may be verified that atPolay and atPoIaA are two lin­

early independent solutions of the homogeneous equation 
L[tPd = O. 

Let us introduce 

¢I = tPl exp( - (r: f3)k r tPo dY) , (AlO) 

then (A6) can be written as 

(All) 

where 

L [¢d = a 2¢1 + I [(1 _ [3) _ 2k atPo 
Jy2 (r - [3)k 2 ay 

(r~[3) tfo ]¢I' (AI2) 

Following the method of Kuzmak-Luke, 7 the condition 
that ¢I or tPl will again be a periodic function ofy with period 
21T is 

(1'- aatPo FI exp( - I fY tPo dy) dy = 0 . 
Jo y (r-[3)k 

(AI3) 

Let us take Xo to be constant in (A9), then, since 
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etc. and k = k (A ), (A 13) will be a differential equation of 
the form 

d 2A dA 
---::2 + G(A;r,{3,u) - = 0 . 
dr dr 

(A14) 

The coefficient G will determine whether A, a measure 
of the amplitude of ¢o, will stay in the neighborhood of a 
constant value. 
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Operator product expansions (OPE's) are studied in unitary "minimal conformal models" on 
the circle. The presence of null vectors at a certain level (signaled by the the vanishing of Kac's 
determinant) leads to linear relations among SU ( 1,1) -covariant ("quasi primary") fields at 
that level. In the Ising model this is shown to imply the proportionality of two composite 
tensor currents of dimension 6 and the vanishing of 4 among the first five composite fields 
expected to appear in the OPE of the stress energy tensor and the canonical Fermi field (of 
weight p. For the supersymmetric tricritical model it only implies the vanishing of the 
quasi primary Fermi current of dimension ~. 

I. INTRODUCTION 

In a paper that opened a new avenue in the study of two­
dimensional critical models, Belavin, Polyakov, and Zamo­
lodchikov l found an infinite series of models for which the 
conformally invariant Green's functions satisfy linear par­
tial differential equations and can, in principle, be evaluat­
ed. I

,2 Such "minimal theories" (in the terminology of Ref. 
1) correspond to Virasoro central charge, 

C = Cm = 1 - 6/(m + 2) (m + 3), (1.1 ) 

with rational m, and an associated finite set of minimal 
weights derived from Kac's determinant formula. 3 It was 
conjectured4 and later proved5

,6 that the subset of values 
(1.1) for positive integer m's and lowest weights (LW's), 

a"t (m) = {[rem + 3) - t(m + 2) f - I} 

X[4(m+2)(m+3)]-I, 

l';;;r';;;m + 1, l,;;;t,;;;m + 2 (m = 1,2, ... ), 

satisfying the symmetry condition 

a"t (m) = am + 2 - " m + 3 _ t 

(1.2 ) 

(1.3 ) 

(already singled out in Ref. 1), correspond to unitary L W 
representations of the Virasoro algebra Vir. 

Recently, modular invariant partition functions were 
constructed for these models 7 in terms of Feigin and Fuchs 
character formulas. 

In the framework of a field theoretic approach8
,9 (in 

which the problem has been reduced to studying conformal 
quantum fields on the circle) composite quasiprimary fields 
have been constructed and conformal OPE's have been writ­
ten down for a wide range of models. 10 (We recall that a field 
cP (z) of dimension a is called quasi primary, if it transforms 
homogeneously under the projective conformal group SU 
( 1,1 ); in an infinitesimal form its transformation law reads 

[Ln'CP(z)] =zn{zcp'(z) + (n + l)acp(z)}, (1.4) 

a) Permanent address. 

for n = 0, ± 1. The field cP is called primary if it satisfies 
(1.4) for all integer n's. We say that the quasiprimary fields 
CPt;. + n of dimension a + n, n = 0,1,2, ... , belong to the con­
formal family of the primary field CPt;., if they appear in 
OPE's of expressions ofthetype T(zl)" . T(Zk )cpt;. (z). Here 
T(z) is the stress-energy tensor 

T(z) = ILnz-n-2 (L~ =L_ n ), (1.5 ) 
nEZ 

where Ln satisfy the commutation relations of Vir, 

[Ln,Lk] = (n-k)Ln+k + (c/12)n(n2 -l)on._k' 
( 1.6) 

One advantage of using quasiprimary fields stems from the 
fact that they provide an orthogonal basis for OPE's: if CPt 
and CP2 are quasiprimary fields of different dimensions, then 
(CPI(ZI)CP2(Z2» = 0.) 

It was pointed out in Ref. 11 that the minimal unitary 
models [corresponding to (1.1) and (1.2) for m = 1,2, ... ]­
the Cm models, for short-provide, for each m, representa­
tions of an associative algebra 2Im, which includes the enve­
loping of the Virasoro algebra. Here 2Im can be defined as the 
OPE algebra generated by the stress energy tensor T(z) and 
by the primary field F(z) [= F(z,m)] of (half-) integer 
dimension 

a m+ 1,1 (m) = a l •m + 2 (m) = !m(m + 1)=sm (1.7) 

(which can also be viewed as "spin"). The fusion rules of 
Ref. 1 guarantee that the conformal family of F(z) is only 
coupled to the family of the unit operator. Since T(z,)F(z2) 
belongs by definition to the family of F, whatever the pri­
mary field F, the preceding statement just says that F(z + d 
2) F(z - d2) is expanded in quasiprimary fields Tfn (z), 
n = 0,1,2, ... , of the family of the unit operator, so that 
To = 1, T2 = T (we shall display in Sec. II the proof of this 
result for the simplest special case of the Ising model, 
m = 1). 

The main purpose of this paper is to develop a technique 
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for making efficient use of (global) OPE's in the Cm models. 
Computing normalization factors from known four-point 
functions, we are able to compare in particular the quasipri­
mary fields Tin' which appear in the OPE of two F fields, 
with the composite fields T fn made in a similar fashion out 
of two T's. They have identical conformal properties; how­
ever, in general, they do not coincide, since the quasiprimary 
states have a finite multiplicity (Sec. II). Only levels 2 and 4 
are multiplicity-free for an arbitrary central change c. (In 
fact, Tf = Ti = T, while TIis a multiple ofTf,) The pres­
ence of a null vector at level (m + 1) (m + 2) reduces the 
number of independent quasiprimary fields in the Cm model 
at this level. In the case of the (c I) Ising model we deduce (in 
Sec. II) that level 6 is also multiplicity-free. An explicit com­
putation, involving the canonical Majorana-Weyl field 
F(z,1) =¢(z), shows that, in fact, T[ = 8Tt (Sec. IV). The 
presence of null vectors in the conformal family of ¢ (dis­
cussed in Sec. II) leads to the vanishing of the composite 
quasi primary fields of dimensions ~, ~, and ¥ appearing in the 
OPE of T(z + e) ¢(z) (Sec. IV). Similar results are ob­
tained for the composite fields Gn + 3/2 (z) in the C2 model. 
The computations of Sec. IV are preceded by a general dis­
cussion of the ~m algebra in Sec. III where the normalization 
of T fn is derived from the four-point function of T for any 
value of c, while the normalizations of Tin and of Fs+ n (a 
composite of F and T) are related to the four-point function 
< TTFF) for the em models. The new point in the set of prop­
ositions of Sec. III is precisely these numerical coefficients. 
Their knowledge is essential for exhibiting the relations 
between composite quasi primary fields at levels involving a 
null vector and for computing higher correlation functions. 
The rather lengthy computations of these constant factors 
are summarized in the Appendix. (Only the first such factor, 
the one that mUltiplies the normalized primary field in each 
conformal family appearing in an OPE, has been evaluated 
previously, see Ref. 2.) 

II. NULL VECTORS, FUSION RULES, AND 
DEGENERACIES: THE (TRI) CRITICAL ISING MODEL 

A. Null vectors and quasi primary states 

For each LW vector la r.,) = Icm,ar., (m» (1.2) such 
that 

Ln la r.,) = 0, n = 1,2, ... , (Lo - a r.,) la r.,) = 0, 
(2.1 ) 

there exist homogeneous "polynomials" of the type P N 

=aoL-N +aILI_NL_ 1 +··· of "degree" N=r·t and 
N = (m + 2 - r) (m + 3 - t) such that the vectors 
P N la r.,) are null vectors. They are characterized by the 
property LnPNlar.,) =0 [(Lo-ar., -N)lar.,) =0] for 
n> 1, which implies that they are orthogonal to all vectors of 
the Verma module re /). and can, therefore, be set consis­
tently equal to zero. m' '.' 

In the family {I} of the unit operator the null vectors 
appear at level I-as L_,IO) = 0- and (m + 1) (m + 2). 
One can derive from here the absence of quasiprimary fields 
at odd levels (for n<,7) and a linear dependence among such 
fields at level (m + 1) (m + 2). 

In order to clarify the last statement we shall estimate 
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the number of quasiprimary fields T2n (z)E{I} for small n's. 
To each T2n (z) corresponds a quasi primary state (short­
hand for a lowest weight quasiprimary state) T2n (0) 10) sat­
isfying 

(Lo - 2n)T2n (0) 10) = ° = L IT2n (0) 10). (2.2) 

There are unique quasiprimary states at levels 2 and 4 (pro­
portionalto L_ 210) and to (L 2_ 2 - ~L_4) 10». For higher 
n's we expect that the number of independent T2n 's does not 
exceed 12 pen) - 2p(n - 1) + pen - 2), where pen) is the 
"partition function"-i.e., the number of ways in which the 
positive integer n can be presented as a sum of positive inte­
gers (see Table I). Indeed, if we only have a null vector 
(L _ II 0) ) at levell, then the number of independent vectors 
at level n will be M (n) = pen) - pen - 1). If, on the other 
hand, M (n) is the multiplicity of all states at level n, then the 
multiplicity of quasiprimary states at level n will be M (n) 

_ M(n- l). 

We see, in particular, that the first quasiprimary state of 
odd dimension in the family of {1} may appear at level 9. 
[Quasi primary composite fields of the type T 2n + I , contrib­
uting to the OPE of a primary field ¢(z) with itself, would 
not appear in the symmetric expansion ¢(z + d2)¢(z - e/ 
2) .] (Indeed, the vector 

{5L 3_3 - 8L -9 + 6L_ 7L_ 2 - 12L_~_3 

+ 8L_ 5L 2_ 2 - 12L_4L_3L_ 2 }10) 

is annihilated by L I') We also find exactly two independent 
quasiprimary vectors at level 6 [say, (L 2_ 3 - ~L_4L_2 

- ~-6) 10) and (L 3_ 2 - §L_4L_2 - ~-6) 10)]. For the 
c,-Ising model a linear combination of these two vectors 
should be a null vector. Thus, for c = ~ any two quasipri­
mary fields (of the family {1}) of dimension 6 should be 
proportional to each other. We shall display an implication 
of this statement--concerning composite quasiprimary 
fields-in Sec. IV. 

B. Null vectors and fusion rules in the C, model 

An important application of the presence of null vectors 
in the Cm models is the derivation of the fusion rules I for 
OPE's involving primary fields. We shall reproduce this der­
ivation for the simple case of the product of the canonical 
Fermi field ¢ (z) of weigh t a2,1 = a l •3 = ~ in the c I model, 
since some of the intermediate formulas will be also useful 
for the interpretation of our results in Sec. IV (concerning 
the vanishing of certain quasiprimary composite fields). 

The general L,-invariant vector at level 2 in the Verma 
module r e,/). is proportional to 

Ic,a + 2) = ([ (2a + 1 )/3 ]L_2 - ~ 2_ 1 ) Ic,a). 
(2.3 ) 

Indeed, we have (for any a and c) L,lc,a + 2) 
={(2a+ I)L_,-LoL_,-L_,Lo}lc,a) =0. In order 

to secure also L 2 1c, a + 2) = ° (which is equivalent to de­
manding that Ic, a + 2) is a null vector-given that L,lc, 
a + 2) = 0) we must set 

c = 18..:l(1 + 2a) -I - 8a 

or 
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TABLE I. Values of the partition function p(n) and its first two finite differences for O<n< 15. 

n 0 

pen) 

pen) - pen - 1) 0 

pen) - 2p(n - 1) + pen - 2) 

16a = 5 - e ± ~(25 - e) (1 - e). 

For the em series (1.1) Eq. (2.4) gives 

4a2,1 (m) = 1 + 3/(m + 2), 

4a l ,2 (m) = 1 - 3/(m + 3) 

2 3 4 

2 3 5 

2 

0 

(2.4) 

(2.5) 

in accord with (1.2). For m = 1 we find a 2 ,1 =~. Similarly, 
the general LI-invariant vector at level 3 is a multiple of 

Ie, a + 3) = {~a(a + 1)L_ 3 - (a + 1)L_2L_I 

+ ~L 3_ 1 }Ic,a). (2.6) 

The requirement L 2 1e, a + 3) = ° is only satisfied for 
e = 12a(a + 1) -I - 3a - 2, which, for a =~, again gives 
e = ~. We shall now demonstrate that the null vector condi­
tions 

(jL_2 - ~L 2_ I) I~,~) 

=0= OL_ 3 -L_2L_ I +!L3_1)1~,~) (2.7) 

imply the fusion rule for two ¢ fields. 
The conformal family of the primary field <fJ (z) (of di­

mension a) appears in the OPEof¢(z + d2)¢(z - d2)iff 
<fJ has a nonvanishing three point function with a pair of ¢'s, 
consistent with the null vector conditions. For such a <fJ we 
have <MI<fJ(z) I~,~) = Az - I.\. (A #0). The first equation 
(2.7) then implies 

A - I ( ~ ,+ I ( ~ L2 - ~ L i )<fJ (z) I ~ , ~ ) 

= z2{2z~ + 2a - ~(z~ + 2a + 1) 
3 dz 2 dz (2.8) 

x(z! + 2a )}z-I.\. = 0, 

a(j - (a + 1)/2) = 0. 

Both roots of (2.8) can be presented in the form (1.2): a l I 
= 0, a 3,1 = j, but for the second one r ( = 3) lies beyond the 

allowed range. The same function should, however, also sat­
isfy the second equation (2.7), 

(!,!I (iL 3 - LIL2 + jL i )<fJ(z) I~,n = ° 
or 

Z3{~Z~ + a - (z~ + 3a + 1) (z~ + 2a) 
4dz dz dz 

+~(z~+ 2a +2) 
3 dz 
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5 

7 

2 

0 

6 7 8 9 lO 11 12 13 14 15 

11 15 22 30 42 56 77 101 135 176 

4 4 7 8 12 14 21 24 34 41 

2 0 3 4 2 7 3 lO 7 

(2.9a) 

i.e., 

or (2.9b) 

al,l = 0, au =!, ai,s =~. 

The only common root of (2.8) and (2.9) is al,1 = 0. Thus, 
only the family of <fJ(z) = 1 should appear in the OPE of two 
¢'s. 

We now proceed to spell out the implications of this 
analysis for the degeneracy of composite quasiprimary fields 
in the OPE of T(ZI)¢(Z2) (see Sec. IV). 

First of all, we note that if I a) is a L W vector then, for 
positive a, there is no quasiprimary state I a + 1) in the fam­
ily of la). Indeed, any vector of dimension a + 1 in the 
Verma module r c,1.\. should be proportional to L _ II a). But 
L_Ila) could only be quasiprimary for a = 0, since 
LIL_Ila) = 2ala). 

There could be no more than one quasi primary state at 
level 2 and 3, proportional to (2,3) and to (2.6). If these are 
null vectors-as in the case of the Ising model for a = !-we 
expect to find no quasi primary fields of dimension a + 2 and 
a + 3 (in the family of la» Moreover, the existence of null 
vectors at levels 2 and 3 also implies the presence of such a 
vector at levelS, 

L_sle,a) == [L_2' L_31Ie,a) 

= {L (2L L _ 1 L 3 ) 
-2 a -2 -I a(a+l) -I 

(2.10) 

No independent null vectors can be obtained at higher levels 
in this fashion. (We owe the last remark--explaining the 
absence of a quasi primary field of dimension ¥ = ~ + 5 in 
the Ising model-to Trifonov.) 

c. Superquasiprimary states in the Cz model 

For m = 2 the fields T(z) and G(z) = F(z,2) acting on 
the vacuum generate the Neveu-Schwarz (NS) superalge­
bra. 13 Ifwe set (for the NS sector) 

G(z) = IGn+ I/2Z-n-2, 
nEZ 

then the super-Virasoro commutation relations are 
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[Gp,Ga ] + = 2Lp + a + (e13 )(p2 - !)Op, _ <T' 

[Gp,Ln] = (p - nI2)Gp+n (pa. + ~). 
(2.12a) 

(2.12b) 

[The Virasoro commutation relations (1.6) follow from 
(2.12) and from the super Jacobi identiy.] 

A NS superfield ¢ '" (z,O) = qJ '" (z) + OqJ '" + 1/2 (z), 
where Ois a Grassmann variable (0 2 = 0), is said to be super­
quasi primary if for any choice of the anticommuting param­
eter E, 

[EGk + 1I2'¢'" (z,O)] 

= EZk {Z( :0 - 0 ~) - 2(k + 1)~0 }¢'" (z,O), 

(2.13a) 

[L n ,¢", (z,O)] 

= zn{z~ + (n + 1)(~ + ~O~)}¢", (z,O), (2.13b) az 2 ao 
for k = 0, - 1 and n = 0, ± 1 [which span the osp(2!l) 
Lie superalgebra]; ¢'" is called super primary if (2.13) is val­
id for all k,nE'l. If ¢'" (z,O) is a superquasiprimary field, then 
I~) = qJ", (0) 10) is a superquasiprimary state in the sense 
that 

G1/21~) =0 [=LII~) = (Lo-~)I~)]· (2.14) 

An example of a superquasiprimary field is given by the odd 
supercurrent (with ~ = ~) 

W(z,O) = ~G(z) + OT(z). (2.1S) 

We are interested in the question of whether supersym­
metry gives additional relations between quasiprimary fields 
and states. The answer is no. What it does say on the level of 
quadratic functions of T and G, of dimension 2n, is to orga­
nize the quasi primary fields into parts of two superfields; 
one-odd-of dimension 2n-~ and another-even-of di­
mension 2n. They provide two orthogonal linear combina­
tionsofT~n and Tfn. We shall illustrate here the situation in 
terms of quasiprimary states at the lowest nontrivial level, 
2n = 6. (For 2n = 2 and 4 the quasiprimary states are multi­
plicity-free. ) 

The two quasi primary states, proportional to T r (0) 10) 
and T¥(O) 10), are 

16)T = (20L_ 6 + S6L_4L_ 2 - 3SL 2_ 3) 10), (2.16a) 

16) G = (20L_ 6 + 21G _ 9/2 G _ 3/2 - 3SG -7/2 G5/2) 10). 
(2.16b) 

(The term involving L_ 6 in 16)G can be though as coming 
from the anticommutators [ G -712' G _ 5/2 ] + = 2L_6 

= [G _ 3/2' G _ 9/2 ] + .) One readily verifies that 16) T and 
16) G are indeed lowest weight quasiprimary states, 

L 116)T = 0 = L I16)G. (2.17) 

On the other hand, 

G1/2 16)T = 28(SG -1112 + 3L_4G - 3/2 

- SL -3G _ 5/2 + SG _ 7/2 L -2) 10) 

= 2G1I2 16)G ==281¥)w. (2.18) 

The common state I¥) w obtained in this manner is a 
superquasiprimary state, i.e., it satisfies 

GII2 1¥)w = 0 (2.19) 
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and its superpartner 

G- 1I2 1¥)w 

= {2(SL_ 6 + 8L_4L_ z - SL 2_ 3) 

+ ~(3G _ 9/2 G _ 3/2 - SG _ 712 G _ 5/2 )} 10) == 16) w 
(2.20) 

is, by construction, orthogonal to the superquasiprimary 
state 

16)s = 216)G - 16)T = (20L_ 6 - S6L_4L_z + 3SL 2_ 3 

+ 42G -9/2G -3/2 -70G _7/2 G -5/2 )10) ('1=0), 
(2.21 ) 

which satisfies, in view of (2.18), 

G1I2 16)s = O. (2.22) 

(Note that we have been using non-normalized quasipri­
mary states throughout. ) 

As a corollary of the absence of quasiprimary states at 
level Sand 7-see Table I-it follows that 

1
9) - 0 - 113 ) 2 w- - 2" W (2.23) 

(otherwise we would have had, e.g., G -1/21-Y)w 
=i7>w'l=O). On the other hand, 1~)w=(3G_7/2 
- 4L _ 2G _ 3/2 ) 10) '1= 0, since there is a nonvanishing 14) w 

= G _ 1/21~) w· 

III. THE OPE ALGEBRA m:m 

A. OPE for the stress-energy tensor. Normalization of 

lin 
As demonstrated in Refs. 9 and 10 the bilocal vector­

valued function T T (z + El2,z - El2) In), where 1 n) is a 
finite energy state and 

TT(ZI,z2) = ¥i2{T(ZI)T(Z2) - (eI2)zi;4} (3.1) 

is analytic in E ( = Z12) and gives rise to the OPE 

TT(Z + ; ,Z - ;) 

= ~II dA(1-A 2)T(Z +A~) 
4 -I 2 

+ n~l~nJ~/AP2n+2(A)Tfn+2(Z+A;) (3.2a) 

= T(z) + ___ (z) ~ co 3 T(2k} ( )2k 

k~12k+3 (2k+1)! 2 

+ n~l~n{ Tfn+2 (z) 

+ f (2k + I)!! (4n - I)!! 

k = I (4n + 2k - I)!! 
Tf~Z:~(z) (~)2k} 

(2k)! 2 ' 
(3.2b) 

where Pk (A) are the normalized weights 

(..1.)= (2k-1)!! (1_A2)k-l, II dA (..1.)=1. 
Pk 2k(k _ I)! _ I Pk 

(3.3 ) 

Conversely, the quasiprimary fields T fn are expressed in 
terms of the bilocal field (3.1) as 
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(3.4 ) 

where D ~o,.o,) (a,/3) is a homogeneous polynomial in (a,/3) 
(related to a Jacobi polynomial), 

en + 01 : O2 - 2)D ~{j,.{j,) (a,/3) 

= ± (n + 01 - 1) (n + O2 - l)an-k( -/3)k (3.Sa) 
k=O n-k k 

= (a + /3)np ~o, - 1,02 - 1)( (a - /3)/(a + /3)). (3.Sb) 

We have, in particular, 

( 3.6a) 

A(z) =2T[(z) = lim I 2 I 2 {
J 2 + J2 - 3J J 

z"z,-z 10 

X(ziz T (ZI)T(Z2) - :iJ}=N(T
2
(z») 

(3.6b) 

(the last expression defining the renormalized normal prod­
uct of two T's). 

We now proceed to determine the normalization of the 
two-point function of Tin' The starting point will be the 
four-point function of T, 

(T(zl) T(Z2) T(Z3) T(Z4» 

= (C/2)2 (ZiZZj4) -I + (Zi3 Zi4) -I + (Zi4 Zi3 ) -I) 

(3.7) 

(where the superscript tr stands for "truncated part"); it is 
determined by conformal invariance, analyticity, and the 
Ward-Takahashi identity (WTI) 

[T~z--:/,T(z,)] = c/2ziz + 2T(Z2)/ziz + T'(Z2)/ZI2' 
(3.8 ) 

where l' -) is the negative frequency part8 of T, 

T(-)- "L -n-Z 
(z) - ~ n Z , (3.9) 

n> -I 

We shall give here, for the sake of completeness, this simple 
derivation. (A similar argument was used in a slightly more 
complicated situation in the proof of Proposition 2.1 of Ref. 
11.) 

Lemma 3.1: The truncated four-point function in (3.7) 
has the form of three one-loop graphs, 

(T(zl) T(Z2) T(Z3) T(Z4» If 

= C/ziZZ~3z34zi4 + C/Zi3Z;4Z~4Z~Z + C/Zi3Z~3~4zi4' 
(3.10) 

Proof' Consider the auxiliary function 

<I>(ZI) = <I> (ZI;Z2,Z3,z4) 

= Z12Z 13Z14 (T(ZI) T(Z2) T(Z3) T(Z4» If. (3.11 ) 

Conformal invariance fixes the large Z behavior of an n point 
function of T(z) at Z-4 (since T is a quasiprimary field of 
dimension 2). The WTI (3.8) combined with a general ana­
lyticityargument [taking into account the fact that we have 
subtracted the disconnected part of the four-point function 
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(3.7)] tells us that <I> (ZI) can only have simple poles at the 
points Z2' Z3' and Z4' Thus, using known analyticity and 
asymptotic behavior we can write 

(3.12) 

where the numerators may depend on Z2' Z3' and Z4' Multi­
plying by Z12 and applying (3.8) we find 

(3.13a) 

(where we have used the expression for the three-point func­
tion of Tobtained from conformal in variance and the WTI); 
similarly 

(3.13b) 

Inserting (3.13) into (3.12) and using (3.11) as well as the 
identity 

(Z~ZZ~4ZI3ZI4Z23Z24)-1 + (zi4Z~3ZI2ZI3Z2~34)-1 
(3.14 ) 

we arrive at (3.10). 
Proposition 3.2: The three-point function of T in with 

two T's is given by 

(T(zl) T(Z2) Tin (Z3» = Kin [czi~ - 4/(ZI3Z23)2n], 

(3.15 ) 

where 

KT _ (2n _1)!)2 
2n - (4n _ 2)! 

X {_c_ (2n + 2)! + 2(4n2 _ 2n - 1)}. (3.16) 
144 (2n - 4)! 

The Z dependence in (3.15) is a consequence of confor­
mal invariance. The coefficient K in is obtained by a compu­
tation summarized in the Appendix. 

Corollary 3.3: The two-point function of Tin is given by 

(3.17 ) 

with K in again given by (3.16). 
Pro%/the Corollary: It follows from (3.5 b) that 

( a ; /3 r = D ~o"o,) (a,/3) 

n-I 
+ Ibnk(a+/3)n-kDio,,02)(a,/3), (3.18) 

k=O 
with some real coefficients bnk . Because of the orthogonality 
property 

(n -k)(T2k (ZI)T2n (Z2» =0 (3.19) 

(valid for any pair of quasi primary fields-as noted in the 
Introduction) we deduce from (3.4) and (3.18) that 

(2n - 2)!(Tin (Z2) Tin (Z3» 
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which, together with (3.15), implies (3.17). 

B. OPE's involving F(z) in a em model 

We normalize the two-point function of Fby 

(F(z) )F(Z2» = c/sz~~ [s = Sm = m (m + 1 )/4]. 
(3.21 ) 

Then the counterpart of the bilocal operator (3.1) is the 
composite field 

Tp (Z),Z2) = (1!2ziz){zi~F(z)F(Z2) -cis}. (3.22) 

Its OPE is again given by (3.2) and (3.3) with T fn substitut­
ed by Tfn' In particular, the analog of (3.6a) is still true, 

(3.23 ) 

Indeed, using the WTI we find the conformal three-point 
function 

(F(z) )F(Z2) T(Z3» = (sziz /Z~3Z~3 ) (F(zl )F(zz» 

(3.24 ) 

From (3.22 )-( 3.24) we reproduce the correct two-point 
function of T(z). To prove (3.23) it remains to use the 
uniqueness (up to normalization) of the field of dimension 2 
in the family ofthe unit operator (see the last line of Table I). 

The properties of T;n can be read from the four-point 
functions of F. One of them is easy to find for arbitrary m. 

Lemma 3.4: The four-point function of two F and two T 
IS 

(T(z I) T(zz )F(Z3 )F(Z4) ) 

= C
Z /2sz;z z~~ + (T(z I) T(zz )F(Z3 )F(Z4) ) tr, 

where 

(3.25 ) 

(3.26 ) 

Proof The argument proving Lemma 3.1 applies if we 
supplement the WTI (3.8) by 

(3.27) 

Proposition 3.5: The three-point function of Tfn with 
two T's is 

(T(z I) T(zz) T~~ (Z3» = K ;,;[ czi~ - 4/ (z I3Z23 )zn] 

(3.28a) 

with 

K;,; = 2 [ ( (2n - 1!) z / (4n - 2)!][ s (2n + 1)( n - 1) + 1]. 
(3.28b) 

The necessary steps in the calculation of K ;,; are again 
presented in the Appendix. 

Corollary 3. 6: The mixed two-point function of T fn and 
T;n is given by 

(Tfn(z)Tfn(zz» =K;';(c/2z;~). (3.29) 
The proof is the same as for Corollary 3.3. 
Corollary 3. 7: The field nn (z) defined by 

[(2n - 1)!f/(4n - 2)!]T~n(z) 

=K;,;Tfn(z) -KfnT;n(z) (3.30) 
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is orthogonal to Tfn. The uniqueness of T4 (see Table I) 
implies that 

(3.31 ) 

This will be verified in Sec. IV for the cases in which the four­
point function offour F's is also computed. 

Lemma 3.4 also allows to evaluate the two- and three­
point functions of the quasi primary composite fields 

Fn +s(z) = lim (1/5'n!)D ~Zs-Z.2)(al,aZ){zi2 T(zl)F(zz)}, 
ZI'Z-:>,_Z 

(3.32) 

which appear in the operator product expansion JO 

'" ( E2T(z + E)F(z) = Sn~oEn Jo Fn + s (z + UE)p~zS - 2,Z) (u)du, 

where 

X uO, + n - ) ( 1 _ u )0, + n - ), 

fp~D"O')(U)dU = 1; 

in particular, 

sFs (z) =lim{EzT(z + E)F(z)} = sF(z). 
E~O 

(3.33 ) 

('3.34 ) 

(3.35 ) 

Proposition 3.8: The three-point function (TFn + sF) ob­
tained from (3.25) and (3.26) is 

(T(z 1 )Fn + s (ZZ)F(Z3» = Bns (CZ73- Z /z7z+ zZ~3+ Zs - z), 
( 3.36a) 

where 
B = ( - 1) Zs (2s + 2n - 2) -1 

ns S n + 1 

X{( -1)"[s(n + 1)(2s+n -2) -2] 

c (2S + n) (2S + n - 2) + -n(n - 1) + 2 
6 n n + 1 

[ n+l]} X n+ . 
2s+n-2 

(3.36b) 

The proof uses once again formulas collected in the Appen­
dix as well as the following identity among hypergeometric 
functions: 
(c - a-I) ZF) (a,b;c;z) + a zF1 (a + l,b;c;z) 

- (c - 1) zF1 (a,b;c - l;z) = 0 

and the well-known integral representation valid for Re c 
>Reb>O, 

2F) (a,b;c;z) = rec) [reb) r(c - b) ]-1 

X fdttb-- 1(1- t)c-b-I(1_ tz) -a. 

Corollary 3.9: Noting that Bos = 1 we verify that 

(T(z 1 )F, (Z2 )F(Z3» = (T(z 1 )F(zz )F(Z3) ). 

Since, on the other hand, every quasi primary field of (mini­
mal) weight s in the conformal family of the primary field F 
(of the same weight s) is proportional to F, it follows that 
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Fs = F, thus proving (3.35). Since B is = 0, we obtain a di­
rect proof of the statement that there is no quasiprimary field 
of dimension s + 1 in the family of F (cf. Sec. II). 

IV. THE C1 AND C2 ISING MODELS 

A. Degeneracies for m = 1 

The knowledge of the (free) four-point function of the 
Majorana-Weyl field t/!(z) = F(z,l) (of dimension p in the 
C 1 model, 

(t/!(ZI )t/!(zz) t/!(Z3) t/!(Z4» 

= (ZI2Z34)-1 - (ZI3ZZ4)-1 + (ZI4Z23)-1 (4.1) 

allows us to compute the normalization of Tfn. 
Proposition 4.1: The three-point function of T tn and a 

pair of t/!'s is 

(t/!(ZI )t/!(zz) Ttn (Z3» 

= ([(2n -1)!]z/(4n - 2)!)[zi~-I/(ZI3ZZ3)2n]. (4.2) 

The two-point function of Ttn is then obtained as a corol­
lary, 

(Ttn (z I) Ttn (Z2» = !([ (2n - I)!] 2/ (4n - 2)!) ( l/zi~ ). 
(4.3 ) 

The reader will reconstruct the proof using formulas of the 
Appendix. 

Corollary 4.2: Comparing (3.29) (for s = C =!) with 
(4.3) we find that 

Tt~ = Ttn - [2/(2n2 - n + 1)] Tin 

is orthogonal to T tn' 

(Tt~(ZI)Ttn(Z2» =0, 

while comparison with (3.16) and (3.17) gives 

(Tt~(ZI)Tin(zz» 

[ (2n - I)!] 2 {2 n - 1 1 
= 2· (4n - 2)! n - -2- - 2n2 - n + 1 

(4.4 ) 

(4.5 ) 

X -- + 2(4n 2 
- 2n - 1) Z124n. [ 

1 (2n + 2)! ] } 
288 (2n-4)! 

( 4.6) 

We see that the quantity in the braces vanishes for 
n = 1,2,3. For n = 1 this just says that T~' = Ti = T, which 
is true for any (quasi) primary field t/! [cf. (3.6) and (3.23) ]. 
For n = 2 we find 

( 4.7) 

This confirms the general statement (made in Sec. II) that 
there is just one quasi primary field of dimension 4 in the 
family of the unit operator [and is a special case of (3.31)]. 
For n = 3, however, the result 

(4.8 ) 

is characteristic for the Ising model. It verifies an implica-
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tion of the degeneracy at level 6 for m = 1 noted in Sec. VI. 
Equation (4.6) also shows that, for 2n;>8, Tt~#O. Thus 
T tn (for n;> 1) and T ~'~ (for n;>4) form an orthogonal basis 
for OPE's of both t/! X t/! and TXT. It is interesting to find out 
whether one can also expand the product cp *cp in this basis, 
for the magnetization field cp of dimension -h in the Ising 
model (we are using complex S 1 fields for non integer 2a, 
where a is the field's dimension-see Ref. 11). 

Going to the composite fields of the t/! family we first 
derive, as a simple corollary of (3.36), the relation 

= ~(2n - 1) -I [( _ l)nn(n
2 

- 1) + n2 
- 1 _ 1] 

4 n + 1 4! 4 

XZI2
2n -t, forn=2,3,.... (4.9) 

We see that the two-point function-and hence, also the 
field t/!n + 112 -vanishes for n = 2,3,5 since 

(- l)n[n(n2 - 1)/4!] + (n 2 
- 1)/4 - 1 

thus 

=(1/4!)[(-I)"n-2] [(-I)"n+3] 

X [( - 1) nn + 5], 

(t/!3/2) = t/!S/2 = t/!7/2 = t/!11/2 = 0 (forc = p, 
as anticipated in Sec. II. 

B. Summing an OPE 

( 4.10) 

The set of global OPE's for the (quasi)primary fields 
completely characterizes a theory. To display the efficiency 
of such a characterization we shall reconstruct the (free) 
four-point function (4.1) [from the OPE (Ref. 10)] 

2~2 [Et/!(Z + ~ )t/!(Z - ~) - 1 ] 

= ~fl d,1(1 - ,12) T(Z + ,1~) 
4 _I 2 

+ ntl~nf~ Id,1P2n+2 (,1)T~'n+2(Z +,1 ~). 
( 4.11 ) 

whereh (A) is given by (3.3) and from the knowledge ofthe 
three-point function (4.2). Indeed, setting Z3,4 = ± tl2, we 
find 

(t/!(ZI)t/!(Z2)t/!(~)t/!( - ~)) - ZI
1
2

E 

= 2"tIE2n - J~ Id,1Pln (A) (t/!(ZI)t/!(Z2) Tfn(,1 ~)) 
(4.12 ) 

where I is obtained by summing up the power series in the 
integrand 
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I( ' ) _fl d'1 { 2cz12(I-:..tz) 
C,Zl'ZZ - /l, 2 2 

~ 1 [cZ12 - 4Z1Z2 + 2(Zl + Z2)cA - C(Z12 + c)A ] 

- CZ12 - 4Z1Z2 + 2(Zl +IZ2 )CA - C(Z12 + c)A 2} = (2z1 + C)2(2z2 + c) , 
(4.13 ) 

inserting (4.13) into (4.12) we recover (4.1). 

C. Linear independence of r<in and T~n for n>3 in the C2 

model. Vanishing of G9/2(Z) 

The supersymmetry property (2.13a) applied to the su­
percurrent (2.15) gives, in particular, 

[G(~)(Zl),G(Z2)]+ = (2/Z 12 )T(Z2) +2cI3z~2' (4.14) 

Since the three-point function < TGG ) is known [it is given 
by (3.24) for s = ~] we can compute from (4.14) the four­
point function of G with the result 

< G(Zl) G(Z2) G(Z3) G(Z4» If = 2c/z 12Z 13Z 14Z23Z24Z34' 
(4.15 ) 

(The most economic derivation of this result that we are 
aware of follows the lines of the proof of Lemma 3.1.) We 
then have the following. 

Proposition 4.3: The three-point function of T~n with a 
pair of G 's is 

(G(z 1) G(Z2) T~, (Z3» = K ~n [ czi~ ~ 3/ (Z 13Z23)2n] , 

(4.16a) 

where 

K~n = [(2n - 1)W {2 +!...- (2n + I)!} (c = 170)' 
(4n - 2)! 9 (2n - 3)! 

( 4.16b) 

As a consequence, 

< T~n (Zl) T~n (Z2» = K ~n (c/2zi;). (4.17) 

Corollary 4.4: It follows from (3.28)~(3.30) and (4.17) 
that 

<nn (z)T~n (0» 

= c [ (2n - I)! ]2 {( 6n2 _ 3n _ 1) 2 
(4n - 2)! 

_ [_c_ (2n + 2)! + 2(4n2 _ 2n _ 1)] 
144 (2n - 4)! 

X[2+ c (2n+l)!]}. (4.18) 
9 C2n - 3)! 

For n = 2 the quantity in the braces, 

172 - 2 (5c + 22) (1 + ~c) = 5 (4c + 21 )( 7 - lOc), 

vanishes for c = Cz = fa (and for the nonunitary point 
c = - ¥). 

It follows from (3.36b) that the normalization factor 
Bn 3/2 of the three-point function < T(z 1 )Gn + 312 (ZZ)G(Z3»' 

1605 

B -3 n! (n+l)! 
n 3/2 - 2n + 3 (2n + I)! 

X {~( - 1)n(n + 3)(n + 2)(nZ - l)n 
36 
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( 4.19) 

only vanishes for n = 3 (in which case the expression in the 
braces reduces to 14 - 20c). This result is again in line with 
the general discussion of null vectors in Sec II, since the field 
G is represented by the pair [3,1] (- [ 1,4] ). The degener­
acy at level 4, however, is not felt by ( 4.19) since, in fact, not 
all quasi primary vectors of dimension lf (= 4 + 1) have 
zero norm. 

It would be also interesting to classify the composite 
quasi primary fields according to their supersymmetry prop­
erties. The analysis of Sec. II C indicates that for the class of 
the unit operator certain linear combinations of T fn and 
T~n will have simple commutation relations with the super­
charge G _ 1/2' 
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APPENDIX: THREE-POINT FUNCTIONS IN TERMS OF 
LIMITS OF FOUR-POINT FUNCTIONS 

In this Appendix we provide some auxiliary formulas 
which we found useful in computing the normalization con­
stants K fn' K fn' and Bns which summarize the content of 
Propositions 3.2, 3.5, and 3.8. 

The main tool used in the text is the Leibnitz rule for 
evaluating higher derivatives of the product of two func­
tions, 

£[(z)g(z)] = ~ (n)[dY(Z)] dn~kg(z), 
dz" kL::o k dzk dz" ~ k 

together with the elementary relations 
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a>O, 

(A2a) 

a<O. 
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The following formula is also used to get some of the results 
of the main text, 

a: (Z14 2Z24 2Z;4) 

= ( - l)T(k + 1 )Z12 3ZI ./- kZ~3 I{ [(k + 1 )Z12 

(A3b) 
a: (z 14 2Z24 2Z;4 ) In order to show the kind of computations involved in 

getting the constants K f", K ~;:, and B ns' we explicitly derive 
in the following the constant F~,:' appearing in Eq. (3.2Sa). 

= r(k+ l)r(r+ l)z12 2 

k _ 1)' XL ( Z;4' 
,~O r(r+ l-s)r(s+ 1) 

x [ (k + 1 - S)ZI4 2- k +, 

The quasiprimary field T ~~ is given by a relation analo­
gous to Eq. (3.4) for T[", i.e., 

+ 2Z12 IZI4 1- k + s + (l~2)]; (A3a) 

for k;;'r it reduces to 

withDi;'·2)2 (all) and TF (ZI,Z2) given by Eqs. (3.5a) and 
(3.22), respectively. Then, taking into account Eqs. (3.25) 
and (3.26), we have 

a 2n 2 ka k { - 2 - 2 - 2 - 2 2 2 - 2 - 1 - 1 - 1 - I} X 3 - - 4 SZI3 ZI4 Z23 Z24 Z34 + Z12 Z13 ZI4 Z23 Z24 . (A5) 

Let us define 

. 2n -- 2 ( - 1) k 2n- 2 ,_ k k ' 2 _ 2 _ 2 _ 2 2 ] 
(I): = hm L ·a 1 a 4 [ZI3 Z23 ZI4 Z24 Z34 

z,-z, k~O r(k + 2)f(2n - 1 - k)r(2n - k)r(k + 1) , 
(A6a) 

and 
2n - 2 ( 1) k 

(11):= lim L - ·a~n 2-ka~[ZI22z13Iz23Iz14Iz24T 
Z,-z, k~O r(k + 2)r(2n - 1 - k)r(2n - k)f(k + 1) 

(A6b) 

Then, applying (A3) for r = 2 

a: [Z14 2Z24 2Z~4] = 2Z12 3(15ko Z14 - 15k I) + 15koZI2 \Z12 - 4z 13 ) 

+ 2r(k + 1 )Z12 3Z13Z23Z14 1 - k + r(k + 2)Z12 2Z73Z14 2 k + (1~2), (A7) 

we find 
2n - 2 

(I) = lim L 
Z4--->Z~k=O 

(_1)k a2n-2-k[2z-3z-l-kz-Iz---l 
3 12 14 13 23 

r(k + 2)r(2n - 1 - k)r(2n - k) . 

+ (k+ l)zI22z142-kZ2;2] + (l~2) 

_ /n~ 1 ( - 1)' {2[Z- 2n(Z23)' _ Z-2"] + Z2 z-- IZ - 2" - It(2n _ t)(Z23 )'} + (1~2) 
- - z12 L 23 13 12 13 23 

, ~ 1 r (2n + 1 - t) t ! Z 13 Z 13 

_ 4(2n + 1)(n -1) _4(~)2" 
- Z12' 

r(2n + 1) Z13Z23 
(AS) 

Similarly we have 

2,. - 2 (1) k 
( II) = Z - 4 ~ - (z - 2,. + 1 + k _ Z - 2,. + 1 + k)( Z - k - 1 _ Z -- k - I) 

12 kL:O r(k + 2)r(2n _ k) 23 13 23 13 

2 -4( ZI2 )2" 
= r(2n + 1) Zl2 Z13Z23 . (A9) 

Inserting Eqs. (AS) and (A9) into (A5), we obtain the result (3.2S). 
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This work is concerned with the characterization of field supermultiplets on four-dimensional 
Minkowski space that are stable under the action of subgroups of the superconformal group 
SU(2,2/1). The most general scalar and vector superfields whose Lie derivative with respect to 
a fermionic tangent vector vanishes are determined. Invariance under subgroups of SU (2,2/1 ) 
with more than one odd generator is also discussed. 

I. INTRODUCTION 

The methods for characterizing tensor fields of various 
types 1 and connection one-forms2 that are stable under ordi­
nary space-time transformations are by now well under­
stood. The same situation does not prevail, however, when 
supergroups are considered. In this paper, we initiate a study 
of superfields invariant under supersymmetry transforma­
tions. For definiteness, we shall consider field supermulti­
plets on four-dimensional Minkowski space and as a first 
step, we shall determine the most general chiral and vector 
superfields that are invariant under the transformations gen­
erated by the odd elements of the superconformal algebra 
SU(2,2/1). 

The usefulness of ordinary invariant fields has long been 
recognized. They have been used in particular to obtain solu­
tions to nonlinear field equations like the Einstein or Yang­
Mills equations. 3 They are also instrumental in performing 
the dimensional reduction of theories formulated in higher 
dimensions.4 Clearly, superinvariant fields should have sim­
ilar applications. 

Global, as well as infinitesimal, techniques for obtaining 
scalar densities, vector fields, and metrics that are invariant 
under (bosonic) subgroups of the conformal group are dis­
cussed in detail in Ref. 1. Spinor fields are studied in Ref. 5. 
Here, we therefore need to concentrate only on the transfor­
mations generated by the fermionic charges. As a rule, in 
characterizing invariant fields, global methods tend to be 
simpler when the invariance group is large, while infinitesi­
mal techniques are to be preferred in the opposite case. We 
have found that supersymmetry imposes severe constraints 
and that nontrivial fields can rarely admit invariance sub­
groups with many odd generators; because of that (and for 
simplicity), we elected to use the infinitesimal approach. 
The most general fields whose Lie derivative with respect to 
a single ferionic generator vanishes will be made explicit first 
and the solution of the invariance conditions that result if 
two or more such derivatives are set to zero will be examined 
subsequently. 

This paper is organized as follows. In Sec. II, we present 
some introductory material, establish the notation, and re­
view the field representations of the superconformal algebra 
SU (2,2/1). Superinvariant chiral and vector fields are pre­
sented in Secs. III and IV, respectively. Concluding remarks 
will be found in Sec. V. 

II. THE SUPERCONFORMAL ALGEBRA AND ITS FIELD 
REPRESENTATIONS 

Supersymmetric massless field theories in Minkowski 
space are usually invariant under the superconformal group. 
Hence we have the motivation for looking for fields invariant 
under subgroups of this supergroup of space-time transfor­
mations. We shall give in this section a short but self-con­
tained review of the N = 1 superconformal algebra and of its 
action on superfields. Unless stated otherwise, we shall stick 
with the conventions of Wess and Bagger.6 We shall there­
fore use the metric gJ.LV = diag( - 1,1,1,1) and work with 
Weyl spinors in the Van der Waerden notation. 

We shall, respectively, denote by MJ.Lv' PJ.L' D, and KJ.L 
(f..l = 0,1,2,3) the generators of infinitesimal homogeneous 
Lorentz transformations, translations, dilatations, and spe­
cial conformal transformations. Together they close under 
the ordinary Lie bracket to form an algebra isomorphic to 
0(4,2), or equivalently SU(2,2)Y As shown by Haag et 
al., 8 this algebra can be extended to a superalgebra by adding 
two spinor charges Qa and Sa (a = 1,2) and their Hermi­
tian conjugates Qa and Sa. We shall refer to Qa as the super­
translations generator and to Sa as the superconformal gen­
erator. To achieve closure under the graded Lie product, one 
further needs to introduce an additional bosonic generator II 
which we shall call the chiral charge. The structure relations 
of the N = 1 conformal superalgebra read as follows: 

{Qa,Qa} = 2~aPJ.L' {Sa,Sa} = - 2~aKJ.L' 

{Qa,Sa} = 0, {Qa,Sa} = 0, 

{Qa,Sf3} = -2[aI'vMJ.LV +D-2iII]a f3, 

{Qa,Sp} = 2 [QI"vMJ.LV + D + 2iII]ap; 

[Qa,D] = (i/2)Qa' [Qa,D] = (i/2)Qa' 

(2.la) 

[Sa,D] = (- i/2)Sa' [Sa,D] = (- i/2)Sa, 

[Qa'PJ.L] = [Qa,PJ.L] =0, [Sa,KJ.L] = [Sa,KJ.L] =0, 

[Qa,KJ.L] = - i~asa, [Qa,KJ.L] = i?;aSa' 

[Sa'PJ.L] = i~aQa, [sa,pJ.L] = - i?;aQa, 
(2.lb) 
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[Qa,ll] = a Qa' [Qi"ll] = - a Qa, 

[Sa,ll] = -~Sa' [Sa,ll] =aSa' 

[M/L",Qa] = i(oP"Q)a' [M/L",Qa] = i(ijI""Q)a, 

[M/L",Sa] = i(oP"S)a' [M/L",sa] = i(ijI""s)a; 

[P/L'P,,] = 0, [K/L,K,,] = 0, 

[P/L,K,,] = - 2iM/L" + 2ig/L"D, 

[P/L,D] = iP/L' [K/L,D] = - iK/L' 

[M/L"'Pp] = - ig/LpP" + ig"pP/L' 

[M/L",Kp] = - ig/LPK" + ig"pK/L' 

[M/L",Mpa] = i(M"pg/La - M/Lpg"a 

+ Mavg/Lp - Ma/Lg"p)' 

[ll,P/L] = [ll,K/L] = [ll,M/L"] = [ll,D) = O. 

The matrices ~a and ijl"aa are defined by 

lTo = (-01 _OJ, lTI = (~ ~) , 

cr = (0 - i) c? = (1 0 ) 
i 0 ' 0 -1 ' 

iJo = lTo, iJ1,2.3 = _ lT1•2,3. 

(2.1c) 

(2.2a) 

We also used, for the generators ofthe Lorentz group in the 
spinor representation, 

(01',,)/3 = ! (~aijl"af3 _ lT~aijl"af3), 
(2.2b) 

(ijI"") a , = 1 (ijI"aalT,,- _iJ"aa-#, ) f3 4 af3 V'af3 . 

Useful identities involving these matrices can be found in 
Appendix A of Ref. 6. The above superalgebra is identified 
as SU (2,2/ 1 ), with SU (2,2) ES U ( 1) as its bosonic subalge­
bra [see Eqs. (2.1 c) ). It possesses an important subalgebra, 
namely, the 14-dimensional Poincare superalgebra genera­

ted by P/L' M/L'" Qa' and Qa' 
Minkowski superspace M can be defined as the coset 

super-Poincare group/Lorentz group. The elements of this 
coset can be parametrized as 

G(x,0,8) = exp [i( - x/LP/L + 0 aQa - 8 aQa )]. (2.3) 

Points of M are therefore labeled by the four space-time co­
I 

ordi~ates x/L and four anticommuting spinor coordinates 0 a 

and 0 a' (Implicit in the definition of these coordinates is the 
existence of an underlying Grassmann algebra f. The co­
ordinates x take their values in the even part of f and 0 and 
8 belong to the odd part of f. 9

) The action of the transla­
tions and supertranslations on superspace is defined by left 
multiplication. One finds that P/L' Qa' and Qa are represent­
ed by the following vector fields: 

Q a '-# 0- a a 
a = aoa - IV'aa /L' 

Qa = - ~, +ioa~a a,,; 
aoa r 

(2.4a) 

P/L = i aIL' (2.4b) 

We shall also need subsequently the right translation vector 
fields; they are given by 

D - a '-# 0- a a 
a - aoa + IV'aa /L' 

and satisfy the following anticommutation relations: 

{Da,Da} = - 2i~a aiL' 

{Da,Df3} = {Da,Dp} = 0, 

(2.5) 

(2.6a) 

{Da,Qf3} = {Da,Qp} = {Da,Qa} = {Da,Qp} = O. 
(2.6b) 

Superfields are multispinor functions tPaf3 ... a'" (x,0,8) 
on superspace which transform under supersymmetry as co­
ordinate scalars and Lorentz multispinors. They should be 
understood in terms of their power series expansions in 0 and 
8. In order to obtain their transformation properties under 
the action of the superconformal generators, we have used 
the method of induced representations. Here, the isotropy or 
little algebra has for its basisM/L'" D, ll, K/L' Sa' and Sa. Of 
these elements, only the first three can be non trivially repre­
sent~ at the origin. Given the expressions (2.4) for P/L' Qa' 
and Qa , we arrived at the following realization of SU (2,2/1 ) 
in terms of differential operators acting on superfields: 

- a - a -
Sa = -x"~aQa_2iOO---2iOa0f3~+~f3·0f300a,, +20 f3 (lT"/L:2: -d+2i1T)" 

r aoa ao f3 
r /L" "a' 

(2.7) 

-S ~PaQ 2'-0-0 a 2'0- oa a ~Pao -00- a 0- -v ~ f3' a = X"€apv' a - I---=-:-+ I a -- - €af3' v' a - 2 f3' (IT 'J.' '" - d - 2i1T) .' 
r ao a ao a /L /L" a' 

M/-L" = i(X/-L a" - x" a/L) + iO a (IT''/-L )af3 ~ + i8a (iJ"/-L )ap -1- + :2:/-L'" 
ao aop 

D . /-La i oa a i o-a a d =IX +- --+- ---=-:-+ /-L 2 aoa 2 aoa ' 

K/-L= -iX2a/-L+2iX/-LX"a"+2x/-Ld+2x":2:",,+ix,,oa~+ix,,8a ~. -2iX"(OlT ~)-2iX"(8iJ -!-) (2.8) 
r r ao a r ao a /-L" ao /-L" ao 

+ 88 (OlT/-L :0) + 00 (8iJ/-L :8) - i0088 a/-L - 41T(8iJ/-L 0) + i8(lY'P:2:;.p )iJ/L 0 + i8iJ/-L (~P:2:;.p )0, 

II = ~ 0 a ~ _ ~ 8 a ~ + 1T. 
4 aoa 4 aoa 
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We have introduced above the SL(2,C) invariant antisym­
metric symbols 

E"P = E = ( 0 1) E"P = ~p pa -10' , 

which define a metric on the space of spinors and are used to 
raise and lower indices. The following summation conven­
tion is also understood: 

tf;s = EaP~SP = tf;asa , ¢t = ~P¢"tp = ¢at"· 

In Eqs. (2.7) and (2.8), ~,uv' d, and 1Tare, respectively, the 
matrix pieces of the generators M,uv , D, and II. The eigenval­
ue d is the canonical dimension of the superfield. It is 
straightforward to check that the vector fields (2.4), (2.7), 
and (2.8) indeed satisfy the structure relations (2.2). 

III. INVARIANT CHIRAL SUPER FIELDS 

We shall consider in this section the invariance of chiral 
superfields under symmetry transformations. A superfield 
<pp ... p ... is said to be chiral if it satisfies the constraint 

Da<Pp ... p .. = 0, (3.1) 

which amounts to the requirement that <p only depend on the 
variables Y' and B a with 

(3.2) 

The most general (conformal) supertransformation can be 
specified by two anticommuting Weyl spinors sand; which 
represent a total of eight odd parameters. Let us denote by 

(3.3 ) 

the corresponding transformation of a generic superfield. 
The chirality condition provides field multiplets that are ir­
reducible lO under (3.3) up to possible separation of real and 
imaginary parts (see Sec. IV). Since Qa and Q" anticom­
mute with D" , supertranslations manifestly transform chiral 
fields into chiral fields. Now, we also have 

{Sa,Dp } = 4iBaDp, (3.4a) 

{S",Dp} = 4iOpD" + 2Epy((jI'v~,uv + d + 2i1TfY". 

(3.4b) 

Clearly, the second term on the rhs of (3.4b) must vanish 
when acting on <p for superconformal transformations to pre­
serve condition (3.1). This proves to be the case for all 
known theories. 

The representations (2.4a) and (2.7) of the supersym­
metry generators take a simpler form when they act on chiral 
superfields. Indeed, in terms of the variables y and B, one 
finds 

a 
Qa = aBa' (3.5a) 

(3.5b) 

(3.5c) 

s = YEp' d"Pa ~ - 20p' (av,u~ - d - 2i1T)P . a ,u a aB a ,uv a 

( 3.5d) 
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We shall now concentrate more specifically on scalar 
fields. In this case the chirality condition entails the follow­
ing decomposition for <p: 

<p(y,B) =A(y) +!iBtf;(y) +BBF(y) 

= A (x) + iBd"O a,uA (x) + V1BOO DA (x) 

+ !iBtf;(x) - (i1!i)(}B a,u tf;(x)d"O + BBF(x). 
(3.6) 

Scalar fields have canonical dimension - 1. In our notation 
it means that d = i. According to the previous discussion, 
this in turn imposes that 1T = -!. The condition 8s.r;<p = 0 
that if; must satisfy in order to be invariant under the super­
transformation parametrized by sand; can now easily be 
made explicit. Using Eqs. (3.5), one finds 

8s,r;<P = ((S + ;(jI'Y,u - 2iBB;) :B 

- 2i(t - ;uVyv )(jI'B ~ - 2i;B)<P = 0, (3.7) 
aY' 

which can be resolved into components. One finds, in agree­
ment with Wess and Zumino,11 the following invariance 
conditions: 

8s,r;A = !i(sa + ;"(jI',,ay,u )tf;a = 0, 

8s,da = !i(Sa - y,u~,,;")F 

+ i!id::. (t:" + Y av"Pr- ) ~ A aa ~ v ~p aY' 

(3.8a) 

- 2i!i;aA = 0, (3.8b) 

8r;,r;F= -2i!i(t" _;au~"yv)(jIl"P a~ tf;p =0, (3.8c) 

We shall now proceed to solve Eqs. (3.8). To this end, we 
need to specify further the nature of the parameters sand ;. 
We shall take them both proportional to a single real Grass­
mann parameter a; as will be discussed in Sec. V, superfields 
invariant under transformations associated to such param­
eters are the building blocks for the most general superinvar­
iant fields. Factoring this generator a out of Eqs. (3.8) we 
can then consider parameters sand; as commuting Weyl 
spinors. In particular, we have S aSa = O. Condition (3.8a), 
being purely algebraic, is immediately solved. One finds 

tf;a = Eap(SP + ;p(jl'PPY,u)q = (Sa - y,u~,,;")q, (3.9) 

with q a scalar function. Upon substituting (3.9) into (3.8c) 
one obtains 
- - a - -

(s - ;uVyv )(jI'(s - ypo";) - q + 4(s - ;uVyv );q = 0 
aY' 

(3.10) 

using ~"aiP = - 28aP8P". The solution to Eq. (3.10) can 
be obtained by the method of the characteristics. 

Define the variables 

(3.11 ) 

The first step is to determine the integral curves Y' (s) of the 
vector field r'" a laY'. This is done by solving 

dY' = r"'. 
ds 

H. Panagopoulos and L. Vinet 
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Equations (3.11) and (3.12) aredecoupledbygoingto 
the variables 

;CT'5YI' , Sd'tyl' , 5d'tyI' , 

and (3.13 ) 

(T = t; + s5 - 2Sd';yl' , 

which satisfy the following differential equations: 

d(T = cr - (t; - S5)2, (3.14a) 
ds 

d - - --
ds (sCT'5YI') = (sCT'5YI')«(T+5S-S5), (3.14b) 

d - - --
ds (sd'5YI') = (sd'5YI')«(T+S5-5S), (3.14c) 

d - --
ds (5d'5YI') = - 2(5(TvSYv)(soP5Yp)' (3.14d) 

The integration of Eqs. (3.14) yields 

(T = - (t; - S5)coth(t; - s5)s, (3.15a) 

;CT'5YI' = - 2ic)/{1 - exp[ - 2(t; - S5)s]), (3.15b) 

Sd'tyl' = - 2icTI{1 - exp[ - 2(t; - S5)s]}, (3.15c) 

5d'tyI' = C2 - 2c)cT(Tlct; - S5)2, (3.15d) 

with c)' cT, and C2 integration constants. (The special case 
U = 0 will be treated separately.) Eliminating the param­
eter s, we thus find that the following functions are constant 
along the curves generated by rI"(a layl'): 

c) = [i;CT'5YI'/(t; - s5 - (T) ] (t; - s5), 

cT = [ - isd'tYI'/(t; - s5 + (T)] (t; - s5), 

c = 5d't. _ 2(T(;CT'5)YI' (S(Tvt)yv . 
2 YI' (5S - s5)2 - cr 

Now we see that Eq. (3.10) can be written as 

!!!L + 2(t; - s5 + (T)q = 0, 
ds 

(3.16a) 

(3.16b) 

(3.16c) 

(3.17) 

which is easily integrated. After elimination of s, one finds 

q = [lI(t; - u - (T)2]Q(c),cT,c2), (3.18) 

where Q is an arbitrary complex function of C)' cT, and c2. 
From (3.9), we see that this completely determines t,b, which 
is thus found to be 

t,b = [(5 - Yl'd';)/ct; - s5 - (T)2]Q(c),cT,c2 )· 

(3.19) 

Now only (3.8b) remains to be solved. By contracting with 
(sa + ;ao-vaayv) we obtain the following for A: 

- - aA -
(5 + so-VYv )d'(5 + YpQPs) - - 2(5s + sCT'SYI')A = O. 

ayl' 
(3.20) 

It is not difficult to see that (3.20) can be rewritten in the 
form 

dA = ( _ (T + t; - s5)A 
ds 

using the same variables as before. 
The solution is simply 
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(3.21 ) 

(3.22) 

with d an arbitrary function of its arguments. In order to 
obtain F, one contracts Eq. (3.8b) with sa to find that 

F= -i (Sd'(t+Yvo-VS)~A). (3.23) 
s(5 - Yl'd's) ayl' 

Substituting the expression (3.21) for A, one arrives at the 
following formula for F: 

F = - 2S5 2 (t; - S5) ~ d - 2cT ~ d). 
(5S - s5 - (T) ac) aC2 

(3.24) 

The superinvariant chiral multiplet (A,t,b,F) thus obtained 
can be written in a compact way by returning to the super­
field formalism. Observe that A (Y) + OOF(y) can be ex­
pressed as A (z) with 

zI' = yI' - OOisd'(t + YpQPs)/s(5 - Yv(Tv;). (3.25) 

Then, 
¢(y,O) =A(y) + jiOt,b(y) + OOF(y) 

= A (z) + jiOt,b(z) 

1 d[c)(z),cT(z),c2 (z)] 
(T(z) + 5s - ;5 

r;;; (5 - Zl' 01';) 
+v20--~~=-~~ 

((T(z) - 5s + s5)2 

XQ [c)(z),cT(z),c2 (z)] 

1 d [c)(z),cT(z),c2 (z),y(z)], 
(T(z) + 5s -;5 

where (3.26) 

y(z) = jiO(5 - zl'd';)((T(z) + t; - s5) 

(3.27) 

Thus we see that ¢ initially defined on chiral superspace with 
four bosonic and two fermionic coordinates has been con­
strained by the invariance condition (3.7) to a superspace 
with three bosonic and one fermionic coordinates. Note that 
these three bosonic variables have a nontrivial 0 dependence 
in contradistinction with what occurred in standard dimen­
sional reductions of supersymmetric theories. 

We now consider the case where s5 = O. This situation 
occurs when we consider invariance under a pure super­
translation (S = 0), a pure superconformal transformation 
(5 = 0), ora transformation withs = m5, mEiC#O. In these 
instances, it is obvious that the set of variables (3.13) is no 
longer adequate to decouple the characteristic equations 
since it then consists of a single variable. A special treatment 
is thus necessary. We shall first take S = m5, m # O. In this 
case, the characteristic equations dyl'l ds = rI" can be decou­
pled by adjoining to the variable 

(T = - 21m I 25d'tyl' (3.28) 

the following spinorial variable: 

x=t- m5d'yw 

We already have 

d(T = cr 
ds 
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and it is not difficult to check that X satisfies 

d-
1 = ax. (3.30b) 
ds 

Integration of Eqs. (3.30) is immediate and yields 

a= -lis, X=(1/s)Xo, (3.31) 

with X ° a constant Weyl spinor. To eliminate the parameter s 
we make use of the fact that when t = ms, 

.!!:... y2 = 2;1"r = __ 1_ (1 _ Im I2y2)a. 
ds p Iml 2 (3.32) 

[In deriving (3.32) we have used the identities 

and 

(ifiY + aV(jf')/3 = - 2[1/"vO/3, 

«(jf'av + (jYif)aj3 = _ 2[1/"vOaj3, 

aV(jf'o-P + o-P(jf'av = 2(gVPif _ [1/"Pav _ [1/"vo-P).] 

Equation (3.32) can be integrated using (3.31); we thus find 
that 

c= [s(1_lmI2y2)]-1 (3.33) 

is invariant along an integral curve of our generator. This 
allows us to take as characteristic variables the functions 

a _ 21ml2siftyp 

1 - Iml 2y2 - 1 _ Iml2y2 ' 
c= (3.34a) 

- X t - msifyp 
cXo = = . 

1 -lml2y2 1 -lmlY 
(3.34b) 

While this apparently gives five real variables, it should ob­
serve that only three are independent (as it should be) in 
view of the linear relation 

_ - siftyp 1 
CXos = - m 1 _ Im l2y2 - 2m* c. (3.35) 

From here the solution of the invariance equation (3.8), 
specialized to the case t = ms, proceeds exactly as in the 
generic situation. We thus obtain 

tP = [(5 - m*iftyp )/(1 - Im I2y2)2]Q(C,CXo)' 
( 3.36a) 

A = [(1 - 1m 12y2)] -l.sal (c,cXo), (3.36b) 

F= - 2m i[sift + sifuVsyv] aa A, 
a yu 

(3.36c) 

where Q and .sal are arbitrary functions of their arguments. 
The cases 5 = 0 and t = 0 are treated analogously. When 
t = 0, i.e., when we look for invariance under a supertransla­
tion, the following functions may serve as characteristic 
variables: 

Pa = sacr:xaYw (3.37) 

Note again that together these functions represent a set of 
three linearly independent real variables. The invariant 
chiral multiplet is given by 

1612 

tP = sQ(Pa), 

A = .sal (Pa ), 

F= - i cpo-f't ~A 
CPs a;l" , 
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(3.38a) 

(3.38b) 

(3.38c) 

where Q and.sal are arbitrary functions and cp is an arbitrary 
constant spinor such that tPs =1= O. 

When invariance under a pure superconformal transfor­
mation is considered, i.e., when 5 = 0, we can take as charac­
teristic variables 

Pa = (tif )ayp/y2 

and the invariant fields take the form, 
(3.38), 

tP= - [if;yp/(y2)2]Q(Pa)' 

A = (lIy2).saI(Pa), 

F= - i qy~t ~A. 
qyt a;l" 

(3.39) 

in analogy with 

(3.40a) 

(3.40b) 

(3.40c) 

This concludes the characterization of scalar superfields 
whose Lie derivative with respect to a single fermionic tan­
gent vector vanishes. We shall now examine the constraints 
that result when we require these fields to possess further 
supersymmetries. Letthe Weylspinorss' andt' parametrize 
another superconformal transformation in addition to the 
one considered until now. Remember that the invariance 
conditions for the fermionic field tP were of the form 

(3.41 ) 

with cp a = 5 a + ; aU paay w From the first of these equa­
tions we had tPa proportional to CPa' Requiring tPa to satisfy 
similar equations, with 5 and t replaced by 5' and t ',forces tP 
to vanish, unless cP 'cP = 0, that is, unless cp' = acp, with a a 
complex function. We see indeed that if tP satisfies the above 
equations for some given 5 and t, it also automatically veri­
fies the invariance condition associated to the supertransfor­
mation with parameters 

5' = is, t '= - it· (3.42 ) 

Any other supersymmetry, however, requires tP to be trivial. 
The origin of the fact that Ois. _ isA = 0is, _ isF = 0 if 0s.sA 
= 0s,sF = 0 is easily found. Note that with o11'¢ = II¢, 

[05,;,01T] = [sQ + sQ + ts + ;S,II] 

=a (sQ-tQ-ts-;S) = -aiOis.-is· 
(3.43 ) 

Now when acting on chiral superfields II takes the form 

(3.44 ) 

From 01T¢ = II¢ we then get the following chirality transfor­
mation for the component fields: 

01TA = -! A, 01TtP =! tP, 01TF = F. (3.45) 

Since 0s,sA and 0s,sF are linear expressions in tP only, it is 
then obvious that the invariance conditions [05,;,01T] (A or 
F) = 0 are identical to (3.8a) and (3.8b). Requiring that 
0is, - is tP = 0 in addition to 05,; tP = 0 imposes constraints on 
A and F which are easily solved. For instance, in the generic 
case st =1=0, it implies that F = 0, and from (3.24) we then 
see that the function .sal of (3.22) must now only depend on 
cf and C2 + 2c1,cf/(t; - ts). 

Consider now an additional supersymmetry other than 
[OS,;,01T]' Let us then examine for simplicity in variance un-
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der two supertranslations with parameters Sand S ' such that 
S'S #0. Weknowthattf! = O. The only remaininginvariance 
equations are 

(3.46 ) 

which imply that A has vanishing Lie derivative with respect 
to the following three vector fields: 

(s'd't + Sd't') ~. 
ayl' 

(3.47) 

When S ' S # 0, it is not difficult to check that these are linear­
ly independent. The invariant A will thus be an arbitrary 
function of a single variable, namely, 

A = .at((S'd't - sd't')yll ) 

and the corresponding F will be 

F = - 2itt' .at', 

(3.48 ) 

(3.49) 

where .at' denotes the derivative of .at. We may add that 
invariance under three supertranslations can only be 
achieved for a trivial constant field A, as the reader will easily 
convince himself. 

As a final example we shall determine the most general 
scalar supermultiplet which is invariant under the full de 
Sitter supergroup. 12 This subgroup ofSU(2,2!I) has for fer­
mionic generators the following four elements: Qa + mSa , 
Q" + m*S". We want to require the invariance under the 
transformations generated by these operators. This amounts 
to setting; = mS in (3.8) and considering simultaneously 
the invariance conditions associated to the parameters S, is, 
S', and is', with S'S #0. Once again tf! = O. From the invar­
iance condition (3.8b) associated to the parameters S and is 
we find the following equations: 

sp(FO/
3 + im~"yJjY"P a~ A - 2imoa

PA ) = 0, 

( 3.50a) 

t"( - m*YIl~"F + i~" a~ A ) = o. (3.50b) 

Separating out the independent parts we obtain, for A and F, 
the equations 

(F - 2imA) - imyl' ~A = 0, (3.51a) 
ayl' 

Y d'Y~A =0 
Y ayl' , (3.51b) 

i~A -m*y F=O 
ayl' Il' 

(3.51c) 

which are independent of S. Solution of (3.51) will therefore 
give the super de Sitter invariant multiplet. In fact it is found 
to be 

A = c/O - ImI 2y2), (3.52) 
F= 2im c/(l_lmI 2y2)2, 

with c an arbitrary complex constant. In superfield notation 
we may also write this chiral multiplet in the form 

¢(y,O) = c/(l-lmIY - 2im02). (3.53) 

This concludes our discussion of superinvariant scalar 
superfields. In Sec. IV, we shall study the case of vector su­
perfields. 

IV. INVARIANT VECTOR SUPERFIELDS 

In the context of supersymmetric theories, gauge fields 
can be described by Hermitian superfields V(xll,O,O) , 
vt = V, taking values in the algebra of the gauge group. In 
the present investigation, we will restrict our attention to the 
Abelian case. 

In terms of its components, one writes V(xll,O,O) as 

V(xll,O,O) = cex) + iOX(x) - iOX(x) + (iI2)OO(M(x) + iN(x») - (i12)OO(M(x) - iN(x») - Od'Ovll (x) 

+ WOO (A(x) + (i/2)O"aIlX(x»)+iOOO(A(x) + (i/2)d'allx(x») + !OOOO(D(x) +!Ocex»), (4.1) 

where, for Hermiticity, the functions C, D, M, N, and vil are 
real. Acting on V(xll,O,O) , the superconformal generators 
again take the form (2.4), (2.7), and (2.8), with 21lv = O. In 
addition, to preserve Hermiticity, we require that 

(4.2) 

which sets Re(d) = Re(1T) = O. Another consideration 
which further restricts the values of canonical dimension 
and chirality to d = 1T = 0 is that of gauge invariance. 

A (super) gauge transformation effected by 

V -+ V + ¢ + ¢t, D¢ = 0, (4.3) 

with ¢ and arbitrary scalar superfield as in Eq. (3.6), leaves 
invariant the component D and the photino field A, while it 
changes the photon field vil by an ordinary gauge transfor­
mation 

vll-+vll-iall(A-A*), (4.4) 

so that the field strength v IlV = all v v - a v vilis gauge invar-
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iant. Now, for gauge invariance to be compatible with super­
conformal symmetry, it must be that a superconformal 
transformation gives no gauge-dependent contributions to 
the gauge invariant fields. To illustrate this, consider the 
superconformal variation of the photon field: 

Os.; ( - Od'Ovll ) 

=(sQ - tQ +;S + tS) Vlee 

= ( - Od'O) [i(t - ;uvxv )uIlA + i(S - tuYxy )ull,x 

+ all((S - ;UVxy)X + (S + tuVxy )X) 

- i( - d + 2i1T);UIlX - i(d + 2i1T)tUIlX] , 

implying 

0s.;vlly = all [iet - ;ur>xp )UyA + i(s + t(jPxp )uy,x 

- i( - d + 2i1T);UIlX - i(d + 2i1T)tUIlX] 

- (J.l+-+v). (4.5) 
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The part of DVJ1-Y coming from X, being gauge dependent and 
at the same time not removable by a gauge transformation on 
vJ1-Y' cannot be tolerated; we therefore must require that 
d = 1T = 0. As for the chiral scalar field, we thus recover the 
correct canonical dimension and chirality for the photon 
field. 

Having fixed the action of Sand S on V, we now present 
it in component notation: 

Ds-,;C = i(s + ;(;I'xJ1-)X - i(t - ;d-'x J1- )1', 

DUX = (s - xJ1-d-';) (M + iN) + iuY(t + xJ1-(;I';)vy 

+ uY(t + xJ1-(;I';)ayC, 

Ds-,; (M + iN) = 2(t - ;d-'x J1-)X 

+ 2ia - ;d-'xJ1- )iY ayX - 4i;X, 

DS-,;VJ1- = i(t - ;UYxy )i7J1-A + i(s + ;i7Yx y )uJ1-X 

+aJ1- [(t - ;Uyxy)X + (s + ;i7Yx y )X], 

DuA = i(s - xJ1-d-';)D 

-! a"i7Y(s - xJ1-d-';) (ayvp - apvy ), 

DuD = (t - ;d-'x J1- )i7Y ayA - (s + ;(;I'xJ1-)uy ayA. 

(4.6) 

We observe that indeed all the gauge invariant components 
vJ1-Y' A, and D transform among themselves only. To study 
these components one introduces a superfield Wa given by 

Wa = - (J515Da V. (4.7) 

By construction this field obeys 

15p wa =0, 15a W a =D a w a . (4.8) 

Being chiral, Wa can be expressed as a function of the chiral 
superspace coordinates (yJ"()a)' yielding the following com­
ponent expansion: 

Wa = - iAa (y) + D(Y)()a 

- (i12)(aJ1-vy(y) - aYUJ1- (y»)(d-'i7Y()a 

+ ()()(d-' aJ1-X(Y»)a' (4.9) 

We see that Wa precisely contains all the gauge invariant 
components of V; it becomes particularly useful in its gener­
alization for non-Abelian gauge groups. In our case, work­
ing with fields defined over chiral superspace is a further 
advantage, since the problem of finding superconformally 
invariant configurations entails computing characteristic 
curves inside a more economical supers pace, as in Sec. III. 
Again one must find the ~onstants LJ1-Y' 1T, d and ~J1-Y' 17", d 
appropriate to Wa and wa. Requiring compatibility with 
constraints (4.8), 

- -- p 
Dp [(;S+;S)a Wp ]) =0, 

Dp [(;S + ;s)ap WP ] = 0, (4.10) 

Da[ (;S + ;S)aPWp] = 15a [(;S + ;s)ap WiJ] 

[the additional indices on;S +; S come from nonzero val­
ues of (LJ1-y)a P, (~J1-y)aiJ when acting on Wa, W a, respec­
tively] completely fixes these constants to 

LJ1-y = - iUJ1-Y' ~J1-Y = - ii7J1-Y' 

d = d = 3i/2, 1T = - 17" = - a . 
(4.11 ) 
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Thus the action of Sand Son Wa is given by 

(Sa )pYWy = (2i(d-'i7Y()aYJ1-~ - 2i()()~ - 6i()a)Wp 
ayy a() a 

+ 2iEPa()YWy + 2i()p Wa, 

(sa) yw = O'::ayJ' ~ W . p Y J1- a() a p 

We want to study the in variance equation, 

(sQ + to +;S + ;S)/'Wp = 0, 
i.e., 

[( S + ;(;I'YJ1-) ~ - 2i(t - ;d-'YJ1- )i7V() ~ 
a() ayy 

( 4.12) 

- 2i()(); :e - 6i;() )DaP + 2i;a()P + 2i;P()a ] Wp = 0. 

(4.13 ) 

In terms of the components (4.9), Eq. (4.13) becomes 

Ds-.; Wa 10 = (s - Ypa";)aD 

- (i/2) [d-'i7V(S - Ypa";)a] 

x (aJ1-VY - aYVJ1-) = 0, 

Ds-,;Wa le(3 = (S-Ypa";)p(d-' aJ1- X )a 

+ [d-'(t + Ypi1P;) ]p aJ1-Aa 

- 2;pAa - 2;aAp = 0, 

Ds.; Wa lee = [UV(t + Ypi1P;)]a ayD 

+ i[ d-'(t + Ypi1P;)]a 

Xa Y(aJ1-vy - a y vJ1-) - 4(;aD = 0, 

(4.l4a) 

( 4.l4b) 

( 4.l4c) 

together with the requirement that D and vJ1- be real. With 
this requirement, ( 4.l4c) follows automatically from 
(4.l4a). 

We now proceed to solve Eqs. (4.l4a) and (4.l4b). As 
in Sec. III, invariance under just one generator means setting 
sand; proportional to one real Grassman variable S = as I, 
; = a; I, with s I and; I commuting spinors. Integrating out 
the a variable leaves Eqs. (4.14) unchanged. We thus work 
with the spinors S I and; I for the rest ofthis section, omitting 
the primes to avoid cumbersome notation. 

We solve (4.l4a) first for the fields D and v J1-; this equa­
tion is equivalent to the following set of equations: 

(t - ;a"Yp )(;I'(S - Ypa";)(aJ1-VV - ayuJ1-) = 0, (4.l5a) 

D;(S - YJ1-d-';) - (i/2);a"i7Y 

( 4.l5b) 

Equation (4.l5a) represents a set of real-valued differential 
equations for v J1-; given a solution to this set, (4.l5b) serves 
to define D in terms of vJ1-' One can also check that D thus 
defined will be real valued by virtue of (4.l5a). We find it 
convenient to choose for vJ1- the following gauge: 

( 4.16) 

which is an axial gauge (along a null axis) that permits a 
residual gauge fixing which in fact will allow us to set a sec­
ond component of vJ1- to zero. To see this, consider (4.l5a); 
defining 
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r"=. (g - taPyp )OJ'(s - Ya a";) , 

we have 

(;uvt)r"(0I'VV - OVvl') = - (;uvt)r" ovvl' = 0, 
(4.17a) 

from where we find 

(;uvt)ov (r"vl') = (;uvt)vl' ovr" 

i.e., 

= vI' (;uvt) [ - tuvOJ'(S - YpaP;) 

- (g - taPyP )OJ'uv;] = 0, 

r"vl' = cp(;uvtyv, ;u"SYv' gu"ty,,)· 

Thus in this gauge r"vl' depends only on the variables trans­
verse to the chosen axis; we now show that r"vl' can be set to 
zero using the residual gauge freedom: 

vI' -vI' + 01'0, 0 = o (;u"ty"';uVSy",gu"ty,, ). 

Under this gauge transformation, we have 

cp = r"vl' -r" 01' 0 + cp 

= - 2(g - taPyP );·t(s - ypaP;) 0(1) 

+ 2(g - taPyP );'Sa";YKO(2) 

+ 2taPgyp ·t(s - yKa";) 0(3) + cp, 

(4.18 ) 

( 4.19) 

where O<il denotes derivative of 0 with respect to its ith 
argument. We see that expression (4.19) depends only on 
the transverse variables; setting it to zero gives an equation 
for 0 which can be solved for an arbitrary function cp of these 
variables. In this way, we have the simultaneous gauge con­
ditions 

(4.20) 

As the two remaining components of vI' we can choose 
v=.;OJ'svl' and v*. From (4.15) and (4.20) they will obey 

r" ovv = ;OJ'srv o"vl' = ;OJ'sr" 0l'v" = - ;OJ'scol'nv" 

= - ;OJ's [ - tul'u"(s - yKa";) 

- (g - taPyP )uvul'; ] v" 

= [ - 2;u"s·t(s - yKa";) - 2;u"t';?SYK ]v" 

= -2t(s-yKa";)v. (4.21) 

Equation (4.21) is of the same type as that encountered in 
Sec. III; its solution is given by 

v = [(g - td-'yl');] -lr(Cl,cT,C2) (4.22) 

in terms of an arbitrary function r of the characteristic 
variables C1, cT, and C2 defined in (3.16). From (4.20) and 
(4.22) the four components of vI' can be reconstructed and 
we find after some linear algebra, 

uP = (g - taPyP )OJ't r 
2(ts) [ (s - ta"YK)t ] 2 

;OJ'(s - YpaP;) + r*. 
2(st) [t(s - yKa"t)] 2 

(4.23a) 

For the field D, we obtain from (4.15b), 
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(4.23b) 

Equation (4.23a) is the most general expression for a photon 
field invariant under the action of an odd superconformal 
generator. Before looking at examples and limiting cases let 
us first also solve (4.14b) for invariant photino fields. 

The main difficulty encountered in (4.14b) is that it 
involves both the photino Aa and its complex conjugate A:a , 
while at the same time separating this field into its real and 
imaginary parts would not be a Lorentz invariant operation. 
To proceed then, we projectAa along two independent direc­
tions: 

Aa = [t(s-yJld-';)]-I[ -ta(S+;OJ'YJl)A 

+ (s-YI'd-';)a(tA)]. (4.24) 

We will solve (4.14b) in terms of the two projections 
(s + ;OJ'YI')A and tA. These, being Lorentz scalars, can be 
separated in real and imaginary parts when necessary. 

To begin, we project (4.14b) onto (s + ;oPYp )1:1, giving 

r" 0I'Aa - 2(s + ;oPyP )tAa - 2(s + ;oPYp )Ata = 0, 
(4.25) 

with r" defined as before. In this projected equation A:,;, has 
dropped out. To decouple the two components of Aa we 
project (4.25) onto t a and (s + ;OJ'yl' )a: 

r" 01' [(s + ;OJ'YI')A ] 

+ (2;g - 4st - 2;oPtYp) (s + ;OJ'YI')A = 0, 
(4.26a) 

r" 01' (tA) - 2(s + ;oPYp )t(tA) = o. (4.26b) 

The solutions to Eqs. (4.26) are 

(s + ;OJ'YI')A = {t(s - YI'd-';)/[ (g - td-'yJl ); ]2}0, 
(4.27a) 

(4.27b) 

where 0 and 0' are arbitrary complex functions of the char­
acteristic variables cHcT, and C2 defined previously. From 
(4.24) and (4.27) we have for A, 

A = _ tao 
a [(s - td-'yJl )t]2 

(s - YJl d-';)a 0' 
+ - . (s - tu"y" )t·t(s - YpuPt) 

(4.28) 

We must still inject this expression into the unprojected 
equation (4.14b). The resulting equations for 0 and 0' are 

2(0' + 0'* )(ts - g;) + {[t(s - YI'd-';)/(g - taPyp ); ] 

xtuV(g + YK?t)OV O 

- [a - td-'yJl ); /t(s - YpaP;)] 

X;UV(s - yKa";)ovO*} = 0, 

tuv; ovo* - [t(s - YI'd-';)/(g - taPyp);] 

xtuV(g + YK?t)OV (0' - 0'*) = o. 
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The derivation of Eqs. (4.29) and their solution are rather 
longwinded and we summarize them in the Appendix. Here 
we present the most general solution, given in terms of two 
real arbitrary functions X and X' of the characteristic vari­
ables: 

fi = [(t - sd'YI"); Is(s - Ypo";) ] 

x;o-y(s - yKa"";)JVX, (4.30a) 

fi' = ~ s(Jv; JyX + iX'. 

Thus, finally, from (4.28) we write for the photino, 

"ta = [(t - sd'YI" );·s(s - yy(Jv;)]-1 

X [ - Sa;QP(S - YI"d';)JpX + (s - YI"d';)a 

( 4.30b) 

Let us now check for simultaneous invariance under 
more than one odd generator. We first observe that Eqs. 
( 4.14a) and ( 4.14c) remain unchanged under S --> is, 
S --+ - is so that a set of fields VI" v , D invariant under a gener­
ator G will also be automatically invariant under [G,rr J. 
This is not true for the photino "ta' as is evident from 
(4.14b). At the same time, invariance of (4.14a) under any 
additional generator (s' ,s ') is impossible: 

(s' +; 'QPYp )a· Ds.; Wa 10 - (s + ;QPYp )a· Ds ·.;' Wa 10 
= 2(s' +; 'QPYp ) (s - yKa"";)D = 0 

implies that 

D=O 

and 

d'o-V(s - y"(Jp;) (Jl"vy - Jyvl") = 0, 

d'o-Y(s' - Ypo"; ')(Jl"vy - Jvvl") = 0 

imply that 

JI"Vv-JyVI" =0. (4.31) 

For the photino field, simultaneous invariance under more 
than one generator is still possible, but very difficult to com­
pute in the general case. We note in passing that many of the 
properties of the photino are the same as those of the bosonic 
fields in the scalar multiplet discussed in Sec. III. This can be 
traced back to the fact that "t and A represent the lowest 
component in the superfield Wa and tP. Similarly, the invar­
iance properties of the photon resemble those of the fermion 
in tP. A dissimilarity between the two superfields, however, is 
that"to: in fact cannot be made super-de Sitter invariant, 
unlike (A,F). 

To conclude, we present the limiting case of a super­
Poincare generator S = o. We also take, for definiteness 
(and without loss of generality), 

Sa = (~), r'-=t?r's= (-1,0,0, -1). (4.32a) 

Equation (4.15a) becomes 

(JoVy - Jyvo) + (J3Vy - J yv3 ) = O. (4.32b) 

Choosing the gauge Vo = 0, we find from (4.32b) that 

JOV3 = 0, (4.32c) 

which allows us to use the residual gauge freedom to set also 
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V3 = O. For the remaining two components of v, (4.31a) 
gives 

(Jo + J 3 )V I = (Jo + J 3 )V2 = 0, 

yielding 

VI = vl(X
O 

- X
3
,X

I
,X

2
), 

V2 = v 2 (X
O 

- X
3
,X

I
,X

2
). 

( 4.32d) 

( 4.32e) 

As expected from the general case, this solution is expressed 
in terms of two arbitrary real functions of the three charac­
teristic variables XO - X3, X I, and X2. 

For the field D, we get 

D = J I V2 - J2V I , ( 4.320 

while for the photino, solving (4.14b) we find 

"t _ (J3fi + ifi' ) 
a - cal +iJ2 )!1 ' 

(4.32g) 

with fi and 0' real arbitrary functions of (xo - X
3
,X

I ,x2
). 

v. CONCLUDING REMARKS 

Let us summarize our findings. We have obtained the 
most general scalar superfields tP (y,8) and vector superfields 
Wa (y,8) that are invariant under one-parameter fermionic 
subgroups of the superconformal group. We observed that 
the invariance requirement restricts the arbitrary functions 
involved in the definition of these fields to depend on three 
bosonic and one fermionic variables. We then examined the 
constraints resulting from additional supersymmetries. The 
result of this analysis was that generically, stability under 
two (or more) supersymmetries forces tP 1 () = 0 = Wa 1 (). 

The only case where higher supersymmetry does not require 
these components to be trivial occurs for simultaneous in­
variance under the transformations generated by the follow­
ing pair of vector fields: G=Ds.; and [1T,GJ. We also noted 
the existence of a nontrivial scalar multiplet which is invar­
iant under the full super-de Sitter group and the absence of a 
vector superfield with analogous invariance. Finally, we spe­
cialized our results to the super-Poincare group. 

We would now like to expand on the following impor­
tant point concerning the Grassmann structure of the trans­
formation parameters. In presenting our solutions we have 
taken the odd parameters sand S both proportional to a 
single real Grassmann generator a. In other words, we con­
sidered spinorssandsofthe forms = as ',s = as', withs' 
and S' elements of the even part of the underlying Grass­
mann algebra with nonzero bodies.9 With X a generic super­
field, the invariance condition DUX = 0 became aDs'.;'X 
= 0 under this assumption. It allowed us to factor out a and 

to consider the transformation parameters as commuting 
spinors. We should point out here that given a solution X (0) to 
Ds',;',X = 0, thesuperfieldX = X (0) + aX (I) (withX(I)anar­
bitrary superfield of grading opposite to that of X) satisfies 
the invariance condition DUX = O. Now factoring a single 
Grassman generator out of the transformation parameters is 
certainly not the only possibility; rather, it presents a proto­
type for the solution of more complicated in variance condi­
tions, to which we come next. 

To illustrate what these more complicated invariance 
conditions might be, let us suppose that the parameters sand 
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{; can be decomposed in terms of two independent real 
Grassmann generators a l and a 2; i.e., S = alSl + azS2, 

{; = a l{; 1 + az(; 2' with Si' {;i (i = 1,2) four commuting Weyl 
spinors. The invariance condition 0s.{;X = ° then becomes 

alos,.{;,X+a2os,.{;,X=0. (5.1) 

Now expanding X in ai> 

X=X(O) + alXjt) + azXi t ) + a lazX(2) (5.2) 

and resolving (5.1) into independent components, one finds 
the following invariance conditions for the superfields X ~n) 
(chosen with appropriate gradings) : 

0s,.{;,X(O) = 0S2.{;'X(0) = 0, 

J;: X(1) J;: X(1) ° 
U s,.{;, 2 - U s,.{;, t = , 
X(2) arbitrary. 

(5.3 ) 

Since Si' (;i are commuting spinors the above variations can 
be treated exactly as in Secs. III and IV. On the one hand, we 
note that X (0) should be simultaneously invariant under the 
supertransformations associated to the parameters (Sl'{;l) 
and (S2'{;2)' We therefore see that the solutions of the invar­
iance conditions stemming from the factorization of a single 
Grassmann generator out of the transformation parameters 
are prerequisite to solving cases where the parameters in­
volve more than one Grassman generator. On the other 
hand, we observe that the invariance conditions for X J l) 
(i = 1,2) are milder than the conditions that we have solved 
in Secs. III and IV. Clearly, however, using the solutions 
that we have obtained in Sees. III and IV, that is, setting 
Og,.{;,Xi l

) = 0s,.{;,Xjl) = 0, will give a particular solution to 
(5.1). All these considerations obviously generalize to situa­
tions where the transformation parameters are expressible in 
terms of an arbitrary number of independent Grassmann 
generators. 

To conclude, let us point out some directions for future 
research. We have considered superinvariant scalar and 
U (1 ) -vector superfields. It would evidently be desirable to 
examine other sets of fields like gravity supermultiplets or 
non-Abelian vector superfields. In the latter case the exis­
tence of gauge transformations which can accompany the 
supersymmetry transformations2 might open interesting 
new possibilities. Another natural extension of the present 
work would be to consider the invariance of superfields de­
fined over extended superspace, the relevant transformation 
supergroup then being SU (2,2/ N), N> 1. With the enlarge­
ment of the underlying supermanifold, it is clear that invar­
iance under subgroups with fairly large numbers of fer­
mionic generators should be possible. Inasmuch as 
applications are concerned, we envisage to use these superin­
variant fields as Ansiitze to obtain solutions to the equations 
of motion of supersymmetric field theories. We would also 
like to investigate what types of dimensional reductions can 
be achieved using supersymmetries. We hope to report on 
some of these questions in forthcoming publications. 
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APPENDIX 

We are after the most general solution to 

(S-Ypo';;)/3(d" JI').)a + [d"(~+YpoP{;)]/3Jw'ta 
- 2{;/3 Aa - 2{;aA/3 = 0. (AI) 

As seen in Sec. IV, by considering contractions ofEq. (AI), 
with (S + ~oPYp )/3{;a and (S + ~oPYp )/3(S + ~oPYp )a, we 
find that Aa must be in the form, 

Aa = - {;aO/[ (~- {;d"YI');]2 

+ (S - YI'd"~)aO'/(~ - {;d"yl' )~(;(S - YI'd"~), 
(A2) 

with 0 and 0' arbitrary complex functions of the character­
istic variables. To see what further restrictions 0 and 0' 
must obey, we inject (A2) back to (AI). Now, thefull equa­
tion (A I) is equivalent to the set of its contraction with ~a 
and with €"Y(d"Y)/, V/1-,v. Contracting with ~a gives 

2(0' + 0'*) ({;S - ~~) 

+ {[{;(S - YI'd"~)/(~ - (;d"yl')~] 
X{;(JY(~ + YI'Q+'{;)JyO 

- [(~ - (;d"yl')~ I{;(s - YI'd"~)] 

X~(JY(S - YI'd"~)JyO*} = 0, (A3a) 

while the contractions with €"Y (d"Y) / all lead to the follow­
ing equation, irrespective of the values of /1- [using also 
(A3a) to simplify]: 

{;(JY~ JyO* - [(;(S - YI'd"~)/(~ - (;d"yl')~] 

X{;(JY(~ + YI'Q+'{;)Jy(O' + 0'*) = 0. (A3b) 

At this stage, it is very convenient to rewrite Eqs. (A3a) and 
(A3b) in terms of the characteristic variables and of deriva­
tives with respect to them. We work with the real character­
istic variables 

Zl = ~Q+'SYI' + ~Q+'{;yl' , 

{;(S - YI'd"{;) (S - (;d"yl'){; 

. ~Q+' SY I' . ~Q+' {;y I' 
Z2 = I -/ _ , 

{;(S - YI'd"{;) (S - (;d"yl'){; 

Z3 = sd"gyl' + ~(~~ + U - 2{;d"~yl') 

X~oPSYp{;(JY~y,,/(g - {;d"yl' )~(;(S - YI'd"~). 

Thus 0 = 0(Zt,Z2,Z3)' 0' = 0'(Zt,Z2,Z3)' and the above 
equations become 

2(U - ~~) (0/ + 0/*) + 2{;S(D1 + iD2 )0 

- 2~~(Dt - iD2 )0* = 0, (A4a) 

~~D30* + (i12) ({;S - ~;) (Dt + iD2 ) (0/ + 0/*) = 0, 
(A4b) 

with 
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and 

DI = a(J) - (izzI4)(bS - t"t)a(3), 

D z = a (Z) + (izl/4) (bS - t"t)a (3), 

D3 = (i12)(bS - t"t)a(3) = [DI>Dz]' 

aU) =~. 
aZi 

Now given an arbitrary complex function 0, one can always 
find another complex function X such that 

0= 2t"t(D I - iDz)X. 

With this, (A4a) becomes 

2(bS - t"t) (0' + 0'*) 
= - 4bSt"t[ (DI + iDz) (DI - iDz)X 

(ASa) 

- (DI - iDz)(DI + iDz)X*] (ASb) 

= 8ibst"t[D3(Re X) - (D ~ + D ~) (1m X) ]. 

Substituting for 0' + 0* in (A4b), we find that (ImX) 
must satisfy 

(D I + iDz)(DI + iDz)(D I - iDz) (1m X) = 0, (ASc) 

while there are no constraints on ReX. We will now show 
that the unique solution to this equation is 1m X = 0 up to 
functions whose contributions to the values of 0 and 0' can 
be reproduced by an opportune redefinition of Re X. 

Now, Since (DI + iDz) (DI - iDz)ImX is annihilated 
by D I + iD2' we can again apply the method of characteristic 
curves to find that 

(DI + iD2)(DI - iDz)lm X 

= ip (ZI + iZ2,z3 + !(U - t"t)(z~ + z~»), (A6a) 

with ip an arbitrary complex function of its two variables. It 
follows that 

D 3(1m X) = i(D I + iDz)(DI - iDz)ImX 

- i(DI - iDz) (DI + iDz)Im X 

= iip (ZI + iZZ,z3 + !(bS - t"t)(~ + z~») 
- iip *(z I - iZZ,z3 - A (bS - t?) (zi + z~ »). 

(A6b) 
Integrating, we find 

1m X = i[ ~ (ZI + iZZ,Z3 + A(bS - t"t)(~ + z~») 
-- 2 Z 

- ~ (ZI - iZZ,Z3 - A(bS - Sb)(zi + Z2 »)] 
+ ip(ZI'ZZ) 

in terms of an arbitrary function ~ and a real function ip. To 
see what further conditions, if any, ~ and ip must satisfy, we 
reinject (A6b) into (ASc): 

al(ai +a~)ip=az(ai +a~)ip=o, (A7a) 

with the solution 

(A7b) 
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(C is a real constant and ipl is an arbitrary function of 
ZI + izz)' We see that ipl can be absorbed inside ~. This 
solves completely the equations (ASb), so that we may write 

0= 2t?(DI - iDz)[Re X + i(i(~ - ~ *) + c(zi + z~»)] 
= - 2t"t(DI - iD2)(ReX - (~+ ~ *) 

+ 8icZ3/(bS - t"t») + i(i(~ - ~ *) + c(z~ + ~ »)] 

0* = 2bS(DI + iDz>[ReX - i(i(~ - ~ *) + c(zT + z~»)] 
= 2bS(DI + iDz) [ReX - (~+ ~ *) 

+ 8icz3/(bS - t"t)], (A8) 

and we find that nonzero solutions of (ASc) for 1m X can be 
absorbed in ReX by shifting (ASc) by the real quantity 
- (~ + ~ *) + [8ic/(bS - t?) ]Zy 

To recapitulate, we have found that the most general 
solution to the in variance equation for the photino (Al) is 
given in terms of two real arbitrary functions of the charac­
teristic variables 1m 0' [which was not constrained by 
(A 1 )] and Re X. In terms of these functions, we have 

0= 2bS(DI - iDz) (Re X), 

0* = 2t"t(DI + iDz) (ReX), (A9) 

0' + 0* = [4iUt? l(bS - t?) ]D3 (Re X), 

and, going back to Minkowski variables, we write for the 
photino, 

Au = [(t - bO"'Yp )?'b(S - YpO"'?)]-1 

X[ -bu"tiY'(S-YpO"'"t)ap(ReX) 

+ (S - YpO"'"t)a (!buv"t av (Re X) + i 1m 0')]. 
(AW) 

IJ. Beckers, J. Hamad, M. Perroud, and P. Wintemitz, J. Math. Phys. 19, 
2126 (1978). 

2J. Harnad, S. Shnider, and L. Vinet, J. Math. Phys. 21, 2719 (1980); P. 
Forgiics and N. Manton, Commun. Math. Phys. 72, 15 (1980). 

3See, for instance, J. Harnad, S. Shnider, and L. Vinet, "Solutions to Yang­
Mills equations on Al4 invariant under subgroups of O( 4,2)," in Complex 
Manifold Techniques in Theoretical Physics, edited by D. E. Lerner and P. 
D. Sommers (Pitman, New York, 1979). 

4N. Manton, Nuc!. Phys. B 158,141 (1979); J. Harnad, S. Shnider, and J. 
Tafel, Lett. Math. Phys. 4,107 (1980); N. Manton, Ann. Phys. (NY) 167, 
328 (1986). 

5J. Doneux, Y. Saint-Aubin, and L. Vinet, Phys. Rev. D 25, 484 (1982); M. 
Legare, J. Math. Phys. 24,1219 (1983). 

6J. Wess and J. Bagger, Supersymmetry and Supergravity (Princeton U. P., 
Princeton, NJ, 1983). 

7G. Mack and A. Salam, Ann. Phys. (NY) 53,174 (1969). 
8R. Haag, J. topuszanski, and M. Sohnius, Nuc!. Phys. B 88,257 (1975). 
9R de Witt, Supermanifolds (Cambridge U. P., Cambridge, 1984). 
lOS. J. Gates, Jr., M. T. Grisaru, M. Rocek, and W. Siegel, Supers pace (Ben­

jamin, Reading, MA, 1983). 
"J. Wess and B. Zumino, Nucl. Phys. B 70,39 (1974). 
12N. S. Baaklini, Nuc!. Phys. B 129,354 (1977); E. A. Ivanov and A. S. 

Sorin, TheoL Math. Phys. 39, 394 (1979). 

H. Panagopoulos and L. Vinet 1618 



                                                                                                                                    

Green's functions for nonlinear Klein-Gordon kink perturbation theory 
R. J. Flescha) and S. E. Trullinger 
Department of Physics, University of Southern California, Los Angeles, California 90089-0484 

(Received 21 October 1986; accepted for publication 18 February 1987) 

A Green's function is defined for nonlinear Klein-Gordon theories in terms of the solutions to 
the eigenvalue equation obtained by linearizing the nonlinear wave equation about a static kink 
waveform. Analytic forms in terms of "modified" Lommel functions of two variables are 
derived for the sine-Gordon, phi-4, and double quadratic potentials. Asymptotic forms for the 
Green's functions are obtained by investigating the asymptotic behavior of the modified 
Lommel functions. Methods for calculating the Lommel functions are also outlined. 

I. INTRODUCTION 

The influence of perturbations on the dynamics of kink 
solutions of nonlinear Klein-Gordon (NKG) models in 
1 + 1 dimensions is a subject of particular importance in 
condensed matter contexts, 1 where many different types of 
internal and/or external agents are responsible for spoiling 
the otherwise perfect (and boring!) propagation of kinks 
through the system of interest. Examples include impurities 
or other physical imperfections in the system,2 dissipative 
forces2.3 and coupling to other degrees offreedom,3 external 
driving forces such as electric4 or magnetic fields, stress 
fields,5 etc. In most cases of interest, the kinks involved carry 
some physically significant signature such as electric charge 
or spin, and hence can carry currents of various kinds which 
are important for the behavior of the system as a whole (e.g., 
conductivity '.4). Many of the physical systems of interest 
are modeled (sometimes justifiably) by nonlinear Klein­
Gordon (NKG) Lagrangians such as the sine-Gordon 
(SG), (r, or double-quadratic (DQ) cases,! among many 
others. 

As a consequence of the importance of being able to 
determine the motion of kinks under perturbing influences 
such as those above, there have been several investigations 
over the last few years of either a general nature or having 
limited application to rather specific perturbations. One of 
the more useful approaches3 has been to regard the kink of 
interest as an extended "particle" which obeys Newtonian 
dynamics at the classical level. Although there has been 
some controversy6-9 regarding whether in fact the kink be­
haves as a Newtonian particle, this question has largely been 
resolved and one can adopt this Newtonian picture if care is 
taken to properly treat the behavior of the regions of the 
system far from the position of the kink. 

The modern approach 10-12 based on these ideas is to 
regard the kink position as a collective coordinate and to 
perform a canonical transformation 12.\3 to new coordinates, 
one of which is the kink "center-of-mass" position. The devi­
ation of the full field from the pure kink profile is regarded as 
small (if the perturbing influence is small) and a systematic 
perturbation theory is employed in which successively high­
er powers of this deviation are included. The actual deviation 

aj Present address: Center for Nonlinear Studies. Los Alamos National Lab­
oratory. Los Alamos. New Mexico 87545. 

of the kink position from its unperturbed value is not re­
quired to be small in this collective coordinate method, thus 
removing some secularities which occur in early versions3 of 
this particlelike approach. 

In the perturbation expansion method, it is convenient 
to employ a Green's function technique 1 1.12 based on knowl­
edge of the exact solutions for the small oscillations about 
the kink in an unperturbed system. I

•
3 Until now this ap­

proach has been hindered by the lack of an analytic form for 
such Green's functions since they involve integrals not found 
in the tables. In this paper we remedy this situation by re­
porting our closed-form evaluation of the Green's functions 
for the three example systems mentioned above namely SG 

4 ' , 
¢ , and DQ. These forms involve modified Lommel func-
tions of two variables 14 and since many of their properties 
have not to our knowledge been discussed in the literature, 
we examine some of the more useful ofthese, such as asymp­
totic expansions, in the present paper. 

The remainder of the paper is organized as follows. Sec­
tion II contains an introduction to the NKG models of inter­
est, their kink solutions, and the nature of small oscillations 
about the kinks in the pure system. The small oscillation 
solutions are then used in Sec. III to construct explicit, 
closed-form expressions for the Green's functions of the 
three example systems in turn. In Sec. IV we discuss the 
asymptotic behavior of the Green's functions by first investi­
gating the asymptotic properties of the Lommel functions of 
two variables. Some of these results are new and are present­
ed for the first time, to our knowledge, in this paper. In Sec. 
V we display and discuss some representative plots of the SG 
Green's function as an example. Appendix A contains our 
evaluation of a generalized form of Hardy'S integral for 
Lommel functions. Appendix B collects some of the proper­
ties of the modified Lommel functions of two variables while 
Appendix C describes some aspects of the numerical evalua­
tion of modified Lommel functions and their asymptotic 
forms. 

II. NONLINEAR KLEIN-GORDON KINKS AND THEIR 
SMALL OSCILLATIONS 

In this section we briefly review the main features of 
solutions to the nonlinear Klein-Gordon class offield theor­
ies. The single-kink solutions to the wave equations along 
with small oscillations about these kinks will be described. 
The various quantities described in this section are collected 
in Table I for the sine-Gordon, ¢4, and double-quadratic 
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TABLE I. Various quantities for the ¢>4, SG, and DQ systems. Here V(¢» is the nonlinear potential, ¢>k (x) is the kink ( + ) or antikink ( - ) solution, 
V" [ ¢>k (x) ] is the potential which enters in the Schrodinger-like phonon equation [see Eq. (2.8) j, andlb.i (x) andlk (x) are the bound and scattering states 
of V" [¢>k (x)] (Wb.1 = 0 for all three cases; Wb.2 = J3!2 for the ¢>4 potential). 

V(¢» 

¢>k(X) 

V" [¢>k (x)] 

Ib.n(x) 

¢>4 

H¢>Z _ 1]2 

tanh[ ± x!2j 
I - ~ sech2'[x/2j 

Ib.1 (x) = Jij sech2[x/2j 

A2 (x) =,jf sech[x/2jtanh[x!2j 

eikx [3 tanh 2 (xI2) - 6ik tanh(x!2) - (1 + 4k 2) j 

~81T(1 + k 2)( I + 4k 2) 

potentials [this table corrects some errors in Table 1 of Ref. 
15 and a similar error in Eq. (4.16b) in Ref. 1]. 

The general nonlinear Klein-Gordon Lagrangian we 
consider has the form 

L = Joo dX{l.- tP; - l.- tP~ - V(tP)}, 
- 00 2 2 

(2.1 ) 

where x and t are dimensionless space and time variables and 
V( tP) is the nonlinear potential. The nonlinear wave equa­
tion satisfied by tP(x,t) is 

tPtt - tPxx + V'(tP) = 0, (2.2) 

where the prime on V( tP) denotes a derivative with respect to 
tP. Static single-kink solutions, tPk (x), of Eq. (2.2) may be 
obtained by direct integration with the boundary conditions 

dtPk (x) I = O. (2.3) 
dx x=±oo 

The static kink ( + ) and antikink ( - ) solutions are given 
by 

1 i4>k(X) dtP 

x = ± Ii 4>k(O) ~V(tP) . 
(2.4 ) 

Moving solutions can be obtained by a Lorentz boost. 
The equation governing the small oscillations about the 

static kink waveform is obtained by substituting 

tP(x,t) = tPk (x) + t/J(x,t), (2.5) 

into Eq. (2.2) and linearizing in t/J: 
t/Jtt - t/Jxx + V" [tPk (x)]t/J = o. (2.6) 

Here V" [tPk (x)] denotes the second derivative of V(tP) with 
respect to tP evaluated for tP = tPk (x). Writing t/J as 

t/J(x,t) =!(x)e- iwt
, (2.7) 

leads to the following eigenvalue equation: 

(2.8) 

Due to the localized nature of the kink waveform tPk (x), the 
function V" [tPk (x)] varies mainly in the region of the kink 
center (assumed to be at x = 0) and approaches a constant 
(taken to be unity) far from the kink center: 
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SG 

l-cos(¢» 
4tan-l(e±X) 

I - 2 sech2(x) 

Ib.1 (x) = JI sech(x) 

eikx[k + i tanh(x) j 

~21T(1 + F) 

V"[tPk(X)] -+ 1. 
Ixl- 00 

DQ 

HI¢>I-1]2 
±sgn(x)[I-e-1x1j 

1-28(x) 

sin (kx)I..[fii, k<O 

k cos(kx) - sgn(x)sin(kx) , k> 0 

~21T(1 + k 2) 

(2.9) 

Moreover, the function V" [tPk (x)] has a minimum at 
x = 0 such that 

(2.10) 

From these properties, we see that there exists a close analo­
gy between Eq. (2.8) and the Schrodinger equation for a 
particle moving in a one-dimensional "potential well," 
V" [tPk (x)]. The "bound state(s)" and "continuum" states 
for this potential are offundamental importance for statisti­
cal mechanics phenomenologies, 15 perturbation theories for 
kink dynamics,2 and quantization procedures for kink 
states. 10,12,13,16--19 

Since the Lagrangian (2.1) possesses translational in­
variance, the spectrum of the small oscillations about the 
single kink must contain a zero-frequency (w = 0) "transla­
tion" mode (Goldstone mode) which restores the transla­
tional invariance broken by the introduction of the kink. In 
addition to this translation mode there may be other discrete 
eigenvalues ("bound states") with frequencies between 0 
and 1. These solutions correspond to "internal" oscillation 
modes in which the kink undergoes a harmonically varying 
shape change localized about the kink center. We denote 
these bound-state eigenfrequencies by Wb,l " 'Wb,N' where N 
is the total number of bound states. The lowest ofthese is W b,l 

= 0 since all other wL must be non-negative in order for the 
kink to be stable against small oscillations. 

In addition to the bound states, there exist continuum 
states ("phonons") which are labeled by a wave vector k. 
These states have eigenvalues w~ given by 

wk=l+k 2
, (2.11) 

which is precisely the dispersion relation for small oscilla­
tions in the absence of kinks. 

The continuum states together with the bound states 
form a complete set and satisfy the completeness relation, 

and the following orthogonality relations: 
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f: '" dxAn (X)lb,m (x) = 8m,n' 

L"'oo dxlt(X)lk' (x) = 8(k - k '), 

L"'oo dxlk (X)lb,n (x) = 0. 

(2.13a) 

(2.13b) 

(2.13c) 

Table I lists the nonlinear potentials, kink waveforms, small 
oscillation potentials, bound and scattering states for the SG, 
(r, and DQ potentials. 

III. ANALYTIC EVALUATION OF THE GREEN'S 
FUNCTIONS 

For the set {Ib,i (x) ,Jdx)} of solutions satisfying the 
"phonon" equation (2.8), we define the full Green's func­
tion as 

G(X,X' ,7) 

J
'" dOJ eiWT 

= " Ib* (X)l'b' (x') L ,I r.Jl.l 2 2 
bound states - 00 21T(OJb,i - OJ ) 

+ JOO dklt(x)/k (X') J'" d~ /WT 2 
- 00 - 00 21T(OJk - OJ ) 

(3.1) 

where 7=t_t', Using the completeness relation (2.12), 
and the fact that the set {Ib,i (X),Jk (x)} satisfy Eq. (2.8), 
one can show that the full Green's function satisfies the usual 
equation 

{aft - axx + V" [¢k (x) ]}G(X,X' ,7) = 8(x - x')8( 7). 

(3.2) 

Once a set of boundary conditions is chosen the OJ inte­
gral in Eq. (3.1) may be evaluated without choosing a par­
ticular set of {Ib,i (X),Jk (x)}, In this paper we choose re­
tarded boundary conditions obtained by moving both of the 
poles in the OJ integral above the real OJ axis. Carrying out the 
OJ integral yields 

G(X,X' ,7) = Gb (X,X' ,7) + Gp (X,X' ,7), (3.3) 

where Gb (X,X' ,7) and Gp (X,X' ,7) are the bound state and 
phonon contributions given by 

Gb (X,X' ,7) = O( 7) {71t.1 (X)lb,1 (x') 

N sin(OJ i 7) } , + I It.i (X)/b,i (x') ---
i ~ 2 OJb,i 

(3.4a) 

with N the number of bound states [if n = 1, the second term 
is omitted from Eq. (3.4a)] and O( 7) is the Heaviside step 
function, 

O {
O, - 00 <7<0, 

(7) = 
1, 0';;;7< 00. 

(3.5 ) 

In order to obtain explicit forms for these contributions to 
the Green's function, one must insert the appropriate set of 
linearized solutions into Eqs. (3.4a) and (3.4b). As exam-
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pIes, we evaluate the phonon contribution for the SG, 1,64, and 
DQ potentials. 

A. The SG Potential 

Since the bound state contribution (3.4a) is already ex­
pressed in terms of known functions, we turn to the evalua­
tion of the phonon contribution given in Eq. (3.4b). Insert­
ing the functionslk (x) from the SG column of Table I into 
Eq. (3.4b) we have, after collecting common terms, 

G!G(X,X' ,7) = O( 7){11 + (3212 + (33 sgn(z)13}, (3.6) 

where 

II =- cos(lzlk)sin(7~), 1 ioo 
dk 

1T 0 ~ 

1 i'" dk 12 = - 2 3/2 cos(lzlk)sin(7~), 
1To(1+k) 

13=.lioo d\ /2ksin(lzlk)sin(7~), 
1T 0 (1 + k )3 

with the definitions 

(3.7a) 

(3.7b) 

(3.7c) 

7=t - t', z=x -x', (32=tanh(x)tanh(x' ) - 1, 

(33=tanh(x' ) - tanh(x). (3,8) 

Since 12 is uniformly convergent for all Izl and 7, we may 
differentiate with respect to Izl to obtain 

I - - d12 (3.9) 
3- d Izl 

Therefore only II and 12 need to be evaluated. These inte­
grals may be evaluated by considering the integral I ( Jl) giv­
en by 

1( Jl) = - cos( Izlk)sin(7~Jl2 + F), 1 i oo 
dk 

1T 0 ~J12+k2 
(3.10) 

( 3.11) 

where the integral is found in the tables. 20 The special case 
1(1) is precisely the integral 1\. Since the derivative of the 
integrand of Eq. (3.10) is a continuous function of both Jl 
and k, we may differentiate I ( Jl) with respect to Jl to obtain 

12 = lim{ _ d1( Jl) + ~ J'" dk 
1'-1 dJ1 21T _",Jl2 +k 2 

XCOS(lzlk)COS(7~Jl2+k2)}, (3.12) 

= O(7-lzl) F=?JI(F=?) 
2 

+~ --2 cos(lzlk)coS(7~). JOO dk 

21T - 00 1 + k 
(3.13 ) 

In the integral remaining in Eq. (3.13) we substitute 
k = sinh(u), which gives us 

~ --2 cos( Izlk)cos( 7~) J
'" dk 

21T _ 00 1 + k 

= ~ J'" du cos[ Izlsinh(u) ]cos[ 7 cosh(u)], 
21T - 00 cosh(u) 

(3.14) 
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= ~ J"" du {cos [ Izlsinh(u) + 7 cosh(u)] 
41T - "" cosh(u) 

+ cos[7cosh(u) -Izlsinh(u)]}, (3.15) 

= - ___ cos[aeU + be - U] 7 J"" du e
U 

{ 

21T _ "" e2u + 1 

+ cos[ae- U + beu
]}, ( 3.16) 

= ~ {"" ~ {cos[at +~] + cos[!:.. + bt]} , 
21T Jo t 2 + 1 t t 

(3.17) 

=.!:.- -2-- cos at + - , 1"" dt [ b] 
1T 0 t +1 t 

(3.18 ) 

where in passing from Eq. (3.17) to Eq. (3.18) we have let 
t ~ 1/ t in the second cosine term and in Eq. (3.16) we have 
introduced the quantities 

a=(7+ Izi)/2, 

b=(7-lzi)/2. 

(3.19a) 

(3.19b) 

For b < 0 the integral in Eq. (3.18) is found in the tablesZI to 
be 

_ ---cos at-- =_e-(a b). 1 l"" dt [ Ib I] 1 -
1T 0 t

2 + 1 t 2 
(3.20) 

For b > 0, the integral in Eq. (3.18) may be expressed in 
terms of "modified" Lommel functions of two variables. 14 
The modified functions, namely Lommel functions in which 
the first argument is pure imaginary, have not been found in 
the literature. Hence we introduce the notation An (w,s) and 
En (w,s) for the modified Lommel functions and give their 
series representations in terms of Bessel functions: 

With these definitions, we write for b> 0 

1 1"" dt [ Ib I] 1 - -z--cos at+- =_e-(a-b) - AI(w,s), 
1T 0 t +1 t 2 

(3.22) 

where 

s=~, ( 3.23a) 

w=7-lz l· (3.23b) 

Combining Eqs. (3.20) and (3.22) we have for l z 
l z = ~7e-lzl + B(7 -lzl){sJI(s)/2 -7AI(w,s)}. 

(3.24) 

Using Eq. (B6) from Appendix B we differentiate Eq. 
(3.24) with respect to Izl which results in 

d12 = _ J.. 7e - Izl + B( 7 - Izl) 
d Izl 2 2 

X{- (7+ Izl)Jo(S) + 27Ao(w,s)}. (3.25) 
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In Eqs. (3.24) and (3.25),12 and its derivative appear to 
have terms which grow linearly in 7 which is impossible in 
view of the integral representations in Eqs. (3.7). Using 
asymptotic expressions for the modified Lommel functions, 
we shall show in Sec. IV that the large 7 dependence is actu­
ally an inverse square root. 

Writing the phonon contribution as 

G;G(X,X',7) = B(7) {II +/3212 -/33 sgn(z) dI2 }, 
dlzl 

(3.26 ) 

we notice that withll ,/z, and dlz/d Izl given by Eqs. (3.11), 
(3.24), and (3.25), there is a term which does not vanish 
outside of the "light cone" [i.e., a term which does not have 
B( 7 - Izl) as a prefactor], namely 

B( 7)7e - Izl/2{ /32 + sgn(z)/33}' (3.27) 

One can show that this term may be rewritten as 

- B(7)71:'1 (x)lb.1 (x'). (3.28 ) 

Hence when the bound state contribution is added to Eq. 
(3.26) to obtain the full Green's function, we are left with an 
expression which vanishes identically outside of the light 
cone, 

G SG (X,X',7) 

= [B(7-lzi)/2]{Jo(s) +/32[SJI(S) -27AI(w,s)] 

- /33 sgn(z)[ - (7 + Izi)Jo(s) + 27Ao(w,s)]}, 
(3.29) 

explicitly demonstrating the retarded boundary conditions 
which have been applied. 

B. The ~4 potential 

With a slight generalization, the techniques used to 
evaluate the SG Green's function may be applied to the (p4 
potential. Proceeding along the same lines, we write the 
phonon contribution as 

t/>', B(7) { d10 G p (x,X ,7) = -- yolo - YI sgn(z) --
4 dlzl 

I dlz} + Y2 2 + Y3 sgn(z) -- + 14 , 
dlzl 

(3.30) 

where l z and dl2/d Izl are given in Eqs. (3.24), (3.25), and 

1 =J.. ("" dk cos(lzlk)sin(7~) (3.31a) 
o 1T Jo (1 + k 2) 3/2 (1 + 4k 2) , 

1 l"" 14=- dk 
1T 0 

x (1 + 4k 2)COS( Izlk)sin( 7~) 
(l+k 2)3f2 

= 2B( 7 - Izl )Jo(s) - 312, 

Yo = 9{tanh2 (y )tanh2 (y') - tanh(y ) tanh (y' )}, 

(3.31b) 

(3.32) 

YI = 1 8{tanh(y)tanh2 (y') - tanh2 (y)tanh (y')}, 

Y2=9 tanh(y)tanh(y') - 3 tanh2(y) - 3 tanh2(y'), 

Y3=6 tanh(y) - 6 tanh(y'), (3.33) 

y=x/2, 

y'=x'/2, 
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whereEq. (3.11) has been used to simplify Eq. (3.31b). The 
remaining integral, 10 , may be reduced by partial fractions to 

= j l ol - j12' 

with 101 defined by 

101 = 1..- Loo dk cos ( Izlk)sin( r.JT+P) 

1T 0 .JT+P( 1 + 4k 2) 

(3.34) 

(3.35 ) 

(3.36) 

To evaluate 101 we again substitute k = sinh (u) which gives 
us 

101 = 1..- foo du cos [lzlsinh(u)] sin [r cosh(u)] 
1T Jo 1 + 4 sinh2(u) , 

( 3.37) 

1 Loo t dt . [ b ] = - 4 2 sm at + - , 
21T 0 t - t + 1 t 

(3.38 ) 

where in going from Eq. (3.37) to Eq. (3.38) substitutions 
similar to those made in Eqs. ( 3.14) - ( 3.18 ) have been 
made. Factoring the denominator ofEq. (3.38), we define 

/J2± = - t
2± = -{3+ = (-1 +i.j3)I2, (3.39) 

where t 2± are the roots of t 4 - t 2 + 1. Using partial frac­
tions, we may write Eq. (3.38) as 

101 = _1_ { foo t dt sin [at + .!!...] 
21Ti.j3 Jo t 2 + {3 2+ t 

where 

- sm at+- , LOO t dt . [ b ]} 
o t 2 + {32_ t 

=..=.J. [J({32_) -J*({32_ )], 
2i.j3 

= ..=.J. 1m [ J ( {3 2_ )], 
.j3 

( ) = - - sm at + - . J {3 2 1 Loo t dt . [ b ] 
1T 0 t 2 +{32 t 

(3.40) 

(3.41) 

(3.42 ) 

(3.43 ) 

The integral defined in Eq. (3.43) is a slight generalization 
of Hardy's integrals for Lommel functions. 14,22 The evalua­
tion of J( {3 2) follows Hardy's with a few modifications and 
is presented in Appendix A for completeness. From Eq. 
(A21) in Appendix A we have 

J( {32_ ) = !e- (aIL -biIU - 0(b)A2 [2bl{3_,2[llb]' 
(3.44 ) 

=!e - (\12)(lzl + iffr) - O( r - Izl )A2 ( {3+w,s). 
(3.45 ) 

Therefore we have for 101 

101 = (l/2.j3)e-lzI/2 sin(wb,2 r ) 

+ [O(r-lzl)/.j3]lm[Ao({3+w,s)], 

where 

W b,2 =.j3/2, 

and we have used 

1623 J. Math. Phys., Vol. 28, No.7, July 1987 

(3.46) 

(3.47) 

Im[A2({3+w,s)] =lm[Ao({3+w,s) +Jo(s)] 

= 1m [Ao( {3 + w,s)]. (3.48) 

From Eq. (3.30) we see that we need a derivative of 10 , and 
hence 101 , with respect to 14 Using Eqs. (B6) and (B16) 
from Appendix B we have 

dl -1 II _0_1 = __ e- z 12 sinew r) 
d Izl 4.j3 b.2 

where 

_ O(r-Izl) Im[A I({3+w,s)], 
2.j3 

({32+ + 1)1{3+ = 1, 

( 3.49) 

(3.50) 

has also been used. Collecting all of the pieces, we write for 
the phonon contribution 

G;'(x,x',r) 

=-- -yolol --YI sgn(z)--OCr) {4 4 dlol 
4 3 3 d Izl 

[ Yo 3]1 [YI] d12 + Y2 - - - 2 + sgn(z) - + Y3 --
3 3 d Izl 

+ 20( r - Izl )Jo(S)} . (3.51) 

As in the sine-Gordon case one may show that when we 
combine the "nonretarded" pieces of the phonon contribu­
tion, we obtain exactly the negative of the bound state contri­
bution; specifically we have + [Y2 - ~o - 3] re-1zI!2 - s

g
n8(z) [~I + Y3] re- 1zI!2 

= - rlt.1 (x)/b,1 (x/), (3.52a) 

_1_ e -lzl12 sinew r)'V + _1_ e -lzl12 sinew r)sgn(z)y 6.j3 b,2 ( 0 12.j3 b,2 I 

sin(wb2 r ) 
= - '1:'2 (x)/b,2 (x/). (3.52b) 

W b,2 

With the nonretarded portion cancelled by the bound state 
contribution, we have for the full Green's function 

G<P'(x,x/,r) 

= 0(r-lzl){(1/3.j3)Im[YoAo( {3+w,s) 

+ !YI sgn(z)AI ({3+w,s)] 

+ HY2 - Yo/3 - 3][sJI (s) - 2rA I (w,s)] 

+ [sgn(z)/8][y I /3 + Y3][ - (r + Izi)Jo(s) 

+2rAo(w,s)] +Vo(s)}. (3.53) 

C. The DQ potential 

As a final example, we evaluate the DQ Green's func­
tion. The phonon contribution in this case is 

G~Q(x,x',r) =O(r- lz l){ll - [12(Z+) _ dl~~:+)]}, 
(3.54) 

where II is given in Eq. (3,11) (with J.l = 1) and I 2 (z+) is 
given in Eq. (3.24) with Izl replaced byz+ = Ixl + lx/I. Fac-
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toring out the nonretarded piece we have 

G DQ(X,X',7) 

= [B(7-lzl)/2]{Jo(s) -s+JI(s+) + 27AI(w+,s+) 

+ (7+Z+)Jo(s+) + 27Ao(w+,s+)}, (3.55) 

with 

z+=lxl + Ix'l, W+=7-Z+, s+=~r _Z2+. 
(3.56) 

All three of the Green's functions derived above have 
been checked against numerical integration. Over a large 
range of values for x, x', and 7, we find agreement to eight 
significant digits, which is presently the accuracy of our rou­
tines which compute the modified Lomme1 functions. In ad­
dition we have applied the small oscillation operator [see 
Eq. (3.2)] to each of the analytic expressions which, after 
some tedious algebra, yield the appropriate delta functions. 
To obtain a final check, we note that by using the orthogona­
lity relation in Eq. (2.13c) and linear superposition, we see 
that the phonon contribution to the Green's functions must 
be orthogonal to the bound state (s). Numerical integrations 
confirm this property for all three Green's functions. 

IV. ASYMPTOTIC BEHAVIOR 

To obtain asymptotic expressions (7--+ 00) for the 
Green's functions, we must first find the appropriate limits 
of the modified Lommel functions. In Appendix C we exam­
ine Ao(w,s) and AI (w,s) in the limit as s --+ 00 while wls--+ 1, 
which, when wand s are related to 7 and z by Eqs. (3.23), 
corresponds to 7> 14 This limit is interesting because the 
expressions for the phonon contributions to the Green's 
functions have a term linear in 7 which, in view of the inte­
gral expressions, must be cancelled by the other terms. 

Since all of the Green's functions are expressible in 
terms of the integrals 101 , 12 and their derivatives with re­
spect to Izl, we consider the asymptotic expressions for these 
quantities first and then combine them to obtain the limits 
for the Green's functions. 

To apply the results of Appendix C we must first recast 
these results in terms of the variables 7 and z which are relat­
ed to wand s by 

w=/3(7-lzl), s=~, (4.1 ) 

where /3 is either unity or /3 +. From Eqs. (C31) and (C32) 
of Appendix C, we have for /3 = 1, 

OW,S :::::-- -- - - cos s - - + sm s - - + 7 , A ( ) Jo(s) + e ~ Izl + Izl ~{ ( 1T) . ( 1T) 2R 2 (l,K)} O( ~7/2) 
2 2 27 1TS 4 4 8s 

( 4.2) 

Al (w,s):::::~ _ ~ fI{cos(s _ !!...)[ 2[Rz( 1,K) - 2] ] 
2 27-V 1TS 4 8s 

-sin(s-!!...) [1 +2[R4(1,K) + 12Rz(l,K)]]} +O(7~9/Z) 
4 (8S)2 ' 

whereK=wls, R z, and R4 are defined in Eqs. (C29) and (C30), and we have used [see Eqs. (C13)] 

E(1,K) = IzlIs, U I (l,K) = T/2s, U2 (l,K) = T/2Izl, 

U I (l,K)/~l + EZ(l,K) =!, E(l,K)U2 (l,K)/[ 1 + EZ(l,K)] = s127. 

(4.3 ) 

(4.4 ) 

Inserting the expression for A I (w,s) given by Eq. (4.3) into Eq. (3.24), we see that the linear 7 dependence exactly cancels 
[for large rand r> Izl, both B( r - Izl) and B( r) are unity], leaving us with 

1Z:::::SJI(s) +~ fI{cos(s_!!...)[2[R 2 (1,K) -2] _ 40R4(1,K)] 
2 2 -V 1TS 4 8s (8S)3 

-sin(s-!!...) [1 +2[R4(1,K) + 12R 2(1,K)]]} +O(7~7/2). 
4 (8S)2 

( 4.5) 

In Eq. (4.5), 1z now seems to have a IS and therefore.,fT dependence; however, this again exactly cancels when Jj(s) is 
expanded in its asymptotic series resulting in 

1z:::::~ fI {sin(s _!!...) [15 - 4[R4( 1,K) + 12R2( 1,K)] ] 
2 -V 1TS 4 16(8s) 

+cos(s-!!...) [2R z(l,K) -1 + 5[21116-R4(1,K)]]} +O(r~7/2). (4.6) 
4 8 (8S)2 

Similarly, we have 

d1z:::::B IT {cos(s _ !!...) [ 9 + 4R2( 1,K) ] + sin(s _ !!...) [ 2R2(l,K) - 1 ]} O( r~7/2). (4.7) 
d Izl 2 -V 1TS 4 2(8s)2 4 (8s) + 

Next we turn to the 101 expression which involves modified Lommelfunctions evaluated at/3 +w and s. With/3 = /3 +' E( /3,K), 
U j ( /3,K), and u2( /3,K) become 

E(/3+,K) = (Izl +i/f7)/2s, UI(/3+,K) = (r+iJ3lzl)/41TS, Uz(/3+,K) =~ (r+iJ3lzl)(r+ Izl). 
2s Izl + iJ3r 

( 4.8) 
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(4.9) 

( 4.10) 

(4.11 ) 

( 4.12) 

and 

dIol :::::_1 Im{ 1 IT [cos(s _~) (2[R 2( /3+,K) - 2]) 
d Izl 2/3 ~1 + EZ(/3+,K) -V 1TS 4 8s 

_ sin(s _ ;) (1 + 2[R4( /3+'K\~;;R2( /3+,K)])]} + 0(7-7/2). (4.13 ) 

Now all of the contributions are at hand to obtain, through O( 7-7 /2), the asymptotic forms for the Green's functions. 
However, since the expressions are lengthy and not particularly illuminating, we list only the leading terms. Due to the simple 
analytic form of the bound state contribution, we list only the phonon portions, 

(4.14 ) 

G <I>'( ') $; { ( 1T) [ Yo I ( 1 ) 1 ( Yo 3) (2R 2(1,K) - 1) 2] p X,X,7::::: - cos s-- -- m +- Y2--- + 
1TS 4 6.J3 ~1 + EZ( /3+,K) 8 3 8 

_ sin(s _~) [YI sgn(z) Im( 1 )]} + O( 7- 3 / 2 ), 

4 12/3 ~1 + f2( /3+,K) 
(4.15 ) 

where in Eq. (4.16), K+=W+/S+. 
One may notice that although we have shown that there 

is no linear 7 term in the phonon contributions to the Green's 
functions, the full Green's functions have a linear 7 term due 
to the first bound state, namely, 

()(7)7!t,1 (X)!b.1 (x'). ( 4.17) 

This term may be understood by realizing that when com­
puting the response of a soliton to a perturbation, the effect 
of this term is to produce a coefficient of the translation 
mode!b,1 (x) which increases with time. Therefore the soli­
ton will move from its initial position as time progresses. 
Hence in this case, the linear term is associated with the 
translation of the soliton. 

The secularity referred to in the Introduction is made 
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(4.16 ) 

evident by the linear 7 behavior in the coefficient of the trans­
lation-mode contribution to the full Green's function. In­
deed, the use of the full Green's function in a perturbation 
theory of kink dynamics in the presence of external in­
fluences is equivalent to the procedure introduced by Fogel 
et al. 2 The use of the collective-coordinate method 10-13 
avoids the secularity associated with the translation mode 
since only the phonon part of the Green's function is em­
ployed 10-13 [together with the contribution from other 
bound states, if any (N)2)]. 

Note added in proof Recently we have been able to ob­
tain analytic expressions for the Laplace transform of the 
product of the Lommel function An (w,s) and the step func­
tion ()( 7 - Izl), with wand s related to 7 and z by Eqs. 
(3.23). Specifically we have 
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100 

dTe~ST(}(7-lzl)An(w,s) 

=~exp(-lzlfi2+T)[ 1 ]n-l, 
2s ~s 2 + 1 ~s 2 + 1 + S 

where s is the Laplace transform variable. This leads to the 
remarkably simple expression for the Laplace transform of 
the sine-Gordon Green's function 

GSG(x,x';s) = 100 

d7G SG (X,x',7)e- ST 

= exp( - Izlfi2+T) 
2 

X { 1 _ 132 _133 s~n(z)}, 
?+T sVs 2 +1 S2 

with similar expressions for the (r and the DQ Green's func­
tions. 

V. REPRESENTATIVE PLOTS 

To illustrate the behavior of the Green's functions, we 
present several plots of the phonon part of the SG Green's 
function [plots for the other Green's functions derived look 
very similar] in the x-x' plane for different values of 7. The 
numerical values for these plots are easily obtained from the 
formulas in Appendix C. 

Since the Green's functions depend only on '7" = t - t', 
we are free to choose t ' and let t be fixed by 7 and t '. Choosing 
t' = 0, Fig. 1 shows the evolution for the phonon contribu­
tion as time progresses. To interpret these plots, recall that 
G(x,x',t,t') may be viewed as the response of the system at 
(x,t) due to a delta function source at (x' ,t '). Fixing x' = 8 
in Fig. 1 (a), we move in the direction of increasing x, start­
ing at x = O. Until x is on the order of 2, G(X,X',7) is zero, 
meaning that the disturbance has not yet had enough time to 
propagate from x = 8 to x < 2 (or x> 14). For 7 = 4, time 
has progressed (recall we have fixed t' = 0) and the distur­
bance has propagated out further. At t = 8 the pulse reaches 
x = 8. In Fig. 1 (e )-1 (h) the pulse has propagated off the 
scales, leaving behind "ripples." As 7 further increases the 
amplitude continues to decrease in accord with the asympto­
tic behavior derived in Sec. IV. 

If one were to follow the procedure outlined in the pre­
ceding paragraph with x' = 3, one would note that before 
the pulse arrives at a particular position, the Green's func­
tion is not zero. This is because we have plotted the phonon 
contribution, which has a nonretarded part which exactly 
cancels the bound state contribution. It is this nonretarded 
part which gives a nonzero value for the phonon contribu­
tion to the Green's function "before the pulse arrives." We 
see this only near x = x' = 0 because the bound state contri­
bution is proportional to e - Izl (SG), sech(x )sech(x') [¢4], 
ore-Ixle~ Ix'i (DQ). 
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APPENDIX A: EVALUATION OF THE INTEGRAL J( (12) 

The integral J( 13 2) [Eq. (AI)] differs from Hardy's 
integral for Lommel functions 14,22 only in that in the de­
nominator t 2 + 1 is replaced by t 2 + 13 2. The only restriction 
placed on 13 is that Re ( 13) > O. We first consider the case in 
which b < 0 for which we have from the tables23 

1 Loo t dt . [ b ] J(f32)=- 2 2 smat +-
1T 0 t +13 t 

_ 1 _ (a/3- bl{3) --e , 
2 

where the restriction Re( 13) > 0 is required. 

(Al) 

For b > 0 we distinguish between b < a and b> a. The 
latter may be reduced to the b < a case by using the relation24 

~ roo 2t dt 2 sin[at +~] 
1T Jo t + 13 t 

= Jo(2J(ili) -~ roo 2 tdt 2 sin['!!"'-+bt]. 
1T Jo t + 1113 t 

(A2) 

Therefore we need only consider b < a. We may further re­
strict ourselves to 1131 = 1 by writing 13 = 1131 e i

'/' which al­
lows us to write 

1 Loo t dt . [, b'] = - sm a t + - , 
1T 0 t 2 + e2i'/' t 

(A4) 

where a' and b ' are a and b scaled by 111131. Therefore with 
b <a and 1131 = 1, we define 

x=2J(ili, e= (lIf3)~b la, (AS) 

in terms of which we may write J( 13 2
) as 

J( 13 2) = ~ roo tdt sin[~ (t ~ + ~ fI)], 
1T Jo t 2 + fj2 2 -V b t -V a 

(A6) 

= - sm[x cosh(u)], e foo eU du . 
1T _ 00 eeu + lIeeu 

(A7) 

X sin [x cosh(u) ], (A8) 

1 100 

d7 e
2 

- 1 + 2r . 
= - 2 2 sm(x7), 

21T I ~ () +7 
(A9) 

with 

()=- e-- =-- --Re(f3) -IIm({3) , 1 ( 1 ) e'2 +.1 {e'2 - 1 . } 
2 e 2e' e,2 + 1 

(AlO) 

R. J. Flesch and S. E. Trullinger 1626 



                                                                                                                                    

1.0 

(a) 

o.s 

0.0 

1.0 

(c) 

O.S 

0.0 

1.0 

(e) 

O.S 

0.0 

1.0 

(g) 

O.S 

0.0 

s.o 
).(' 

'(~ 2.000 

0.0 

'(~ 6.000 

0.0 

'(~ 12.000 

0.0 

'(~ 14.000 

1.0 

o.s 

0.0 

1.0 

O.S 

0.0 

1.0 

o.s 

0.0 

1.0 

O.S 

0.0 

(b) 

(d) 

(I) 

(h) 

'(~ 

0·0 

'(~ 8.000 

0.0 

'(~ 10.000 

0, a 

'(~ 16.000 
FIG. I. The time evolution of the phonon contribution to the SG Green's function G(x,x',t - t ') in the xx' plane. Here we have chosen t' = 0, therefore T = t. 
In Figs. 1 (a)-I (d) we see a disturbance "propagating outward," 1 (a) and 1 (b) show the nonretarded portion near x = x' = 0, In 1 (e)-I (h) the pulse has 
moved off of our scales, leaving behind undulations which decrease with increasing time. 
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Im[z] 

® 
is 

FIG. 2. The contour r for the evaluation of the integral J( (32). 

c'=~b la. (All) 

Since Re ( {3) > 0 and c' < 1, 8 is never pure imaginary; there­
fore 8 2 does not lie on the negative real axis and the only 
poles of the integrand in Eg. (A9) are at r = ± 1. We evalu­
ate Eg. (A9) by considering the contour integral r ( (32) 
given by 

1 dz eixz c2 
- 1 + 2z2 

r«(32)= 
r ff=t 8 2 +Z2 

(AI2) 

With the branch cuts chosen as in Fig. 2, r ( (32) becomes 

r( (32) = 2i j'''' dr sin(xr) c
2 

- 1 + 2r 

JI ~ 8 2 +r 
. II dr e iXT c2 

- 1 + 2r2 
- 21 

-I ff=-? 8 2 +r 
(A13) 

Therefore we have for J ( (32), 

J( (32) = _1_ r( (32) + _1_ 
21Ti 2 21T 

xiI dr cos(xr) c2 - 1 + 2r2 

o ff=-? 8 2 +r 
= Res[f(z); - iO] + _1_ 

2 21T 

(AI4) 

i"/2 C2 - 1 + 2 cos2 (q?) 
x dq? cos[x cOS(q?)] 2 ~ , 

o 8 + cOS~(q?) 
(AI5) 

where Res [f(z); - i8] is the residue of f(z) evaluated at 
- i8 withf(z) given by the integrand ofEg. (AI2). In writ­

ing Eg. (A 14) we have used the fact the contributions to 
r ( (32) from the large and small semicircles vanish when 
R ---> 00 and 8 --->0, respectively. Evaluating the residue at the 
simple pole - i8 we have 

Res[j(z);-i8] =e-(af3
-bl{3). (AI6) 

The remaining integral in Eg. (A 15 ) may be evaluated by 
noting that 

c2 
- I + 2 cos2 (q?) _ = 

- 4 L (iC)2k cos(2kq?). 
8 2 + cos2(q?) - k= I 

(AI7) 
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Since c < 1, the sum in Eg. (AI7) is uniformly convergent 
and we may insert it into Eg. (AI5) and integrate term by 
term. We also make the substitution 

00 

cos[x cos(q?)] = Jo(x) + 2 L (- 1)nJ2n (x)cos(2nq?). 
n=l 

(AI8) 

The double sum resulting from substitution of Egs. (AI7) 
and (AI8) into Eg. (AI5) is reduced to a single sum by 
orthogonality ofthefunctions {cos (2nq? )} on [0,1T12], leav­
ing 

_1_ i oo 

dr cos(xr) c
2 

-0 I + 2r 
21T 0 ff=-? 8- + r 

= L c2kJ2k (x), 
k=1 

(AI9) 

(A20) 

Finally collecting Egs. (AI), (AI6), and (A20) we have 

J( (32) =! r (af3 - bl{3) - 8(b )A2 [2b 1(3,~2ab ] . 
(A21) 

APPENDIX B: PROPERTIES OF LOMMEL FUNCTIONS 
OF TWO VARIABLES 

In this Appendix we review some of the properties of the 
Lommel functions Un (W,s) and derive additional relations 
and limiting forms for the special case in which the argu­
ments are of the form 

w=(3(r-lzl), 

s=~, 

(Bla) 

(BIb) 

with (3 a complex constant independent of rand z. Below we 
list some properties which we shall use to derive additional 
relations. We restrict ourselves to the Un (W,s) Lommel 
functions although similar relations exist for the V" (w,s) 
functions and may be found in the literatureI4.25-27 along 
with many other properties not listed here. Using the recur­
rence relation for Bessel functions,28 and the defining series 
for Lommel functions, 

Un (W,s) = mto (_1)m(;ym+
n
J2m +n(S), (B2) 

one may derive the following: 

Un (W,s) = (wls)nJn(s) - Un+ 2 (w,s), (B3) 

aUn (W,s) s 
-~--= --Un+l(w,s), (B4) 

as W 

aUn (W,s) 1 I (S)2 
----=-Un_I(W,S)+- - Un+I(W,S). 

aw 2 2 W 
(B5) 

For the variables (w,s) as defined in Eg. (BI) we have 

aUn ( (3w,s) 

a Izl 

= - + [(3U"_1 «(3w,s) + ~ Un+ I «(3W,S)] , (B6) 

aUn ( (3w,S) 

ar 
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= - + [/3Un _ 1 ( /3w,s) - ~ Un + 1 ( /3w,S) ], (B7) 

a
2
un (/3w,S) = ~ [/3 2U _ (/3w,S) + 2U (/3w,s) a21z12 4 n 2 n 

+ ; 2 Un + 2 ( /3w,S) ] , (B8) 

a
2
un (/3w,S) = ~ [/3 2U -2 (/3w,S) - 2Un (/3W,S) a2-? 4 n 

+ ; 2 Un + 2 ( /3w,s) ] . (B9) 

Subtracting Eq. (B8) from Eq. (B9) we have 

a2
Un(/3w,s) _ a2

Un(/3w,s) = _ U (/3ws). (BlO) 
a2-? a21z12 n' 

Therefore Un ( /3w,s) is a solution of the "massive" Klein­
Gordon equation (at least in the positive half-space, since 
Izl >0). 

The above properties hold for arbitrary complex wand 
s. We now focus on the modified functions in which w is pure 
imaginary (w --+ iw). Introducing the notation 

An (w,s) = i- nUn (iw,S) , (Bll) 

with wand S given by Eq. (B 1), we consider the limit z -> ° 
for which 

w/s= [(r-Izl)/(r+ Izl)] 112-> 1. (B12) 

For n even we have 
n-l 1-Jo(r) 

A2n (r,r) = - m~IJ2m(r)+ 2 (B13) 

For odd n we use an integral representation 

n - 1 1 i oo 

A2n +l (r,r) = - L J2m +l (r) +- dxJo(x), 
m=O 2 0 

or in terms of Struve functions,29 

A 2n + 1 (r,r) 

n-l 1 
= - m~oJ2m+l(r)+2 

(B14) 

x {rJo(r) + ~r [Jl(r)Ho(r) -Jo(r)H l(r)]}. 

(B15) 

Finally we consider the limiting case of r = Izl, i.e., S = w 
= 0. Since for all n> 1 I n (0) = 0, we have 

Ao(O,O) = 1, 

An (0,0) = 0, n> 1. 

(BI6a) 

(BI6b) 

While some of the properties (especially B 10) derived above 
are useful for the actual derivation of the Green's functions, 
they are most useful when checking the analytic expressions 
by operating on them with the differential operator 

at! -axx + V"[<Pk(X)]. 

APPENDIX C: NUMERICAL EVALUATION AND 
ASYMPTOTIC FORMS FOR MODIFIED LOMMEL 
FUNCTIONS OF TWO VARIABLES 

(BI7) 

Numerical evaluation of the Green's functions derived 
in Sec. III requires an evaluation of the modified Lommel 
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functions. Although Lommel functions of two real vari­
ables30 and two purely imaginary variables31 have been stud­
ied, to our knowledge no one has yet considered the modified 
functions. Below we present methods which are valid for w 
complex and s real (since we start by considering the modi­
fied functions and w may be complex, our methods also in­
clude the case of two real variables). Representing the first 
argument as/3w, where 1/31 = 1 and wands are real, we have 
for the defining series 

00 (/3w )2m + n 
An (/3w,s) = m~o -S- J2m + n (s), 

from which we deduce the symmetries 

An( -/3w,s) = (-l)nAn(/3w,s), 

An (/3w, - s) = An (/3w,s). 

(C1 ) 

(C2a) 

(C2b) 

From Eqs. (C2) we see that we need only investigate the first 
quadrant ofthes-w plane. Another relationship exists which 
allows us to further restrict our attention to the angular re­
gion (0,1T/4) , i.e, the first octant. We obtain this property by 
recalling the generating function for Bessel functions32 

(C3) 
m= - 00 

where K=W/S. Using the symmetry of the Bessel functions 
about the origin we have, 

COSh[!...- (/3K - _1_)] = f (/3K)2m J2m (s), (C4a) 
2 /3K m = - 00 

sinh[!...- (/3K - _1_)] = f (/3K)2m + lJ2m + 1 (s). 
2 /3K m = - 00 

(C4b) 

Next we note that 

An (L ,s) = f (_s_)2m + nJ2m + n (S), 
/3w m=O /3w 

(C5) 

which leads us to 

sinh[ ~ (/3K - ;K)] = Al ( /3w,s) - Al (;: ,s) , (C6a) 

cosh [~ ~K - ;K)] 
= - Jo(s) + Ao( /3w,s) + Ao (;: ,s) . (C6b) 

From Eqs. (C6) we see that we have a relationship which 
allows us to consider only the region of the first quadrant of 
the s-w plane in which w/s < 1, namely the first octant. In 
this region the series definition converges uniformly; how­
ever, that rate of convergence is very slow when w/s ap­
proaches 1. By comparison with the geometric series we see 
that since I n (s) < 1 \In, we have as an error estimate for 
truncation after N terms 

(C7) 

We note that the error estimate in Eq. (C7) is a very crude 
one as it does not take into account the decaying nature of 
the Bessel functions; however, it suffices for our calcula­
tions. 

As w/s-.l, the number of terms in the series needed to 
attain a given accuracy becomes unreasonably large. For 
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values of K = wls larger than some Ko, we turn to an asymp­
totic expansion33 of the modified Lommel functions. We be­
gin by following Mayall's34 procedure for obtaining an inte­
gral representation for the Lommel functions by substitution 
of an integral representation for the Bessel functions into the 
series and summing the series explicitly. We restrict our­
selves to deriving expressions for Ao and A I' For small n the 
asymptotic expansion for An may be obtained from the re­
currence relation for Lommel functions. The large n limit 
has not yet been examined. 

Starting with the integral representation for Bessel func­
tions 

J2m (s) = ( - 1)m (1T de e'SCOS(f!)cos(2me), (C8) 
1T Jo 

we have 

Ao( /3w,s) 

= f (/3K)2m( - l)m..!..i1T de e'scos(f!)cos(2me), 
m~O 1T 0 

=..!.. [de 1 + ( /3K)2 cos(2e) 
1T 0 1 + 2( 13K) 2 cos(2e) + ( /3K)4 

= Jo(s) + I - ( /3K)4 
2 21T 

i
tT ejscos(8) 

X de , 
o 1 + 2( /3K)2 cos(2e) + (/3K)4 

_ Jo(s) + (/3) e( /3,K) 
- al,K 

2 1T 

where 

e( /3,K) == [1 - ( /3K)2 ]!2/3K, 

a l (/3,K) == [I + (/3K)2 ]!4/3K, 

(C9) 

eiScos(8) , 

(ClO) 

(Cll) 

(CI2) 

(Cl3a) 

(Cl3b) 

and uniform convergence of the sum has been used. Similar­
ly we may write 

A
I

( /3w,s) = - a2( /3,K) e( /3,K) d 
1T ds 

(CI4) 

with 

1 + ( 13K) 2 13K [1 + e2 
( /3,K) ] (C 15 ) a 2 ( /3,K) == + . 

4 2e( /3,K) 

At this point, Mayall's method no longer applies (unless 
/3 = ± i) and we turn to an alternate derivation. 

The integral 

e i1T eis cos( 8) 

I(e,s) = - de , 
1T 0 e2 + cos2 (e) 

(CI6) 

which occurs in Egs. (CI2) and (CI4), is a strong function 
of e since in the limit as e.-O (wis.-I), we obtain a delta 
function. Other major contributions occur at the stationary 
points e = 0,1T. To evaluateI(e,s), we substitute t = cos(e), 
deform the contour and represent the integrals as a residue 
which captures the strong E behavior, plus two integrals for 
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FIG. 3. The contour for the computation of the asymptotic expression for 
the modified Lommel function. 

which asymptotic expansions are easily derived. Substitut­
ing we have 

E fl e'st 
I(E,S) = - dt , (CI7) 

1T -I (e2+t2)~ 

=- 21TiRes[j(z),ie] - dz------e{ f e
isz 

1T c, (~+ r)v'T=? 

_ ( dz e'sz } 
10, (~+ Z2)v'T=? ' 

(CI8) 

wheref(z) is given by 

eisz 

fez) = , 
(e2 + Z2)v'T=? 

(CI9) 

and the contours are shown in Fig. 3. We have used the fact 
that as 0.-0 andyo'- 00, the contributions from the contours 
Col' Co2 , and C2 vanish by Jordon's lemma. Evaluating the 
residue and shifting the variables, we have 

e- ES 

I(e,s) =---
If+? 

(C2I) 

where 

(C22) 

= 2ie's LX> dx [~+ ux2 ::x;2]~' (C23) 

As written in Eg. (C23), J is in one of Dingle's35 standard 
integral forms which has as an asymptotic expansion 
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Jz2ielS 
-- e-F;, I Q" .~ 00 

2F2 ,=0 

where 

Qo = Go, 

QJ = ( - .J2/3.[iiF~/2) [ - 3GJF2 ], 

Q2 = (1/24F~ ) [ 12G2F~ ], 

Q3 = ( - .J2/135.[iiF~/2) [ - 45G3F~ ], 

Q4 = (1/1l52F~)[ 144G4F~ ], 

Fy = (d~ )Ysx2
, 

G
y 

= (!r [€2 + Ux2 + 1)2]~ 

(C24) 

(C25) 

(C26) 

(C27) 
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Chiral gauge theories are studied with a special emphasis on the treatment of gauge degrees of 
freedom so as to obtain a gauge-invariant effective action from which current commutators can 
be evaluated. It is explicitly shown in a simple example that these commutators are those to be 
expected in a gauge-invariant theory. 

I. INTRODUCTION 

It is well known that theories where Weyl fermions in­
teract with gauge fields can be inconsistent due to the exis­
tence of anomalies 1 which usually manifest through noncon­
servation of the fermion current. Quantization of such 
models recently received renewed interest after the proposal 
of Faddeev and Shatashvilli2 concerning the construction of 
a sensible quantum theory by introducing a new physical 
(chiral) field with a Wess-Zumino action, this leading to a 
gauge-invariant theory. There has been also progress in the 
comprehension of how chiral theories can be consistent and 
unitary although non-gauge-invariant after the works of 
J ackiw and Rajaraman3 and others4 on two-dimensional 
chiral models. 

More recently, it has been shown by Babelon, Schapos­
nik, and Viallet5 that a proper treatment of the gauge degrees 
of freedom in chiral theories uncovers the presence of the 
Wess-Zumino action: the group of gauge transformations ac­
quires the status of a physical field and the anomaly is ab­
sorbed. This phenomenon, which also happens with the 
Liouville action in the quantization of strings, as first shown 
by Polyakov,6 causes the Wess-Zumino action to naturally 
emerge in the process of quantization without ad hoc intro­
duction of additional fields. On the contrary, a group-valued 
field, which at the classical level was "lost" due to gauge 
invariance, naturally reappears after quantization. Similar 
ideas were independently developed by Harada and Tsut­
sui. 7 

Following this approach in the present work we give an 
analysis leading to the current algebra of chiral gauge theor­
ies. Although the current commutators we explicitly evalu­
ate correspond to a simple (two-dimensional) model, the 
scheme we develop, based in the definition of an effective 
gauge-invariant action from which current-current correla­
tion functions can be computed, is applicable to realistic 
four-dimensional theories. Some of the results in this paper 
have been already discussed in previous works. 3

-
7 We think, 

however, that it is worthwhile to present them in light of the 
framework established in Ref. 5 with the aim of clarifying 
some obscure points concerning quantization of chiral gauge 
theories, in particular, in connection with current algebra. 

a) Postal address: Departamento de Fisica. UNLP, Casilla de Correos No. 
67,1900 La Plata, Argentina. 

II. THE GENERAL TREATMENT 

The developments in Ref. 5 start from the observation 
that, when quantizing a gauge theory in the path-integral 
approach, the generating functional should be considered as 
an integral over the whole space of connections rather than 
as an integral over the orbit space. This distinction causes no 
harm when Dirac fermions are present (no axial couplings) 
since, as first shown by Faddeev !lnd Popov8 for pure Yang­
Mills theories, an integration over the gauge group factor­
izes. On the contrary, when Weyl fermions are present, the 
Faddeev-Popov procedure has to be revised and a trivial 
factorization is no more valid. Instead, a Fujikawa Jacobian9 

arises leading to an effective theory which contains the gauge 
group as a physical field and which is, remarkably, gauge 
invariant. 

Let us start by briefly describing this facts by using the 
original Faddeev-Popov approach (a more formal presenta­
tion can be found in Ref. 5). The generating functional for a 
gauge theory with chiral (left handed for definiteness) fer­
mions is 

z - J 9 A 9qi 9'1' eiS [A.q;.'i' l - il. 

with 

S = - !Fil."Fil.V + qi D(A)'I', 

D(A)=(iq) +A)(I-Y5)/2, 

(1) 

(2) 

(3) 

where the left-handed projector ensures that fermions have 
only one chirality. As stressed in Ref. 10, Z should be consid­
ered as an integral over the whole space of connections Ail. 
rather than as an integral over the orbit space. Usually, in the 
gauge fixing procedure, one passes from the former to the 
latter by factorizing a gauge-group integration; however, 
when Weyl fermions are present the standard procedure has 
to be reconsidered. Indeed, let us write 

1 = Ll FP (A) J 9g 8[F [A gJ], (4) 

where the Faddeev-Popov determinant LlFP (A) is obviously 
gauge invariant, 

LlFP [A ] = LlFP [A g] 

with 

A! =g-IAil. g + (lIi)g-1 ail. g 

(5) 

( 6) 

and 9 g an appropriate measure over the gauge group. After 
insertion of identity (4) in (1) we get 
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z= f .@Aj-t.@W .@'II.@geiS[A,Q;,WI8[F[Ag]]aFP(A). 

(7) 

In trying to factorize the group integration one usually ex­
ploits gauge invariance of the action S, of aFP and of .@g. 
Also 

(8) 

Now, when writing a relation of the kind (8) for the Weyl 
fermion measure, one has to include a Fujikawa Jacobian9 in 
the form 

(9) 

since it is not possible to define in this case a gauge invariant 
measure (see below). 11,12 We have explicitly indicated the 
AI' dependence of the Jacobian so as to stress its appearance 
due to the regularization procedure. 

After relabeling variables one finally has 

Z = f .@Aj-t 8[F[A ]].@W .@'II .@g 

XJ(g,A g-')eiS[A,q;,WlaFP (A). (10) 

As explained above, the presence of the Jacobian pre­
vents the factorization of the gauge group integration and so 
the gjield has acquired the status 0/ a physicaljield. Also, as it 
was shown in Ref. 5 the effective action defined by integra­
tion over fermions and the g field, 

eiSeff[Al=Z - =f.@W.@'II.@g W,W,g 

X exp(i f W D(A) 'II dX) J(g,A) (11) 

is gauge invariant, i.e., it depends on the gauge equivalence 
class of AI' and not on the particular choice of a representa­
tive on the orbit. This independence on the gauge condition 
choice then translates into BRS invariance.5 

Let us now discuss with more detail the evaluation of the 
Jacobian defined by relation (9). The natural measure for 
fermions, .@W .@'II exp(IJW D(A) 'II dx), once integrated de­
fines the fermion determinant. Hence one gets from (9): 

J(g,A) = det D(A )/det D(A g). (12) 

Now, as it is well known, the definition of Weyl fermion 
determinants is problematic since the corresponding Dirac 
operator maps negative chirality spinors into positive chira­
lity ones and, consequently, it does not have a well-defined 
eigenvalue problem.9.11.12 Precisely this problem is at the 
root of the anomalous behavior of chiral gauge theories. To 
handle this, one can define l2 an operator D(A) acting on 
Dirac fermions, 

D(A) =D(A) +i~(1 +Y5)/2=i~ +A(1-Y5)/2, (13) 

which then leads to a well-defined eigenvalue problem. [As 
explained in Ref. 12 the doubling in the number of degrees of 
freedom implied by ( 13) affects only the overall normaliza­
tion of the fermion integral since the positive chirality pieces 
do not couple to the gauge field.] One then defines 

det D(A) =det D(A) IReg' (14) 

with the rhs appropriately regularized since the product of 
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eigenvalues of the Dirac operator (13) grows without 
bound. The crucial point in this scheme is that the D(A) 's 
eigenvalues are not gauge invariant, this being at the origin 
of the non triviality of J. Concerning the regularization pre­
scription, the guiding precept is usually gauge invariance. In 
the present case, however, once definition (14) has been 
adopted there is no more gauge invariance principle to in­
voke and, if one uses, for example, the heat-kernel regular­
ization technique, more general regulators thanD(A) can be 
used. As we shall see below, this fact can be exploited to 
render the resulting theory not only gauge invariant but also 
unitary. 

It is important to note that the Jacobian (12) can be 
identified with a one cocycle13 WI (A;g): 

J(g,A) = e ~ 21Tiw(A;g), 

which satisfies the condition 

wl(A h;h -Ig ) = wl(g,A) - wl(h,A), 

(15) 

(16) 

this being at the origin of the explicit gauge invariance in the 
generating functional (11). 

The Jacobian can be computed by integration of the axi­
al anomaly. Indeed, consider an infinitesimal transforma­
tion 

g = 1 + i8£), 

whose corresponding Jacobian is9 

J(88) = exp(l tr f .xI(A)88 dX) 

which .xl the consistent anomaly, 

(17) 

(18) 

(D '1')- = .xI(A) =1- 8 log J(88,A). (19) 
j-tJ w.w i 88 

The finite transformation Jacobian is gotten just by iteration 
of infinitesimal transformations. The simplest way to do it is 
to introduce a parameter t, O<t<; 1, to build up the finite 
transformation from the infinitesimal one. The answer is14 

J(g,A) = det D(A) = exp(i tr f .xl (A g(t») 8 dt) , 
det D(A g) 

(20) 

where 

g(t) = eire. (21) 

Coming back to the effective action ( 11 ), note that it is 
analogous to that proposed by Faddeev and Shatashvili. 2 In 
the present formulation it is important to note that no chiral 
field has to be introduced ad hoc to recover gauge invariance. 
It is the gauge group which plays a physical role solving the 
anomaly problem. Of course g(x) became physical after 
quantization since it trivially decouples the classical equa­
tions of motion. 

From the effective action (11) one can compute v.e.v.'s 
of product of currents just by differentiation. For example 
the current--current correlation function is given by 

82Seff [A] 
Gj-ty (x,y) = (ij-t (x),iy (y) = 8A j-t(x)8A Y(y) 

withij-t = eWYj-t'll. 

(22) 

Current commutators can be evaluated from (22) by 
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means of the Bjorken-Johnson-Low method. IS We shall 
now show, by studying a simple example, how these commu­
tators are those expected in a gauge invariant theory. 

III. A TWO-DIMENSIONAL EXAMPLE 

We shall consider the chiral Schwinger model3 (two­
dimensional quantum electrodynamics with Weyl fer­
mions). In order to obtain Self we have to compute the Jaco­
bian from (12) or (20). Since the model is two dimensional, 
each determinant in J (and not only its ratio) can be com­
puted exactly. As stated above, there is a regularizati0t0'ree­
dom associated to the noncovariance of the operator D(A ) 
used to define the Weyl-fermion determinant. Following 
Ref. 14, the fermion determinant can be written as 

det D(A) =det D(A) 

with 

=ffexp( -i J d 2
x L dttrrS(~-1])IReJ 

(23) 

Af.' = - (1/e)(cf.'V JV~ - Jf.' 1]), (24) 

and Reg meaning some regularization prescription. In two 
space-time dimensions determinants can be evaluated exact­
ly since a chiral change transforms the problem to a free one 
(see Refs. 14 or 16). In the usual Schwinger model (Dirac 
fermions) this fact naturally leads to the following regular­
ization: 

det »= lim ff 

with 

xexp( -iJd 2
X LdttreD2'IM'rs(~_1])), 

(25) 

Dt = e(Y'</>- i'l)'(ia + A)e(Y'</> + i'l)'. (26) 

This choice ensures gauge invariance (see Ref. 14 for a de­
tailed discussion). When Weyl fermions are present~a more 
general Dt is acceptable since, as we stated before, D(A) is 
not gauge covariant. Following Refs. 4 we shall choose, in­
stead of (26) 

Dt = eU/2) (1 + Y,)('1- </»' 

X[D(A) + (a/2)A(l + rs)]e- U/2)(l+Y,)('1-</»', 

(27) 

with a a parameter to be determined demanding unitarity 
and consistency.3 One then finds for the determinant (23), 

detD(A) =exp(8~ J d 2
x[(l +a)~D~ 

+ (1- a)1]D1] - 21]D~]). (28) 

Now, the effective action (11) can be written in the form 

/seff[Al = J fPgJ(A!-',g)detD(A) = J fPgdetD(Ar') 

(29) 

with 
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Using (28) with 1]-1] - () and explicitly performing the 
Gaussian () integration we finally get 

-I a 2 . 2 J Self (A) =--- ~D~d X, 
81T 1 - a 

(30) 

which coincides with the normal Schwinger model result for 
a = 2. The important point is that (30) is gauge invariant for 
arbitrary a. As we shall see, the current commutators are 
those expected in a gauge-invariant theory provided a > 1 so 
that the Schwinger term has a coefficient with the correct 
sign ensuring positivity. 17 This condition for a can be also 
derived by noting that the effective action (30) plus the F~v 
term corresponds to a "photon" with a mass - (1/ 
41T) (e2a 2/1 - a) and hence for a < 1 the model would pro­
duce tachyons.3 One can explicitly construct the current 
commutators from (30) and (22). One gets for Gf.'V (x,y): 

Gf.'v(x,y) = - (ie 2/41T)[a 2/(l-a)] 

X (8f.'v J~ Dx~ I Jya + Jf.'X J vy Dx~ I) (31) 

with 

Dx~ 1= (1!21T)loglx - yl. (32) 

Following the Bjorken-Johnson-Low method!S one writes 

finally getting 

[jO,j!]et = ( - ie2/41T) [a2/(a - 1) ]8' (x - y), (34) 

[jo,jole, = 0, (35) 

which are the relations expected in a gauge-invariant theory. 
Note that with our conventions the Schwinger term coeffi­
cient has to have a negative sign!7 this forcing a > 1. 

To conclude, both the general analysis leading to the 
effective action ( 11) and the results for the current commu­
tators in the simple model indicate that gauge invariance is 
maintained at the quantum level in chiral models if the gauge 
degrees of freedom are properly treated. No extra matter 
fields (as can be envisaged following Ref. 18) or chiral fields 
(as advocated in Ref. 2) have to be ad hoc introduced. It is 
the gauge group which becomes physical, solving the prob­
lem of gauge anomalies. It is interesting to note that, al­
though gauge invariance is maintained, only using the regu­
larization freedom (at least in the two-dimensional 
example) ensures a consistent unitary theory. We shall re­
turn to this point thoroughly in a future work. 
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Footing on the infraparticle picture of quantum electrodynamics, a Poincare covariant 
description of asymptotic sectors, containing n charged particles (n) I) and the associated 
radiation field, is given. The analogy of this method to Wigner's description of elementary 
particles is discussed. 

I. INTRODUCTION 

The presence of massless particles in quantum field the­
ories causes some complications due to the fact that physical 
states, of finite energy and momentum, may contain an infi­
nite number of "soft" massless particles. A physically mean­
ingful number operator cannot exist then for these particles, 
and besides the well-known difficulties encountered in per­
turbation theory this leads to the additional problem of 
choosing the correct state space of the theory. One might 
hope that some information may be obtained already from 
the study of the asymptotic fields, which are much easier to 
handle than the interacting fields of the full theory. Previous 
attempts to find the correct asymptotic state space for QED 
have led to two different directions, which also yield quite 
different qualitative features. 

One of these proposals is the "infraparticle picture," as 
discussed by Frohlich et al. in Refs. 1 and 2 (for a more 
general discussion with respect to full QED see also Ref. 3). 
It has the following main feature: the representation of the 
(asymptotic) photon field is coupled to the momenta of the 
charged particles, with inequivalent representations belong­
ing to different momenta. As an "infraparticle," the charged 
particle is thus always surrounded by a dynamically coupled 
"soft photon cloud." In Refs. 1 and 2 also a definite choice 
for the momentum dependent photon representation is 
made: it is taken to be a generalized coherent representation, 
as suggested by a "correspondence principle" formulated in 
these references. 

With this choice, however, the Poincare covariance of 
the charged one-particle sector is broken; i.e., Lorentz boosts 
are not unitarily implementable in this sector. However, in 
view of the importance of relativistic covariance in proving 
analyticity properties of Wightman functions, which in turn 
are essential for some celebrated theorems of quantum field 
theory, one should perhaps look for suitable modifications of 
the above picture in order to reestablish relativistic symme­
try in charged particle sectors. This is the aim of the present 
paper, which is a shortened version of Ref. 4. 

For this purpose we shall use another class of so-called 
symplectic representations of the photon field (see Refs. 5 
and 6), which are also useful in the alternative "infra­
vacuum" description of asymptotic QED. (A short discus­
sion of the latter may be found in Ref. 7). In these represen­
tations the photon field contains infinitely many soft pho­
tons of finite total energy, but in contrast to coherent 
representations not only space and time translations but also 
space rotations are unitarily implementable. We construct 

Poincare covariant asymptotic sectors with a single charged 
particle by "boosting" a fixed symplectic representation of 
the photon field along the particle momentum. This con­
struction is described in more detail in Sec. III. Crucial for 
the resulting Poincare covariance is the Euclidean and time 
translation covariance of the symplectic representations, 
which excludes coherent representations from this proce­
dure. 8 Nevertheless we arrive in this way at an "infraparti­
cle" picture, since again the photon field is dynamically cou­
pled to the particle momentum. This method may be 
generalized to asymptotic sectors containing an arbitrary 
number of charged particles and antiparticles with arbitrary 
spin. 

We turn to a short summary of the contents of the sec­
tions. Section II contains preparatory material for the boost­
ing procedure by recalling a general construction of covar­
iant field representations as described in Refs. 9 and 10. In 
Sec. III we apply this construction to the free photon field. 
This procedure may be interpreted as the "boosting" men­
tioned above, and leads to a relativistically covariant sector 
with one charged scalar particle. Some properties of this sec­
tor are discussed. In Sec. IV the generalization to a particle 
with arbitrary spin is made. An appealing feature of the re­
sulting description of infraparticles is its close analogy to 
Wigner's description of "ordinary" elementary particles by 
induced representations [m,s 1 of the Poincare group. Sec­
tion V contains the construction of covariant charged n-par­
ticle sectors (n) 1) with r identical (infra)particles and 
n - r identical antiparticles. The non uniqueness of the Poin­
care group representation in infraparticle sectors (as implied 
by the reducibility of the photon field) is discussed in Sec. 
VI. Physical arguments for choosing the "correct" represen­
tation are given. Some material concerning unitary represen­
tations of symmetry groups in reducible covariant represen­
tations of C *-algebras is collected in the Appendix. 

Two additional remarks might be appropriate. 
( 1) In this paper we are dealing exclusively with sectors 

containing charged particles. The existence of a vacuum 
state is therefore not touched by our considerations. 

(2) It is not yet known whether the representations de­
scribed here indeed appear as-say LSZ-type-limits in full 
QED. 

We close this introduction with some technical state­
ments, mainly in order to fix the notation. 

We shall assume that there exists a C *-algebra m, asso­
ciated with the free asymptotic electromagnetic field, on 
which the Poincare group P 1+ acts as a symmetry group. 
The automorphism corresponding to the group element 
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gEP 1+ is denoted by 'Tg. The map g ..... 'Tg forms a representa­
tion of the Poincare group. If in a representation 1T of m, 
acting on a Hilbert space JY, these automorphisms are im­
plemented by a unitary group representation [i.e., if 
1T('Tg (A») = U(g)1T(A) U(g) -I for allAEm], we call it a co­
variant representation of m and denote it by (1T, U,JY). 

U sing standard results of C *-algebra representation the­
ory (see Refs. 11 and 12), it is shown in Ref. 1 that any 
representation 1T ofm in the charged asymptotic one-particle 
sector may be decomposed into a direct integral over the 
particle momenta: 

1T = t/Jp p. J d3 

"dR' ~mZ + pZ 
(1.1 ) 

If the "component representations" t/Jp are mutually in­
equivalent for different momenta, we have the above-men­
tioned coupling of the photon field to the particle momen­
tum characteristic for the infrapartic1e situation. Instead of 
using coherent representations for t/Jp as in Refs. 1 and 2, we 
shall use the "symplectic" representations (t/Jp ,JYp) de­
scribed in Sec. III. These representations have been intro­
duced in Ref. 5, where the Coulomb gauge was used; in Ref. 
6 they were translated into the Gupta-Bleuler gauge. Since 
here we require a positive Hilbert space metric, our represen­
ation space JYp has to be identified either with the physical 
state space of an indefinite metric version of QED (Ref. 6), 
or with the state space of the Coulomb gauge.5 

II. REDUCIBLE G-COVARIANT REPRESENTATIONS 

Throughout this section m denotes an arbitrary C *-alge­
bra. We shall recall a method of obtaining G-covariant repre­
sentations ( 1T, U,JY) from K-covariant representations 
(t/J,W,%), where K is a suitable subgroup of G. (For more 
details see Ref. 10). 

Let the topological group G act as a symmetry group of a 
C *-algebra m and assume the following. 

( 1) There exist a subgroup K and a subset T of G, such 
that every group element may be decomposed uniquely in 
the form 

g = k·t, kEK, tET, (2.1 ) 

with both k and t depending continuously ong. Then for any 
fixed g the relation 

t"g=k't' (2.2) 

defines continuous maps a g: T ..... T and f3g: T ..... K by 

f3g(t") =k', ag(t") =t'. (2.3) 

The uniqueness of the decomposition (2.1) also implies 

f3g,g, (t) =f3g, (t)f3g,(ag, (t»), (2.4) 

(2.5) 

(2) There exists a measure dv on T which is invariant 
under a g , i.e., 

(2.6) 

for arbitrary integrable functions f on T. 
Starting from a K-covariant representation (t/J, W,%) 

(with continuous K-representation W) we obtain a G-covar-
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iant representation (1T, U,JY) (with continuous G-represen­
tation U) as follows: 

JY = L z(%;T,dv), 

(1T(A )¢)(t) = t/J('Tt (A) )¢(t), (2.7) 

(U(g)¢)(t) = Wf3g(t) ¢(ag (t»). 

The space JY consists of all % -valued v-measurable and v­
square integrable functions ¢ on T. In terms of direct inte­
grals (see, e.g., Ref. 11), the representation (1T,JY) ofm may 
be written as 

1T=J t/J,dv(t), (2.8) 
.,T 

acting on 

JY = J JY, dv(t), 
.,T 

(2.9) 

where 

(2.10) 

and 

JYt =% (2.11 ) 

for (almost) all t. 
Under rather general assumptions, which are fulfilled in 

the case of the Poincare group, one may show the unitary 
equivalence of the "group theoretic part" (U,JY) of (2.7) to 
the G-representations (U w,JYw) induced by the represen­
tation (W,%) of K. (For details see Ref. 13, for the theory 
of induced representations see Refs. 14and 15.) One can also 
prove the equivalence of (1T, U,JY) as given by (2.7) to the 
G-covariant representation constructed in Ref. 9 (see Ref. 
13). 

III. THE SCALAR ONE-PARTICLE SECTOR 

In order to fix the notation, we recall some properties of 
the Poincare group P T+ and the Euclidean group with time 
translations, which is a subgroup of P 1+ (Q< denotes the 
semidirect product, L T+ the proper orthochronous Lorentz 
group, and R4 the real four-translations). 

We have 

P T+ = L 1+ (xR4 = {(A,d) IAEL 1+ ,dER4}. 

The group multiplication law in P T+ is 

(A1,d l ) (Az,dz) = (A1Az,d l + Ajdz)· 

(3.1) 

(3.2) 

The Euclidean group together with time translations is the 
semidirect product of the rotations with R4 and will be de­
noted by K from now on: 

K = 0(3) + (xR4 = {(R,d) IREO(3) +, dER4}. (3.3) 

We shall now show how the above construction leads 
from a given (irreducible) K-covariant representation 
(t/J,W,%) of the photon algebra m to a (reducible) 
P 1+ -covariant representation (1T, U,JY). In particular, we 
shall see that the resulting field representation is of the form 
( 1.1 ), and hence is adapted to the case of a spinless infrapar­
ticle. We emphasize again that, as stated in the Introduction, 
an essential ingredient is the assumed K-covariance of 
(t/J, W,%), which excludes coherent representations of the 
photon fieldS and favors symplectic representations. 5 

Hans-Georg Stark 1637 



                                                                                                                                    

We first determine the subset TCP 1+ "complemen­
tary" to K. Here the mass m of the infraparticle enters in a 
natural way. Its mass shell 

Jr = {pi' = (po,p) 1P0> 0, p2 = (pO)2 _ p2 = m 2 } 

(3.4 ) 

may be converted into a standard transitive G-space (G 
being the Poincare group) by defining the action of 
g = (A,d) on 1 m by 

p~m-,pg =A-Ip~m. 

In particular, 

Pg,g, = (pg, )g,. 

Introducing the reference momentum 

pR = (m,O), 

(3.5) 

(3.6) 

(3.7) 

K may be characterized alternatively as the little group ofpR
: 

K = {gEl'I+ IP: = pR}. (3.8) 

Exploiting the transitivity of 1 m, boosts b (p) EL 1+ may be 
defined by the equation 

, 
R b() -I R . Pb(p) = P P =p. (3.9) 

[For notational convenience, the symbol b(p) will also be 
used for the element (b (p) ,0) of P 1+ .] 

It is possible to fix the boosts b (p) uniquely, such that 
the map p-.b(p) is (piecewise) analytic. (For several 
choices of boosts see, e.g., Ref. 16.) For definiteness, we take 
b(p) to be pure Lorentz transformations. Now T may be 
identified with the set of all boosts: 

T= {b(p)lP~m}. (3.10) 

To justify (3.10), one has to verify the existence of the 
unique decomposition (2.1) . Writing 

g = kb(p:) (3.11) 

we obtain 

R R ( R) R Pk = Pgb(P:)-' = Pg b(p:)-' = P , 

where we have used (3.6) and (3.9); hence kEK. Assume 
k'b(p') = kb(p). Then b(p') = k "b(p), where k "EK, and 
therefore P:(P') = p' = (pf· ) b(p) = P:(P) = p, i.e., 
b(p') = b(p) and thus k' = k. Thus the decomposition 
(3.11) is unique, In order to determine the maps a g and f3g , 

consider 

b(p)g = b(p )gb(pg) -Ib(pg)' 

Using (3.6) and (3.9) again one has 

R _() _R Pb(p)gb(pg)-' - Pg b(bg)-' -p , 

i.e., b(p)gb(pg )-IEK. Withg = (A,d) one thus obtains, us­
ing (3.2) and (3,5), the mapsf3g and a g defined in (2.3): 

f3g(b(p») = (r(g,p),b(p)d), 

ag(b(p») = b(A -Ip ), 

where 

r(g,p) = b(p)Ab(A -Ip)-I 

(3.12) 

(3.13 ) 

is the familiar Wigner rotation. Identifying T = 1 m = R3 
by the one-to-one correspondences b(p)-p 
= (p2 + m 2

) I12,p)_p, as done in the rest of this paper, an 
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invariant measure on T is thus given by 

dv(p) = d3p/~m2 + p2. (3.14) 

Hence (2.7) reads for G = P 1+ : 

Jr"'0,1) = L 2(%;R3,dv(p») = J..R' % dv(p), 

(1T(O,I)(A)t,6)(p) = t/J(rb(p) (A»)t,6(p), (3.15) 

(U(O,I)(A,d)t,6)(p) = ~r(g,p),b(p)d)t,6(A -Ip ). 

(Anticipating the general notation from Sec. V, the first su­
perscript on Jr"'0,I), etc. denotes the spin and the second the 
number of particles.) In particular, (1T(0.1), Jr"'0.I) may be 
rewritten as 

1T(0.1) = J t/Jp dv(p), t/Jp (A) = t/J(rb(p) (A»). (3.16) 
EBR' 

Comparing with ( 1.1 ) we see that (3.15) corresponds to the 
infraparticle picture, but in contrast to Ref. 1 we now have a 
P 1+ -covariant one-particle sector (1T(0.1), U(o.l), Jr"'0.I). De­
fining the momentum of the charged particle by 

P~=J pl'dv(p) withpl'=(~m2+p2,p), 
EBR' 

i.e., 

(P~t,6)(p) = pl't,6(p) , (3.17) 

one immediately verifies its covariance 

U(A,d)eiPcd'U(A,d)-1 =/A'P~'. (3,18) 

Denoting by P the total momentum-i.e., the generator of 
translations U(1,d)-(3, 18) also proves the commutativity 
of PandPc : 

U( 1 d) iPcd' - iPd iP~' - iP~'U( 1 d) _ iP~' iPd ,e -e e -e ,-e e . 

Hence one may introduce the field momentum P F = P - Pc 

and the corresponding unitary group 

/Ppi = eiPde - iP~. 

Then, using that the "diagonal,,17 operator eiP~ commutes 
with all1T(o.1) (A), one obtains 

eiPd1T(O.I) (A )e - iPd = /Ppl1T(O. I) (A )e - iPpi. 

Collecting these results we get the following proposition. 
Proposition 3.1: The total momentum P, the particle mo­

mentum Pc and the field momentum P F are mutually com­
muting operators obeying 

PJ.l=P';+P~. (3.19) 

The field dynamics is determined by PF , and the particle 
momentum Pc is affiliated to the commutant 1T(0.1)(&)'. 

Lemma 3.2: Let 

1T = J t/J, dv(t) 
",T 

be the direct integral representation (2.8) with t/J, ~t/J=t/Je 
for all tET, t -:j=e. Then we have t/J( o;kt/J" for t -:j=t', i.e., the 
component representations are pairwise inequivalent. 

Proof.' Suppose there exist t and t ' -:j= t in T and a unitary 
W, such that t/J,(A)=t/J(r,(A»)=Wt/J,,(A)W- 1 

= Wt/J(r, , (A»)W- I VAE&. This is equivalent to 
t/J( 1",(r" - I (A»)) = t/J(r

tt
, _ I (A») = Wt/J(A) W- I VAE&, i.e., 
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'T
tt

, - I is implemented in ¢. Let tt ,-I = k "t " be the unique 
decomposition oftt '-I, Then t i=t' implies t" i=e, for other­
wise we would have t = k "t " i.e., a nonunique decomposi­
tion of t. But then, since ¢ is K covariant and tt '-I is imple­
mented, t" = k "-Itt '-IETisimplementableand i=e, which 
is a contradiction. • 

Choosing for (¢, W,%) irreducible symplectic repre­
sentations of the photon field, it is known that pure Lorentz 
transformations are not unitarily implementable in such rep­
resentations.s Hence in (3.16) ¢p ~¢ for all Pi=O, and there­
fore¢p ~¢p" ifpi=p', by the above lemma. Under these con­
ditions one may show that the infraparticle is not 
localizable. IS 

IV. GENERALIZATION TO ARBITRARY SPIN 

In order to motivate the following construction, we re­
call Wigner's concept of elementary particles of mass m and 
spin s as irreducible representations [m,s] of P 1+ (see Refs. 
19 and 16). In the formulas below, r(g,p) and dv(p) denote 
the Wigner rotation and the invariant measure, as defined in 
(3,13) and (3.14), respectively. 

In the case of a spin less elementary particle [m,O] one 
has 

jy = L 2(lR3 ,dv(p»), (4,1) 
(U(g)<p)(p) = eipd<p(A -Ip ). 

The amplitudes <p(0) for the particle at rest transform under 
rotations according to the trivial representation R --+ 1 of 
O( 3) +, which means that the particle is spinless. 

In the case of spin s, (U (s) ,jy(S» is given by 

jy(S) = L 2(;<2s+ I); lR3,dv(p»), 
(4.2) 

(U(S)(g)<P)m (p) = eipdD ;;:;",(r(g,P»)<Pm' (A -Ip ), 

where a summation convention is used. Again, the transfor­
mation properties of the amplitudes for the particle at rest 
under rotations define the spin: Since r(R,pR) =R for rota­
tions Rand pR as defined in (3.7), one verifies immediately 
that the rest amplitudes <Pm (0) transform according to 
R--+D(s)(R), 

Now inspection of (3.1S) shows that the amplitudes 
<p (0) (E%) of the spinless infraparticle at rest transform 
according to the representation 

(R,Q) --+ W(R.O) (4.3) 

of 0 (3) +, This suggests the following generalization: The 
rest amplitudes for the infraparticle with spin s should trans­
form under rotations according to 

(4.4 ) 

This may be achieved by a construction analogous to the one 
described in the last section, with the representation 
(¢,W,%) replaced by (¢(s.l), W(s.l), %(s.I), where 

%(s.l) = % ® (;(2s+ I), 

( 4.S) 

W~~~J) = W(R.d) ®D (S)(R). 

The representation properties and the K covariance of 
(¢(s.l), W(s.l), %(s.I» follow immediately from the corre-
sponding properties of (¢, W,%). Applying (2.7) to (¢(s.l), 
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W(s.l), %(s.l) now leads to the representation (1T(s.l), 
U(s.l), JY(s.I», where 

JY(s.1) = L 2(% ® (;(2s + 1);lR\dv(p») 

= L 2C!~ s %; lR3 ,dV(P») , 

(1T(S.l) (A)<P)m (p) = ¢('Tb(P) (A»)<Pm (p), 

(U(s·I)(A,d)<P)m (p) 

= D ;;:;",(r(g,P»)W(r(g.p).b(p)d)<Pm' (A -Ip ). 

(4.6) 

(The equality sign between Hilbert spaces means isomor­
phism.) Indeed, then, the rest amplitudes 

<p(0) (Em!~s%) 
transform under rotations according to (R,O) 

--> W(R.O) ® D (s) (R). 

Comparing (4.1) with (4.2) and (3.1S) with (4.6), we 
see that in both cases the transition from the spinless situa­
tion to the one with nonvanishing spin has been made by 
"adding Wigner's rotation in the representation D (s)." 

The particle momentum is defined as in the spinless 
case. Its P 1+ covariance is immediately verified. 

As noted for the spinless case at the end of Sec. II, the 
"group theoretic" part (U(s.I),JY(s.l) of (4.6) is again 

Wi"!) q:cw l '.!) fP 1 • equivalent to the representation (U ,m )0 + In-

duced by the representation (W(s.I),%(s.I» of the Euclid­
ean group with time translations K. Comparing this with the 
prescription for constructing the representations [m,s] of an 
ordinary elementary particle (see, e.g., Ref. 16), the analogy 
between Wigner's concept of elementary particles and our 
description of infraparticles may be summarized in Table I. 

V. COVARIANT n-PARTICLE SECTORS 

In this section a construction is given which yields a 
covariant description of a system consisting of n charged 
particles of spin s and the associated radiation field, i.e., of n 
infraparticles of spin s. Starting point again is the given, irre­
ducible, K-covariant representation (¢, W,%) of~. The 
method is formulated for the general case of r particles and 
n-r antiparticles, with r = O,l, ... ,n. 

The following requirements have to be met. 
(1) The state space is a subspace, to be specified below, 

of 
JY(s.n) 

= L 2«;<2s+ l);T,dv) 

X ® ... ®L 2«;<2s+I);T,dv) ®% 

= L 2((;<2s+ I»n ® %;Tn,d~), 

TABLE I. Relativistic transformation laws (preliminary version). 

Elementary particle 

Infraparticle 

P 1+ representation 

induced by the representation 
(R,d)~eiPRd®D(')(R) ofK 

induced by the representation 
(R,d) ~ W(R.d) ® D (,) (R) of K 
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where 

Tn=T®"'®T, (C 2s +\)n 

= (;(2s + I) ® ... ® (;(2s + \), (5.2) 

dv" = dv® ... ®dv. 

(2) Assume that the indices 1 , ... ,r label the particle vari­
ables and r + 1, ... ,n label the antiparticle variables. Then, 
according to the spin-statistics theorem, the state space is 
given by the subspace of £,,(s.n) consisting offunctions which 
are symmetric (for integer spin) or antisymmetric (for half­
odd-integer spin) under separate permutations of the indices 
(1, ... ,r) and (r + 1, ... n). The field representation 1T(s,n) and 
the P f+ -representation U (s,n) have to leave this subspace 
invariant. 

(3) (1T(s,n), u(s,n>, £,,(s,n» has to be a covariant repre-
sentation onI. 

Definition V.l: Let j be a continuous map from 
T X ... X T to T with 

(5.3 ) 

where Pis an arbitrary permutation of the numbers (l, ... ,n); 

(2) ag(j(tl" ·tn ») = j(ag (t I)" 'ag (tn»), (5.4) 

where a g is defined in (3.12). 
In the next step we modify (¢, W,%) in fashion analo­

gous to (4.5): The K-covariant representation (¢(s,n), 

w(s,n>, %(s,n» is defined as 

%(s,n) = % ® ((;(2s+ I»n, 

¢(s,n)(A) = ¢(A) ® l(c(2,+\)n, (5.5) 

W~~~J) = W(R,d) ® (D (s»n(R) 

[with (D(s»n=D(s)®"·®D(s)]. Then (1T(s,n), u(s,n), 

£,,(s,n» may be defined as 

£,,(s,n) =L 2(%(s,n); Tn,dv") 

= L 2(% ® (C 2s + 1»n;Tn,dvn), 

(U (s,n) (g)¢)(t . .. tn ) 

= W~:tj~''''''n»)¢(ag (tl)" 'ag (tn »), 

(1T(s,n)(A)¢)(tI" ·tn ) 

= ¢(s,n)(7 j(t," "n) (A) )¢(tl' .. tn ). 

(5.6) 

The above requirements (1) and (2) are fulfilled, as follows 
from the permutation in variance (5.3) of j, and the invar­
iance of operators of the type (D (S» n under permutation of 
the n identical factor D (s). It still remains to show that 1T(s,n) 

indeed is a representation of m:, that U (s,n) is a unitary repre­
sentation of P f+ ' and that 7 g is unitarily implemented by 
u(s,n)(g). 

The representation property of 1T(s,n) follows trivially 
from the corresponding property of ¢. The unitarity of 
U (s,n) (g) follows from the unitarity of the operators wis,n) 

(kEf() in % ® ((; (2s + I) ) n and the invariance of the measure 
dvn under (tl .. ·tn)-+(ag(tl)"·ag(tn)), which is a conse­
quence of the invariance (2.6) of the factors dv. 

To check the representation property of U (s.n), calculate 
first 
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(5.7) 

where in the first step we have used the formula (2.4) and in 
the second step (5.4). Hence 

(U (s,n) (gl) u (s,n) (g2)¢)(t I' .. til ) 

X¢(ag,(ag, (tl))" 'ag,(ag, (tn »)) 

= W~:,:jj(t''''n»)¢(ag,g, (t l )·· 'ag,g, (tn») 

= (u(s,n)(gl g2)¢)(tI" ·tn ). 

In the second step formula (2.5), the representation proper­
ty of w(s,n) and Eq. (5.7) have been used. 

To verify covariance one needs the following relation, 
which is a consequence of (5.4), (2.2), and (2.3): 

{3g(j(tI" ·tn »)j(ag (tl)" 'ag (tn») 

= {3g(j(tI' . ·tn »)ag(j(tl" ·tn ») 

=jU,· .. tn)g· 

Thus 

(U(s,n)(g)1T(s,n)(A)¢)U," ·tn ) 

_ w(s,n) ./,(s,n)( (A») 
- fJ,/.j(l, .. 'In)) If' 7j1a.(t,) .. ·a.(tn)) 

X¢(ag (tl)" 'ag (tn») 

= ¢(s,n)(7fJ,/.j(t .... 'n»)flag
(t,) ... a

g
(tn)) (A») 

X WNj~, .. "n))¢(ag (tl)' . 'ag (tn») 

= ¢(s,n)h(t .... 'n)g (A»)(u(s,n)(g)¢)U1 " ·tn ) 

= (1T(s,n)(7g (A))U (s,n) (g)¢) (tl" . tn ). 

(5.8) 

In the second and third step we used the K covariance of 
(¢(s,n>, w(s,n), %(s,n» and Eq. (5.8), respectively. 

One also easily verifies-identifying Twith Jim as men­
tioned in Sec. III and using (5.6) and (3.12)-that the total 
particle momentum Pc defined by 

(P~¢) (PI, ... ,Pn ) 
n 

= L P1"¢(PI,· .. ,Pn ) (rJt = (.J m 2 + p~ ,Pi») (5.9) 
;=1 

transforms covariantly under U (s.n): 

U (s,n) (A,d)iP'"" U (s,n) (A,d) -I = iA - 'Ped'. (5.10) 

Again, as in the one-particle sector, Pc is affiliated to the 
commutant 1T(s,n) (m:) '. 

Thus the construction of the covariant n-particle sector 
(5.6) is reduced to the problem of finding a map j with the 
properties of definition 5.1. 

A possible choice of j is 

m n 

j(p,"'Pn)= n 1/2 LPi' (5.11) 
(~i,k~IPiPk) i~' 

The map j is well defined, since P i and P k belong to the mass 
shell Jim, and thusPiPk > O. Moreover, clearly, j(p, .. 'Pn) 

lies on the mass shell Jim. The required permutation invar­
iance (5.3) is obvious. With a g defined in (3.12), and the 
invariance of the four-product under Lorentz transforma-

Hans-Georg Stark 1640 



                                                                                                                                    

tions, (5.4) is easily checked. Therefore the construction 
(5.6) of the n-particle sector may be carried out with the 
map j given in (5.11). 

The physical picture underlying this model might seem 
to be questionable, since the photon cloud is correlated only 
to the total particle momentum, and hence the dependence 
on the individual particle momenta is of a rather indirect 
nature only, in contrast to the case when coherent represen­
tations are used. I Nevertheless, the sector 
(1T(s,n), U (s,nl,K(s,n» contains all the necessary degrees of 
freedom and is relativistically covariant. One might also 
hope that a more satisfactory physical interpretation may be 
achieved by choosing a map j which is more sensitive than 
(5.11) to the individual particle momenta. 

We close this section by noticing that 1T(s,n) may be re­
written as a direct integral over (Tn,dv"), but now with 
component representations which are not pairwise inequiva­
lent. Rather, they are constant on the hyperplanes 
j(p," 'Pn) = const, which just expresses the fact that the 
photon clouds are coupled to the total particle momentum 
only. 

VI. COCYCLES AND SPECTRUM CONDITION 

With the total particle momentum Pc defined in (5.9) 
and an arbitrary real number a, consider the unitary opera­
tor 

V a iaPel 
(A,d) = e , (6.1 ) 

which depends continuously on the group element 
g = (A,d) and belongs to the commutant 1T(s,n) (&)'. Using 
(5.10) one easily proves the following theorem. 

Theorem VI.l: For any aER, 

(6.2) 

defines a unitary representation of P '+ implementing the 
P '+ -automorphisms in 1T(s,n). 

According to the Appendix, (6.1) defines a cocycle; i.e., 
the map 

va: (A,d) ..... VfA,d) 

belongs to Z ;("n' (P t+ ). (The notation is explained in the 
Appendix.) 

The result of the following analysis is formulated as the 
following. 

Theorem VI.2: Let the n-particle sector 
(1T(s,n), U (s,n), K(s,n» be given. Let P (s,n) denote the total 
momentum of U (s,n), and let Pc be given by (5.9). Then we 
have the following. 

(1) P~ and P (s,n)v form a set of commuting operators, 
and the field dynamics is determined by 

p}J,n) =p(s,n) Pc. (6.3) 

(2) The momentum of u~s.n), as defined in (6.2), is 

P ~s,n) = aPe + P (s,n). 

Assume, moreover, that P (s,n) satisfies the spectrum condi­
tion. Then we have (3). 

(3) For all a >0, P ~,n) also satisfies the spectrum condi­
tion. On the other hand, a may be chosen such that P ~,n) 
does not satisfy the spectrum condition. Hence the (s,n) co-
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homology of P '+ (see the Appendix for the terminology) is 
nontrivial: 

Z ;("n, (P '+ ) =fB ".("n) (P '+ ). 

Proof: Statement (1) follows from (5.10) and from 

e iPelE1T(s,n) (&)' 

as for the one-particle sector in Sec. III. Statement (2) fol­
lows from 

U (s,n)(l d) _eiP~',n'd - va u(s,n)(l d) _ laPel iP("n'd 
a ,- - (I,d) ,- e e . 

To prove statement (3), consider the Girding domain D of 
Pc and p(s,n) (see the Appendix of Refs. 4). Since p(s,n) is 
assumed to satisfy the spectrum condition, we have 

(4),p(s,n)a4>)>O for all aE"i\ and all 4>ED. 

Then, for all a>O, also 

(4),P ~s,n)a4» = a (4),Pea4>) + (4),P (s,n)a4» >0 

since Pc, as a sum of particle momenta, satisfies the spectrum 
condition. Since P ~s,n)a is essentially self-adjoint on D (see 
the Appendix of Ref. 4), the above inequality is valid for all 
4> in the domain of P ~s,n)a. Hence P ~,n) satisfies the spec­
trum condition if a>O. 

To prove the last part of statement (3), take a fixed 4>ED 
and a fixed aEV + [e.g., a = (1,0)], and choose a sufficiently 
negative, such that (4),P ~s,n)a4» < O. Now, since the corre­
sponding P ~s,n) does not satisfy the spectrum condition 
whereas P (s,n) does, the P '+ -representations U ~,n) and 
U (s,n) cannot be unitarily equivalent. Then from Theorem 
(A4) it follows that va cannot be a coboundary. • 

Now let P' denote the four-momentum of the K-repre­
sentation Wand p'(s,n) the momentum of w(s,n). We will 
show that the total momentum operator P (s,n) in an n-parti­
cle sector satisfies the spectrum condition if P' does. 

Let l,6(p\' . 'Pn ) be an element of K(s,n). For pure trans­
lations (I,d) we obtain 

(U (s,n) (l,d)I,6)(PI' . 'Pn) 

= (e iP ("n'dl,6) (PI' , 'Pn ) 

= W1t~'j~PI'''Pn»)I,6(PI' "Pn) 
ir("n'b(j(p '''p »)d 

= e I n l,6(p," ·Pn). 

Here we have used (3.12), (3.13), with g (l,d), and 
(5.6). Thus 

P (s,n) = f b (j(PI" 'Pn ))-'p'(s,n) dv(n) (PI" 'Pn)' 
'" Tn 

and hence, for all dEV +, 

(4),P (s,n)d4» 

= r· J (l,6(p,' "Pn), p,(s,n)b(j(p," 'p,,») 

xdl,6(p," 'Pn) )dv(p,)" 'dv(Pn) >0, 

(6.4) 

since P ,(s,n) satisfies the spectrum condition if P' does, as a 
consequence of 

W (s,n) - W ""1 
(I,d) - (I,d) '0' (C(2,+ I»" 
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Choosing for (t,b, W,%) irreducible symplectic repre­
sentations of the photon field, it is known that the momen­
tum P' of W may be chosen to satisfy the spectrum condi­
tion.s From the above remarks then follows that P (s.n) 

satisfies the spectrum condition when symplectic represen­
tations (t,b, W,%) are used; hence the premises of statement 
(3) in Theorem 6.2 are fulfilled in this case. 

By Theorem 6.2 we now have uncountably many P 1+ -

representations U ;:.n) corresponding to a;:;.O, all satisfying 
the spectrum condition and implementing the Poincare au­
tomorphisms in 1T(s,n). 

We propose to choose a = 1 for the "physical" repre­
sentation. By (6.3) and (6.4), then, 

Pjs,n) =Pe +J b(j(PI"'Pn»)-lp'(S,n)dvn(PI"'Pn)' 
'" Tn 

(6.5 ) 

with 

implementing the translation T O .d ) in the component fields 

t,b(s.n)(Tb(j(P ..... 'Pn» (A»), 

as easily checked. Thus the total four-momentum is just the 
sum of the particle momenta plus the (generalized) sum of 
the momenta of all component fields, and hence the total 
energy is bounded below by n times the particle mass. 

Another argument in favor of a = 1 is the following: 
Consider the one-particle sector (s,l). In (4.S) substitute 

W (s.!) eipRd "" W ""D (S)(R) - W(s,l) (R,d) -- '0' (R.d) '0' - (R,d) . 

Then it is easy to carry out the construction of the (s,l) 
sector, now by applying (2.7) to (t,b(s.l), W(S,I), %(s.I». 
Withf3g defined in (3.12), (3.13) we obtain 

(U(S,I)(A,d)fjJ)m (p) 

ipRb(p)dD (s) ( »)ur ,J. (A-Ip) = e mm' r g,p n (r(g,p),b(p)d)'I'm' 

ib(p)-'pRdD (s) ( »)ur ,J. (A-I) = e mm' r g,p n (r(g,p).b(p)d) 'I'm' P 

= eipdD ~;",(r(g'P»)~r(g.p),b(p)d)fjJm' (A -Ip). 

In the last step the boost definition (3.9) was used. Thus 

U(s,I)(g) = V~U(S,I)(g). 

Hence, choosing a = 1, the asymmetry in the description of 
"ordinary" elementary particles and infraparticles (see Ta­
ble I) is removed, and Table I may be replaced by Table II. 

TABLE II. Relativistic transformation laws. 

Elementary particle 

Infraparticle 

P 1+ representation 

induced by the representation 
(R,d) ~eipRd ® D (,) (R) of K 

induced by the representation 
(R,d) ~eipRd®D (')(R) ® W(R.d) of K 

1642 J. Math. Phys., Vol. 28, No.7, July 1987 

ACKNOWLEDGMENT 

I thank Professor K. Kraus for numerous fruitful dis­
cussions and suggestions. His constant support made this 
work possible. Useful comments of Dr. G. Reents and J, 
Hering and the patient help of Mrs. Ch, Steinbauer and Dr. 
W. Petzold during the preparation of the manuscript are 
gratefully acknowledged. 

APPENDIX: G-COVARIANT REPRESENTATIONS 

Let (1T, U,K) be a given G-covariant representation 1T of 
a C *-algebra ~ on a Hilbert space JY', G being a topological 
symmetry group of~. Here U denotes the unitary G-repre­
sentation implementing the automorphisms Tg of~, i.e., 

(AI) 

and 

(A2) 

Since we study arbitrary, in general reducible, representa­
tions 1T of~, the commutant 1T(~)' need not be trivial. We 
will first introduce unitary cocycles (see Refs. 3 and 20). 

Definition A. I.' A unitary cocycle is a map V: g -- Vg 

from G into the unitary operators on K obeying the cocycle 
equation 

(A3) 

The set of all unitary cocycles is denoted by Z( G), the set of 
all unitary cocycles with range in 1T(~)' by Zl'( G). We shall 
denote by Ze (G) and Z ~(G), respectively, the correspond­
ing subsets of continuous cocycles. Now any unitary opera­
tor W defines an element of Z( G) by 

V:, = WU(g) W-IU(g) -I. (A4) 

Cocycles of this form are called coboundaries.2o They form 
thesubsetsB( G), Be (G), B l'(G), B ~(G) of the above intro­
duced sets of cocycles. 

DefinitionA.2.·Let Vi, V 2 be elements ofZ(G). Then Vi 
is cohomologous to V 2 (V I ~ V 2

), if there exists a unitary 
operator W such that (see Ref. 20) 

V~ = WV;U(g)W-IU(g)-I. (AS) 

As easily shown, this defines an equivalence relation, so we 
can form the corresponding quotient spaces H( G), He (G), 

H l' (G), H ~ (G). The elements of these spaces are called co­
homology classes. 

Theorem A.3: Let (1T, U,JY') be the given G-covariant 
representation of~, with a (continuous) unitary representa­
tion U of G implementing T g • Then U' is another unitary 
(continuous) G-representation implementing Tg if and only 
if it may be written as 

(A6) 

with an element VofZl'(G)(Z~(G»). 
Proof' Given an arbitrary VEZ(e) (G), U' as defined in 

(A6) is easily seen to be a unitary (continuous) G-represen­
tation implementing T g • Vice versa, given such a representa­
tion U', define Vby Vg = U'(g)U(g)-I. Then it follows 
immediately that Vsatisfies (A3) and that VgE1T(~)'. • 

Since in applications we shall identify G with the Poin­
care group P 1+ ' we will focus on continuous G-representa-
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tions in order to guarantee the existence of observables like 
energy, momentum or angular momentum of the system un­
der consideration. Let ~ be the set of all continuous unitary 
G-representations implementing 1"g in (1T,J1t'), ~ the set of 
(unitary) equivalence classes of elements from ~ . Then we 
have the following theorem. 

Theorem A.4: Equation (A.6) induces a one-to-one 
map from ~ ontoH~(G). 

Proof: Let ~ denote unitary equivalence. Then using 
Theorem A3 we get for elements U' and U" from ~: 

U'~U"~U'(g) 

= V~U(g) = WU"(g)W- t 

= WV;U(g)W-'withaunitary W 

~V~ = WV;U(g)W-1U(g)-1 

~V'-V". • 
If1T(2{)' is Abelian, Z1T( G) is an Abelian group with the 

product cocycle defined by g __ ( V 10 V 2 ) g = V! V; and the 
identity element g -- 1. As an example take the quasiloca1 
algebra m: of a physical system (see Ref. 21) and choose the 
representation 1T = ffi ;1T; on J1t' = ffi; J1t'o where the in­
dices label the superselection sectors of m: (Le., each 1T; is 
irreducible, and 1T; rk1Tj for i =fj). Then 1T(m:)' is generated by 
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Group theoretical aspects of the extended interacting boson model (gIBM) with s, d, and g 
bosons are discussed. The basis states and branching rules are given for the seven dynamical 
symmetries. Casimir operators and their eigenvalues are obtained and enable one to write 
down energy formulas. 

I. INTRODUCTION 

The interacting boson model (IBM) of nuclei, intro­
duced by Arima and lachello,l is extremely successful in 
correlating the spectroscopic properties of low lying levels 
that contain quadrupole collectivity and pairing effects. This 
model treats pairs of valence nucleons (particles/holes) as 
bosons and allows the bosons to carry angular momentum 
1=0 (s bosons) or 1=2 (d bosons). The most important 
aspect of IBM is that it contains three dynamical symme­
tries, described by the groups U(S), SU(3), and 0(6). The 
phenomenal success of this model is well documented. 2 The 
quest for providing an algebraic description ofhexadecupole 
(/ = 4) collectivity, on the one hand, and the microscopic 
theories3 of IBM, on the other hand, lead one to include g 
bosons also in IBM. The interacting boson model with s, d, 
and g bosons is referred to as glBM in Refs. 4 and S. The 
electric hexadecupole (E4) decay properties of L = 4 + lev­
els in nuclei6 and also the rotational bands with k = 1 +, 3 + , 
and 4+ bandheads 7,8 strongly point out that one should 
further explore gIBM. In this paper we discuss some of the 
group theoretical aspects of gIBM. 

The different ways hexadecupole collectivity manifests 
itself in the low-lying levels in nuclei is given by the various 
dynamical symmetries oftheglBM Hamiltonian. Moreover 
the identification and exploitation of the dynamical symme­
tries makeglBM analytically tractable and thereby allow for 
a rapid analysis of experimental data. In a recent letter5 we 
showed that the glBM possesses seven dynamical symme­
tries. The purpose of the present paper is to elaborate the 
results given there, In Sec. II the generators of the various 
groups in the seven dynamical symmetry group chains are 
given. In Sec. III the plethysm problem (reduction of a 
group representation into that of its subgroups) for the var­
ious group--subgroup chains inglBM is solved. In Sec. IV we 
give the results that enable one to write down energy formu­
las in the symmetry limits. Some concluding remarks are 
made in Sec. V. 

Note that throughout the paper we always deal with 
classical Lie algebras. Even when we use the symbol of the 

a) Senior research assistant of the National Fund for Scientific Research 
(Belgium). 

b) Senior research associate of the National Fund for Scientific Research 
(Belgium). 

Lie group, we mean the Lie algebra, as is the custom in IBM 
literature. 

II. THE glBM AND THE GENERATORS OF ITS LIMITING 
SYMMETRIES 

The symmetry group for gIBM is U ( IS), the unitary 
group in IS dimensions. The IS dimensions correspond to 
the IS single particle states, one coming from thes orbit, five 
coming from the d orbit, and nine coming from the g orbit. 
The 22S generators of U ( IS) are 

(2.1 ) 

with 1,1' E{ 0,2,4} and bo = s, b2 = d, b 4 = g. As usual, we let 

him = (- l)l+mbl,_m . (2.2) 

Then the generators (2.1) can be linearly combined into an­
gular momentum tensor operators by 

The angular momentum generators of the physical 0(3) 
subgroup are described by 

L~l) = (dtxd)~l) +.J6(gtXg);l). (2.4) 

In order to study the limiting symmetries of gIBM, we 
should know all the subgroups in the chain 
U(lS) :JG:J G'··· :J0(3). This problem has been consid­
ered by several authors.4

•
5

,9 Kota4 gave a classification of the 
U ( IS) subgroups, based on physical arguments, and recent­
ly it was shown5 that this classification is complete. In this 
section, we shall give the generators for the seven chains in 
U(lS) :J0(3). 

A. The unitary orbit chains 

Given the single boson orbits with I = s,d,g, we can 
combine them into the orbit combinations (sd,g) , (sg,d) , 
and (s,dg), leading to the subgroups U(6) 6l U(9), 
U (10) 6l U (S), and U (1) 6l U (14), respectively. For each of 
these subgroups, we shall now describe the generators and 
the chain to O( 3). 

(I) U(6) 6l U(9): The subgroup U(6) is generated by 
(b lXh l , )~Lo) with 1,I'E{O,2} and U(9) by (b 1 Xh4)~Lu) 
(Lo = 0,1,2, ... ,8). Hence U(6) is precisely the usual 1MB 
group with sand d bosons, and the chains Usd (6) :J 0 d (3 ) 
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are well known. 1 The algebra of U (9) contains 0 (9) as a 
subalgebra. spanned by 

(blXh4)~L,,), L o =I,3,5,7, (2.5) 

and (b! Xh4)~I) is the Og (3) subalgebra of 0(9). The phys­
ical 0 (3) group of U (15) is then spanned by the diagonal 
O( 3) contained in Od (3) ttl Og (3). Thus the present chain 
can be described as follows: 

U(15) X /U(5~0(5) X -0(3) . 
/U(9)-0(9) Og(3)} 

'" //0(6)/ "'-U(6)/ U(3) ___ Od(3) 

(2.6) 

(II) U(5) ttl UClO): U(5) is generated by (d tXd)~L) 
(L = 0,1,2.3,4), and is the same U (5) as in (2.6); U (l0) 
has generators (b i X hI' ) ~L) with /,1' = 0,4. The algebra 
U(9) in (2.6) is, of course, a subalgebra ofU( 10), but there 
is still another subalgebra spanned by 

(gtXg)(L), L 1,3,5,7, 
(2.7) 

(stxg)(4) + a(gtXs)(4) (a = ± ) . 
These are the generators of 0 ( 10); we can use either sign for 
a. Hence the chains to 0 ( 3) are 

U( 15)""" X/O( 10)" X -0(3) . 
/U(5)-0(5) Od (3)} 

U(lO) /0(9)-Og (3) 

'U(9f 
(2.8) 

(III) U (1) ttl U (14): The operator ft, = st s generates a 
U ( 1) algebra; ft, counts the number of s bosons. Then 
U(14) is generated by (bixhl.)~L) with I, l'e{2,4}. The 
reductionofU(l4) toO(3) goesoverO(l4) andO(5). The 
basis elements of O( 14) are given by 

(dtXd)(1,3), (gtxg) (1,3,5,7) • 

[(dtxg)(k) + a o( l)k(gtXd)(k)], (2.9) 

k = 2,3,4,5,6 (ao = ± ) . 
There is still an 0 (5) subalgebra contained in (2.9), 
spanned by the operators L ~ I) (2.4) and by the following 
rank-3 tensor operator 

Q(3) = (d t Xd)(3) - i Jff (gtXg)(3) 

- ai /f(dtxg + gtXd)(3) (a = ± ) . 
(2.10) 

The ± sign in (2.9) and (2.10) may be freely chosen: the 
commutation relations of {L ~I),Q ~3)} are independent of 
this sign. The present chain reads 

U(15)-U(14)-0( 14)-0(5)-0(3) . 

(2. II) 

Note that with the 0(5) subgroup in (2.11), a o in (2.9) is 
constrained to be - 1. 

B. The SU(5) and SU(3) limits 

One can think of the I values I = 0,2,4 to be those of a 
two-boson system with each "pseudo" boson carrying angu-
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lar momentun 1 = 2. This gives rise to a subgroup 
SU(21 + 1) = SU(5) of U( 15). On the other hand, every 
system with 1= 0,2,4,oo.,k bosons contains Elliott's SU (3) 
subgroup. 10 Note that for sd IBM the pseudoboson subgroup 
SU (21 + 1) (I = 1) coincides with SU (3), This is the reason 
why SU (5) and SU (3) are discussed in the same subsection. 

(IV) SU (5): Here SU (5) contains a tensor of rank 1, 2, 
3, and 4. The rank -1 tensor is L ~ I), given by (2.4), and the 
rank-3 tensor is Q (3) of (2.10). The remaining tensor opera­
tors have the following expression: 

Q(2) = (dtXd)(2) _ m(gtXg)(2) 

- a(4/$)(d t Xg + gtXd)(2) 

- a/3(14/3$)(d t Xst Xd)(2), 

Q(4) = (dtXd)(4) + ("f43/4$)(gtXg)(4) 

+ a( .J55/2/2) (dtxg + gtXd)(4) 

+ /3(7/2$) (stxg + gtXS)(4) 

(a = ±, /3= ±) (2.12 ) 

As before, the structure constants are independent of the 
choice of a and /3. Obviously, the 0(5) algebra of (2.11) is 
contained in SU (5). Therefore we are dealing with the chain 

U(l5)-SU(5)-0(5)-0(3) . (2.13) 

(V) SU (3): The SU (3) algebra consists of the opera­
tors L ~ I) of (2.4) and the rank -2 tensor 

T(2) = (d t Xd)(2) + (3/2/Jj1) (gtXg)(2) 

+ a( 18/2/11$) (dtXg + gtXd)(2) 

+ /3(14/i/ll$)(stXd + d tXS)(2) (a./3 = ± ) . 
(2.14) 

The SU (3) chain is the "shortest" chain to the physical 
0(3) subgroup: 

U(15)-SU(3)-0(3) . (2.15) 

C. The 0(15) and SU(6) limits 

An obvious subgroup of U(15) is the generalized se­
niority group 0 ( 15), just like 0 (6) is the seniority group of 
U (6) for sd IBM. Finally, one can think of the I values 
1= 0,2,4 to be those of two fermions, with each "pseudofer­
mion" carrying angular momentum} =~. giving rise to the 
group chain 

U(15) ::>SU(2} + 1) 

= SU(6) ::>Sp(2} + 1) = Sp(6) ::>0(3) . 

Note that for sd IBM } =~, and hence U (6) ::> SU ( 4 ) 
::>Sp(4) ::>0(3). Since SU(4) -0(6) and Sp(4) -0(5), 
this is again the seniority group chain. 

(VI) O( 15): The generators ofO( 15) are given by 
(dtXd) (1,3), (gtXg) (1,3,5.7), 

(stxd + ad txs)(2), (stxg + /3gtXS)(4) , (2.16 ) 
[(dtXg)(k) - a/3( l)k(gtXd)(kl]k 2,3,4,5,6 

(a,/3= ±). 
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0(15)7°(7°(5) 
U( 14) 

SUeS) 

SU(6) __ Sp(6), ______ --.. 

U(lS --0-(-10-)----~~O(') 
~tr U(10)< '" I 

x SU(9)~0(9) ) 
U(S) ~ 

0(3) 

J~~-~1~----SiilS,---7-o';'1 II U(6 : 
: 0 (6 1 
1 1 
I 1 
~ _______ ~~i~L _______________ j 

FIG. 1. Classification of the dynamical symmetry groups in the U( 15) ex­
tended IBM and their consecutive decomposition into the physical 0(3) 
group. 

Clearly, 0(15) contains 0(14) generated by (2.9), and 
hence also the 0 (5) subgroup of (2.11 ) : 

U(15)-0(15)-O(l4)-0(5)-0(3). (2.17) 

Note that the a"B in (2.16), Q (3) in (2.10), and a o in (2.9) 
should be chosen consistently. 

(VII) SU(6): The SU(6) algebra contains the 0(3) 
generators p~l) =L~') and the rank-k tensors p(k) with 
k = 2,3,4,5. An explicit expression reads 

p(2) = (d txci)(2) - (3~/5\1"2) (gtXg)(2) 

- a(9~/1O) (d txg + gtXd)(2) 

- a/3 ~(stxd + d tXS)(2) , 

p(3) = (dtXd)(3) + (~/9) (gtXg)(3) 

- a (5.j619) (dtXg + gtXd)(3) , 

p(4) = (dtXd)(4) _ (~143/3$)(gtxg)(4) 

+ a( mI3~) (dtxg + gt X d)(4) 

+ /3(l4/3{fS)(stxg + gtXS)(4) , 

(2.18 ) 

p(5) = (gtXg)(5) + a( {fS1/i6)(d t Xg + gt X d)(5) 

(a,/3= ±). 
The Sp ( 6) subgroup of SU ( 6) is generated by the odd rank 
tensorsp(k) , k = 1,3,5. Thus the last group chain is given by 

U(l5)-SU(6)-Sp(6)-0(3) . (2.19 ) 

The seven subgroup chains of U ( 15) are shown in Fig. 1. 

III. THE BASIS STATES IN THE VARIOUS LIMITS AND 
BRANCHING RULES 

The basis states of gIBM are classified into totally sym­
metric representations of U ( 15), labeled II by the Cartan­
Dynkin numbers (N,O,O, ... ) = [N], where N is the total 
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number of nucleon pairs (or holes) near a closed shell. In 
this section, we shall discuss the reduction of such represen­
tations into the irreducible representations (irreps) of the 
various subgroups. 

(I) U(6) (f) U(9): In the reduction U(l5) ::JU(6) 
(f) U(9), the irreps [N] decompose into [nsd] ® [ng] 
(nsd,ng>O), with nsd + ng = N, of U(6) (f) U(9). The re­
duction of U sd ( 6) ::J G::J 0 sd (3) is the classical IBM chain I 
and is well known. For the chain Ug (9) ::JO(9) ::JO(3), the 
basis states are denoted by 

I
U(9) 

ng 

0(3») 
a,L

g 
• 

(3.1) 
::J 0(9) 

Herein, Vg is the 0(9) label, since for the reduction 
U(9) ::JO(9) one finds 

(3.2) 
Vg = ng,ng - 2, ... ,1 or O. 

The reduction 0(9) ::JO(3) is not multiplicity-free: a stands 
for the missing labels in this chain. The multiplicity M(Lg ) 

of Lg in the decomposition of the irrep [Vg ] may be calculat­
ed by means of Littlewood's rules. 12 On the other hand, there 
are also tables '3 available for the reduction 0(9) ::JO(3). 
Since we are dealing with totally symmetric representations 
of U (9), there is still an alternative method of obtaining the 
L contents ofa U(9) irrep [N]. This procedure is powerful 
and easy to implement for machine calculations. Consider 
the group U (n), n = ~~ = I (2/i + 1), and the decomposition 
of the irreps [N] ofU(n) into 0(3) irreps (L), with the 
condition [1] - (I,) + (12) + ... + (ld. To this end, we 
first generate the single particle spectrum for the /z operator: 
this consists of a number of /z eigenvalues m;, each with 
degeneracy di • Then, distributing the given number of bo­
sons N in the /z orbits in all possible ways, one finds the 
degeneracy d(m) of a given total m value. Let (n I, ... ,nk ) be 
a distribution of N bosons so that N = ~~= I ni and 
m = ~7 = I nimi · For this distribution, the degeneracy of the 
m value is rr~ = I (d; +:; - ') . Thus the degeneracy of the 

~7 = I /z (i) eigenvalue m is 

k e +n -1) 
d(m) = (n"n~ .• nk) iDI I ni' , 

(3.3 ) 

where the summation is over all configurations (nl, ... ,nk ) 

such that n. + ... + nk = Nand m = ~7= I nimi . Then the 
simple difference formula 

DN(L) =d(m =L) -d(m =L + 1) (3.4 ) 

gives the degeneracy of a given L value, and thus, according 
to (3.2), 

(3.5) 

For the reduction 0(9) ::JO(3) we shall list the decomposi­
tion of all irreps (Vg ,0,0,0) for Vg < 10 in Table 1. 

(II) U ( 5) (f) U ( 10): The U ( 5) algebra is the same as in 
sd IBM, and hence also the labeling can be maintained. The 
reduction U ( 15) ::J U (5) (f) U ( 10) is given by 

[N]- [0] ® [N],[l] ® [N - l], ... ,[N] ® [0]. (3.6) 
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TABLE!. Reduction of 0(9) irreps (ug,O,O,O) forug <lOintoO(3) irreps 
(L). The multiplicity of (L) is written as an exponent. 

1 4 
2 2,4,6,8 
3 0,2,3,4,5,62,7,8,9,10, 12 
4 0,22, 3,43,52,63,72,83,92, 103, 11, 122, 13, 14, 16 
5 0,1,23,32,44,54,65,74,86,94,105,114,12., 133, 143, 152, 162, 17, 18, 

20 
6 02,1,2., 3., 47, 55, 69, 77, 89,98,109,117,129,136,147,155,165,173, 

18., 192,202,21,22,24 
7 02,12,26,36,410,59,612,712,814,913,1015,1113,121., 13 12, 1413, 15 10, 

16",178,188,196,205,21., 22., 232, 242, 25, 26,28 
8 03,13,29,38,414,514,618,717,822,919,1023,1 Fl, 1223, 1320, 1422, 15 18, 

1619,17 16, 18 16, 1912,2013,219,229,236,246,254,26" 272, 282, 29, 30, 
32 

9 04, 15,211,313,419,519,626,725,83°,93°,1033, 11 31 , 1235, 1332, 1433, 
1531,1631,1727,1828,1923,2023,2119,2218,231., 2414, 25 10, 269, 277, 
286,29., 30<, 31 2, 322, 33, 34, 36 

10 OS, 10, 216, 317,426,527,635,735,842,941, 1048, 1145, 1250, 1347, 1450, 
1546,1649,1743, 1844, 1939,2039,2133,2233,2327,2426,2521,262°,2715, 
281S, 29 10, 3010, 31 7, 326, 334

, 34., 352, 362, 37, 38, 40 

The remaining reductions are described by 

U(10) ~0(10): 

U( 10) ~U(9): 

0(10) ~0(9): 

(3.7) 

(3.8) 

(3.9) 

and the reductions U(9) ~0(9) and 0(9) ~0(3) have al­
ready been discussed in the previous chain. Thus the states in 
the U ( 10) chain are labeled by 

(3.lOa) 

or 

(3.lOb) 

(III) U (14): In the U (14) chain, the basis states are 
given by 

I
U(15) ~U(14) ~0(14) ~ 0(5) ~0(3»). 

N ndg vdg a,(al,az) P,L 

The reductions U(15) ~U(14) and U(14) ~0(14) are 
classical for symmetric irreps, and are determined by 

ndg = N,N - 1, ... ,1,0, (3.11 ) 
vdg = ndg,ndg - 2, ... ,1 or 0. 

The reductions 0(14) ~0(5) and 0(5) ~0(3) are more 
involved. There are several ways to deal with these problems, 
but since we are considering the reduction of symmetric rep­
resentations, we shall discuss a method similar to the one in 
U(9) ~0(3), i.e., a method based on weight space tech­
niques. First, consider the decomposition of U ( 14) irreps 
(ndg,O,O, ... ) into irreps of 0(5). It is easy to see that in this 
reduction the weights of the 14-dimensional standard repre­
sentation (1,0,0, ... ) are projected into the following weights 
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of 0(5) : 

(2, - 2),( - 2,2),(2,0),( - 2,0),(1, - 1),( - 1,1), 

(0, - 2),(0,2),(2,2),( - 2,2),(1,1), 

( - 1, - 1),(0,0),(0,0) . (3.12) 

Then, we consider all totally symmetric tensor products of 
(1,0,0, ... ) with itself. In their projection onto the 0(5) 
weight space, the weights of these tensor products are gener­
ated by 

(3.13 ) 

where J.-l runs over all values (3.12), and eI' is the formal 
exponential. In the expansion of (3.13), the factor Fn of if 
is then the character of the irrep (n,O,O, ... ) ofU(14) project­
ed onto the 0(5) weight space. Using Weyl's character for­
mula 14 one knows that Fn is of the following form: 

F="'~' 
n ~ A 

(3.14 ) 

where the summation is over the highest weights A of the 
0(5) irreps in which (n,O,O, ... ) decomposes. In (3.14),52 is 
the characteristic of (A), and A is Weyl's denominator: 

A = II (ea1z 
- e- aIZ

) , (3.15) 
aER + 

where R + is the set of positive roots of the Lie algebra. For 
0(5), R + equals 

{(1,1),(2,0),(1, -1),(0, - 2)}. (3.16 ) 

Hence in order to find the reduction of (n,O,O, ... ) into 0(5) 
irreps (al,az) we perform the following algorithm: (1) com­
puteFn in (3.13); (2) multiply Fn by A, given in (3.15); (3) 
preserve all the terms in the dominant Weyl sector in Fn . A, 
i.e., preserve all terms e(2,.2,) with Az<O and AI> - Az; (4) 
for every such highest weight (AI.Az), the corresponding 
Cartan-Dynkin labels are given by (al,az) = (AI +Az -1, 
- Az - 1). Note that an irrep with Cartan-Dynkin labels 
(al,az) has Young labels [71,72 ] = [a l /2 + az, a l/2]. This 
algorithm is easy to program, and is a straightforward exten­
sion of the one given for U(9) ~0(3). As soon as we have 
the reduction U(14) ~0(5), we can use (3.11) in order to 
obtain the reduction 0 ( 14 ) ~ 0 (5). These results are listed 
in Table II for vdg < 10. 

For the reduction of irreps (al,az) of 0(5) into irreps 
(L) of O( 3 ), several solutions have been given in the litera­
ture. Tables of McKay and Patera 13 list the reduction for 
dim(al,az) <5000, and for all other irreps one can easily use 
the branching rule generating function (23) of Gaskell et 
al. 15 Therefore we shall not give any tables in the present 
paper. 

(IV) SU (5): This limit has been discussed in some de­
tail by Sun et al. 9 The decomposition of [N] of U ( 15) into 
irreps (m l ,mZ,m3,m4 ) of SU(5) is determined by (see 
Thrall l6 for a proof) 

[N] -+ 2: (2N - 4p - 6q - 8r - lOs,2p,2q,2r) . 
p.q,r,s 

(3.17 ) 
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TABLE II. Reduction of 0(14) irreps [Vdg] for vdg <1O into 0(5) irreps (aI' a2 ); the multiplicity of (aI' a2 ) is written in front. Note that [TI, T 2 ] 

= [a l12 + a2, a l12] are the Young labels. 

1 (0 2). 
2 (0 2), (0 4), (4 0). 
3 (0 0), (0 2), (0 4), 
4 (0 0), 2(0 2), 2(0 4), 

(2 4), 2(4 2), (0 8), 

5 (0 0), 2(0 2), 3(0 4), 
2(2 4), 3(4 2), (4 3), 

(6 2), (8 0), (0 10), 

6 (0 0), 3(0 2), 4(0 4), 
4(0 6), 3(2 4), 5(4 2), 
2(2 6), 4(4 4), 2(6 2), 
(0 10), (2 8), 2(4 6), 
(8 4), (12 0). 

7 (0 0), 4(0 2), 5(0 4), 
5(0 6), 5(2 4), 7(4 2), 
4(0 8), 4(2 6), 7(4 4), 
2(8 1 ), 2(0 10), 2(2 8), 

(6 5 ), (8 3), (10 1), 
2(8 4), (10 2), (12 0), 

8 2(0 0), 4(0 2), 7(0 4), 
.7(0 6), 7(2 4), 9(4 2), 
6(0 8), 6(2 6), 9(4 4), 
4(6 3), 3(8 1), 4(0 10), 
(10 0), 2(4 7), 2(6 5), 
4(4 8), 3(6 6), 5(8 4), 

(8 5), (10 3), (12 1), 
2(8 6), (10 4), 2(12 2), 
(16 0). 

9 2(0 0), 5(0 2), 8(0 4), 
10(0 6), 9(2 4), 12(4 2), 
8(0 8), 10(2 6), 15(4 4), 
7(6 3), 5(8 1), 6(0 10), 

2(10 0), (2 9), 4(4 7), 
4(2 10), 8(4 8), 7(6 6), 

2(6 7), 3(8 5), 3(10 3), 
3(6 8), (8 6), 3(10 4), 
(10 5), (12 3), (14 1), 
2(8 8), (10 6), 2(12 4), 
(8 10), (12 6), (16 2). 

10 2(0 0), 6(0 2), 10(0 4), 
4(4 1), 12(0 6), 12(2 4), 
6(6 1), 12(0 8), 14(2 6), 

11(4 5), 10(6 3), 7(8 1), 
16(8 2), 3(10 0), 2(2 9), 
6(0 12), 7(2 10), 14(4 8), 

(2 11), 4(4 9), 5(6 7), 
4(2 12), 8(4 10), 7(6 8), 
2(4 11), 2(6 9), 3(8 7), 
2(2 14), 4(4 12), 3(6 10), 
2(16 0), (4 13), (6 11), 

(16 1), (0 18), (2 16), 
2(12 6), (14 4), 2(16 2), 

(16 4), (20 0). 

Note that the Young labels of (m l ,m2,m3,m4 ) are 
{m 1 + m 2 + m3 + m 4,mZ + m3 + m 4,m3 + m 4,m4 }. The 
reduction of SU(5) irreps (m l ,m2,m3,m4 ) into irreps 
(a l ,a2 ) of 0(5) is in general a four-missing label problem. 
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(2 2), (4 0), (0 6), (4 2). 
(2 2), (4 0), (4 1), (0 6), 
(4 4), (8 0). 

2(2 2), 2(4 0), (4 1), 2(0 6), 
(6 1), (0 8), (2 6), 2(4 4), 
(4 6), (8 2). 

2(2 2), 3(4 0), (2 3), (4 1), 
(6 0), 2(4 3), (6 1), 2(0 8), 

2(8 0), (4 5), (6 3), (8 1), 
(6 4), 2(8 2), (0 12), (4 8), 

3(2 2), 3(4 0), (2 3), 2(4 1), 
(6 0), (2 5), 3(4 3), 2(6 1 ), 

4(6 2), 3(8 0), 2(4 5 ), 2(6 3), 
4(4 6), 3(6 4), 4(8 2), (4 7), 
(0 12), (2 10), 2(4 8), (6 6), 
(0 14), (4 10), (8 6), (12 2). 

4(2 2), 4(4 0), (2 3), 3(4 1), 
(6 0), 2(2 5), 5(4 3), 3(6 1), 

6(6 2), 5(8 0), (2 7), 4(4 5), 
4(2 8), 8(4 6), 6(6 4), 7(8 2), 
3(8 3), 2(10 1), 2(0 12), 2(2 10), 

2(10 2), 2(12 0), (4 9), (6 7), 
(0 14), (2 12), 2(4 10), (6 8), 
(0 16), (4 12), (8 8), (12 4), 

5(2 2), 5(4 0), 2(2 3), 3(4 1 ), 
2(6 0), 3(2 5), 7(4 3), 4(6 I), 
9(6 2), 6(8 0), 2(2 7), 7(4 5), 
7(2 8), 13(4 6), 10(6 4), 11(8 2), 
5(6 5), 6(8 3), 3(10 I), 4(0 12), 
9(8 4), 5( 10 2), 4(12 0), 2(4 9), 

2(12 1), 2(0 14), 2(2 12), 4(4 10), 
4(12 2), (4 11), (6 9), (8 7), 

(0 16), (2 14), 2(4 12), (6 10), 
(14 2), (16 0), (0 18), (4 14), 

6(2 2), 6(4 0), (0 5), 2(2 3), 
15(4 2), 2(6 0), 4(2 5), 9(4 3), 
11(4 4), 12(6 2), 8(8 0), 4(2 7), 
9(0 10), 11 (2 8), 19(4 6), 16(6 4), 

8(4 7), 9(6 5), 10(8 3), 6( 10 1 ), 
12(6 6), 16(8 4), 8(10 2), 6(12 0), 
7(8 5), 6(10 3), 4(12 1), 4(0 14), 

10(8 6), 7(10 4), 8(12 2), (14 0), 
3(10 5), 3(12 3), 2(14 1), 2(0 16), 

5(8 8), 3(10 6), 5(12 4), 2(14 2), 
(8 9), (10 7), (12 5), (14 3), 

2(4 14), (6 12), 2(8 10), (10 8), 
(0 20), (4 16), (8 12), (12 8), 

Tables for this reduction have been listed by McKay and 
Patera. 13 On the other hand, there are also some analytic 
decomposition rules available for SU (5) irreps of the form 
(m,O,O,Q), (m,2,O,O), (m,4,O,O), and (m,2,2,O) (see Refs. 4 
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TABLE III. Reduction ofU(l5) irreps [N] for N< 10 into SU(3) irreps (A,Jl); the multiplicity of{A,,u) is written in front. 

(4 0). 

2 (8 0), (4 2), (0 4). 

3 (12 0), (8 2), (6 3), (4 4), (6 0), (3 3), (0 6), 
(2 2), (0 0). 

4 (16 0), (12 2), (10 3), 2(8 4), (10 0), (7 3), (8 I), 
2(4 6), (5 4), 2(6 2), (3 5), (4 3), (5 I), (0 8), 
2(2 4), 2(4 0), (l 3), (0 2). 

5 (20 0), (16 2), (14 3), 2(12 4), (14 0), (10 5), (11 3), 
(12 1), 2(8 6), (9 4), 3(10 2), (6 7), 2(7 5), 2(8 3), 
2(9 1), 2(4 8), (5 6), 4(6 4), (7 2), 3(8 0), (3 7), 
2(4 5), 3(5 3), (6 1), (0 10), (l 8), 3(2 6), 2(3 4), 
4(4 2), (I 5), (2 3), (3 1), 2(0 4), 2(2 0). 

6 (24 0), (20 2), (18 3), 2(16 4), (18 0), (14 5), (15 3), 
(16 1 ), 3(12 6), (13 4), 3(14 2), (10 7), 2(11 5), 3(12 3 ), 

2(13 1), 3(8 8), 2(9 6), 5(10 4), 2(11 2), 4( 12 0), (6 9), 
2(7 7), 4(8 5), 5(9 3), 2{10 1), 2(4 to}, 2(5 8), 6(6 6), 
4(7 4), 7(8 2), 2(3 9), 3( 4 7), 5(5 5), 5(6 3), 3(7 I), 

2(0 12), 4(2 8), 4(3 6), 7(4 4), 2{5 2), 5(6 0), 2(1 7), 
2(2 5), 4(3 3), 2(4 1 ), 4(0 6), 2(1 4), 4(2 2), 2(0 0). 

7 (28 0), (24 2), (22 3), 2(20 4), (22 0), (18 5), (19 3), 
(20 1), 3(16 6), (17 4), 3(18 2), 2(14 7), 2(15 5), 3(16 3), 

2(17 1), 3(12 8), 2(13 6), 6(14 4), 2( 15 2), 4(16 0), 2(10 9), 
3(11 7), S( 12 5), 6(13 3), 3(14 1), 3(8 10), 3(9 8), 8(10 6), 
6(11 4), 9(12 2), (6 11), 3(7 9), 6(8 7), 8(9 5), 8(10 3), 
5(11 1), 3(4 12), 2(5 10), 8(6 8), 8(7 6), 13(8 4), 5(9 2), 
7(10 0), 2(3 ll), 4(4 9), 8(5 7), 9(6 5), 9(7 3), 6(8 1 ), 

(0 14), (l 12), 5(2 10), 5(3 8), 12(4 6), 8(5 4), 11(6 2), 
4(1 9), 4(2 7), 8(3 5), 7(4 3), 4(5 1), 5(0 8), 3(1 6), 
9(2 4), 3(3 2), 5(4 0), 3(1 3), (2 I), 3(0 2). 

8 (32 0), (28 2), (26 3), 2(24 4), (26 0), (22 5), (23 3), 
(24 1), 3(20 6), (21 4), 3(22 2), 2(18 7), 2(19 5), 3(20 3), 

2(21 1), 4(16 8), 2(17 6), 6(18 4), 2( 19 2), 4(20 0), 2(14 9), 
3(15 7), 5(16 5). 6(17 3). 3(18 I), 4(12 10), 4( 13 8), 9(14 6), 
7(15 4), 10{l6 2), 2(10 11), 4( II 9), 8( 12 7), 10(13 5), 1O{l4 3), 
6(15 I), 4(8 12), 3(9 10), 1I(10 8), 11(11 6), 17(12 4), 7{l3 2), 
9(14 0), (6 13), 4(7 1I), 8(8 9), 13(9 7), 15(10 5), 14(H 3), 
9( 12 1), 3(4 14), 3(5 12), 10(6 10), 11(7 8), 21(8 6), 15(9 4), 

18( 10 2), (11 0), 2(3 13), 5(4 11), II (5 9), 14(6 7), 18(7 5), 
16(8 3), 9(9 1), 2(0 16), (l 14), 6(2 12), 8(3 10), 18(4 8), 
14(5 6), 23(6 4), 10(7 2), 10(8 0), 4(1 11 ), 6(2 9), 13(3 7), 
14(4 5), 14(5 3), 7(6 I), 6(0 10), 7(1 8), 15(2 6), 9(3 4), 
14(4 2), 1(5 0), (0 7), 7(1 5), 5(2 3), 5(3 1), 7(0 4), 

(1 2), 4(2 0). 

9 (36 0), (32 2), (30 3), 2(28 4), (30 0), (26 5), (27 3), 
(28 1), 3(24 6), (25 4), 3(26 2), 2(22 7), 2(23 5), 3(24 3), 

2(25 I), 4(20 8), 2(21 6). 6(22 4), 2(23 2), 4(24 0). 3(18 9), 
3(19 7), 6(20 5), 6(21 3), 3(22 1), 4( 16 10), 4(17 8), 10(18 6), 
7(19 4), 10(20 2), 3(14 ll), 5(15 9), 9( 16 7), 11(17 5), 11(18 3), 
6(19 1), 5(12 12), 4( I3 10), 13(14 8), I3( 15 6), 19(16 4), 8(17 2), 

10(18 0), 2(10 13), 5(11 Il), 11(12 9), 16( 13 7), 19(14 5), 17(15 3 ), 
11 (16 1), 4(8 14), 5(9 12)' 14( 10 10), 16(11 8), 28(12 6), 20(13 4), 
23(14 2), 2( 15 0), 2(6 IS), 4(7 13), 10(8 11). 18(9 9). 23(10 7), 
27{11 5), 25(12 3), 13(13 I). 3(4 16), 3(5 14). 12(6 12), 15{7 10), 
30(8 8), 26(9 6), 36(10 4), 17( II 2), 15( 12 0), 3(3 15), 6(4 13), 

14(5 ll), 21(6 9). 29(7 7), 31(8 5), 28(9 3), 15(10 1), 2(0 18), 
(l 16), 7(2 14), 10(3 12), 22(4 10), 24(5 8), 38(6 6), 25(7 4), 

29(8 2), 4(9 0), 5(1 13), 9(2 11), 19(3 9), 23(4 7), 28(5 5), 
23(6 3), 14(7 I}, 9(0 12), 9(1 10), 23(2 8), 21(3 6), 29(4 4), 
12(5 2), 13(6 0), 3(0 9), \I( 1 7), 12(2 5), 16(3 3), 7(4 1), 
11(0 6), 7(1 4), 12(2 2), (0 3), 2(1 1 ), 4(0 0). 

10 (40 0), (36 2), (34 3), 2(32 4), (34 0), (30 5), (31 3), 
(32 1), 3(28 6), (29 4), 3(30 2), 2(26 7), 2(27 5), 3(28 3 ), 

2(29 1 ), 4(24 8), 2(25 6), 6(26 4). 2(27 2), 4(28 0), 3(22 9), 
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TABLE III. (Continued.) 

3(23 7), 6(24 5), 
7(23 4), 10(24 2), 
6(23 1), 6( 16 12), 

10(22 0), 3(14 13), 
12(20 1), 5(12 14), 
26(18 2), 2(19 0), 
33(15 5), 30(16 3), 
40(12 8), 35( 13 6), 
12(8 13)' 22(9 11), 
4(4 18), 4(5 16), 

42(11 4), 44(12 2), 
41(7 9), 50(8 7), 
8(2 16), 11(3 14), 
28(9 2)' 22( 10 0), 
46(6 5), 42(7 3), 
50(4 6), 36(5 4), 
31 (3 5), 25(4 3), 
14(4 0), 3(0 5), 

and 9). For example, 
[m/2] 

(m,O,Om -+ (a l ,a2 ) = I (m - 2r,0) , 
r=O 

(m - 2,2,0,0) -+ (a l ,a2 ) 

[(m-2)/2] 

6(25 3), 
3(18 11), 
5(17 10), 
6(15 11 ), 
6( 13 12), 
3( 10 15), 
16(17 I), 
47(14 4), 
33( 10 9), 
14(6 14), 
7(13 0), 
53(9 5), 

29(4 12), 
7(1 15), 
22(8 I), 
37(6 2), 
16(5 1), 
9(1 3), 

= (m,O) + I (m - 2r,0)2 (3.18) 
r= 1 

[(m-I)/2] 

+ (m - 2[mI2],0) + I (m - 2r,2) 
r= 1 

[(m-2)/2] 

+ I (m - 2r - 2,4) . 
r=O 

In (3.18) [x] is integer part of x. Finally, the reduction 
0(5) ::JO(3) has already been discussed in chain III. Thus 
the basis states in the present chain are labeled by 

IN (m pm 2,m3,m4 ) a,(a l ,a2 ) /3,L) . (3.19) 

(V) SU(3): The SU(3) chain is the one that has been 
studied most extensively.8,9,17-21 In order to obtain the re­
duction U (15) ::J SU (3), we have used a similar method as 
previously described for U(14) ::JO(5). For an alternative 
procedure which is based on Littlewood's theorems, see 
Kota. 22 Listings for the reduction of [N] into SU(3) irreps 
(A.,It) are given in Table III for N.;;; 10. The reduction of 
SU (3) irreps into SO (3) mUltiplets is well known,1O and 
thus the states in this chain are labeled by 

IN a, (A.,It) K,L) . (3.20) 

(VI) 0(15): The reductions U(15) ::J0(15) and 
o ( 15) ::J 0 ( 14) are classical, and determined by 

U( 15) ::JO( 15): 

[N] -+ I(vSdg'O, ... ,O), 

Vsdg = N,N - 2, ... ,1 or 0; 

O( 15) ::JO( 14): 

1650 J. Math. Phys., Vol. 28, No.7, July 1987 

(3.21) 

(3.22) 

3(26 1), 5(20 10), 4(21 8), 10(22 6), 
5(19 9), 10(20 7), 11(21 5), 11(22 3), 

14( 18 8), 14(19 6), 20(20 4), 8(21 2), 
13(16 9), 18(17 7), 21(18 5), 18(19 3), 

17(14 10), 19(15 8), 32(16 6), 23(17 4), 
6(11 13), 14(12 11), 23(13 9), 30(14 7), 
5(8 16), 5(9 14), 17( 10 12), 22(11 10), 

23( 15 2), 18(16 0), (6 17), 5(7 15), 
43(11 7), 46(12 5), 39(13 3), 22(14 1), 
20(7 12), 39(8 10), 42(9 8), 60( 10 6), 

3(3 17), 7(4 15), 17(5 13), 27(6 11), 
43(10 3), 26(11 1), 2(0 20), (1 18), 
33(5 10), 55(6 8), 49(7 6), 60(8 4), 
11 (2 13), 26(3 II), 36(4 9), 47(5 7), 
10(0 14), 13(1 12), 32(2 10), 33(3 8), 

3(7 0), 3(0 11), 19(1 9), 23(2 7), 
18(0 8), 16(1 6), 27(2 4), 12(3 2), 
4(2 1), 7(0 2). 

The decomposition of (vdg,O, ... ) has been discussed before. 
The states in this chain are labeled by 

INvsdg vdg a,(a l ,a2 ) /3,L) . (3.23) 

(VII) SU (6): Using weight space techniques, as de­
scribed in chain III, one can prove that the reductions in the 
chain U ( 15) ::J SU (6) ::J Sp (6) are given by the following 
rules: 

U (15 ) ::J SU ( 6 ) : 

[N] -+ I (O,j,O,N - 2j - 3k,0) ; (3.24 ) 
j,k 

SU(6) ::JSp(6): 
min<.u,v) p p+v-p-q 

(O,It,O,v,O) -+ I I I (q,r,q) . (3.25 ) 
p=O q=O r=p-q 

For SU(6), the Young labels of (O,It,O,v,O) are 
{u+v,lt+v,v,v,O}, and for Sp(6) the Young labels of 
(q,r,q) are given by (2q + r,q + r,q). Finally, we have to 
consider the decomposition of Sp(6) irreps (q,r,q) into 
0(3) irreps (L). There is no analyticformula for the reduc­
tion Sp (6) ::J 0 (3), hence we have to list the reductions in 
tables. Such tables have actually already been provided by 
McKay and Patera, 13 therefore we do not repeat them here; 
see also Kota. 23 The basis states in this chain are described by 

IN (O,It,O,v,O) p(q,r,q) a,L ) . (3.26) 

IV. CASIMIR OPERATORS AND ENERGY SPECTRA 

When the gIBM-Hamiltonian H is expressible in terms 
of the Casimir operators of the groups appearing in a sym­
metry group chain, one speaks of a dynamical symmetry. In 
that case, we can write down the energy formula. With the 
generators given in Sec. II one can construct the Casimir 
operators of the various groups in the seven limits of gIBM. 
The expressions for the matrix elements of the Casimir oper­
ators of U(N), Sp(N), and D(N) are well known. 24 If we 
assume that H is a (1 + 2) -body operator, we have to deal 
with the linear and quadratic Casimir operators only. 

Rather than giving the energy formulas for each chain 
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separately, we shall only list here the general expressions for 
the Casimir operators for various representations. The linear 
and quadratic Casimir operators of U (M) have the follow­
ing eigenvalue when acting on states of symmetric irreps 
(k,O, ... ,O) = [k]: 

(4.1 ) 

We encouter them while dealing with Ud (5), Ug (9), 
Usd (6), Usg (10), Udg (14), Us (1), and Usdg (15) groups, 
the sUbscripts denoting the relevant I orbits. Here the Casi­
mir operators C) (U (M»), and C2(U (M») are simply express­
ible in terms of number operators. For example, for the 
Usg (10) group they are nSg = (ns + ng) andnsg(nsg + 10), 
respectively. The quadratic Casimir of OeM), acting on 
states of the irrep with Cartan-Dynkin labels (k,O, ... ,O) has 
the value 

(C2(0(M»)) = k(k + M - 2) . (4.2) 

This expression is useful for the Od (5), Og (9), Osd (6), 
OSg (10), Odg (14), and Osdg (15) groups. The explicit form 
of the Casimir operator C2(0(M») for these groups can be 
given by the following general considerations. Given 
1),l2, ... ,h orbit, we can define u(,1.) (lJ;), v(,1.·) (l;!j) operators 
as 

u(,1.)(/l.) = (btXb )(,1.) 
v I I Ii I,. V ' 

(4.3 ) 

where a(lJj) = ± 1, a(l;!j) = a(li;), and a(/;!j) a (/jlk ) 
= - a(/Jk)' Now u~,1.) (/;!;) and A odd and v~,1.) (lJj) with 

I; > Ij (or I; < Ij ) generate the orthogonal group 
O(M = ~ (21; + 1»). Now the quadratic Casimir operator of 
the group OeM) is given by 

C2(0(M») = [2 .t u(,1.)(l;I;) 'U(,1.)(l;U] 

A. odd 

+ [I V(,1.')(l;!j)'V(,1.')(/jl;)]. 
Ii> I) 

A.' 

(4.4 ) 

Hereinu(,1.)·u(,1.) stands for ( -1),1.~U + 1 (u(,1.)XU(,1.»60). 

The quadratic Casimir operator of the SU (5) group in chain 
IV can be expressed in terms of the operators L (I), Q (3) and 
Q (2), Q (4), defined in (2.4), (2.10), and (2.12), respectively, 
as 

C2(SU(5») = 1O[!L (I)'L (1) + ~Q(2)'Q(2) 
+ ~Q(3)'Q(3) + ~Q(4)'Q(4)] . (4.5) 

Its eigenvalue for representations (a),a2,a3,a4) ofSU(5) is 
given by 

(C2(SU(5»)) = 2ai + 3a~ + 3a~ + 2a~ + 3a)a2 

+ 2a)a3 + a)a4 + 402a3 + 2a2a4 

1651 

+ 3a3a4 + 5(20) + 3a2 + 3a3 + 2a4) , 
(4.6) 
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or, equivalently, in terms of the Young labels 
{m),m2,m 3,m4}: 

(C2(SU(5»)) = 2(mi + m~ + m~ + m~) 

- (m)m 2 + m)m3 + m)m4 + m 2m 3 

+ m2m4 + m 3m4) + 5(2m) + m 2 - m 4 ) • 

(4.7) 

Similarly for the 0(5) group in chain IV, 

C2(0(5») = 16[!L (1)'L (I) + ~ Q(3)'Q(3)] (4.8) 

and for representations of 0(5) with Dynkin labels (a),a2 ) 

and Young labels [71,72] one finds 

(C2(0(5»)) = !(ai + 2a)a2 + 2a; + 40) + 6a2) (4.9) 

(4.10) 

For the SU (3) group in chain V, the quadratic Casimir oper­
ator and its matrix elements are 

(4.11 ) 

and 

(C2(SU (3) ) = A 2 + /-l2 + A/-l + 3 (A + /-l) , ( 4.12) 

where T(2) is defined in (2.14). Finally for the SU(6) and 
Sp(6) groups in chain VII we have 

C
2
(SU( 6») = 3 [, L (I). L (1) + -M p(2).p(2) + M. p(3).p(3) 

+ ~ p(4).p(4) + ~ p(S).p(5)] , (4.13 ) 

C
2
(Sp(6») = 4[, L (1)'L (I) + M. p(3).p(3) + H p(5).p(5)] , 

(4.14 ) 

where the operatorsp(r) are defined in (2.18). The eigenval­
ues in terms of Cartan-Dynkin labels or Young labels are 
given by 

C2(SU(6»)(OJLo«) =/-l2+ v +/-lv +6(/-l+v), (4.15) 
5 

C2(SU(6)hm"m,.m,.m •. m,} = I m;(m; - 2i + 7), (4.16) 
i=l 

C2(Sp(6»)(qrQ) = 3q2 + r + 3qr + 9q + 5r, (4.17) 

C2(Sp( 6) )(,1.,,1.,,1.,) 

=..1,1(..1,) +6) +..1,2(..1,2+4) +..1,3(..1,3+2). (4.18) 

With the expressions given above for the Casimir opera­
tors and their matrix elements, it is easy to construct gIBM 
Hamiltonians having any of the seven dynamical symme­
tries and also we can write down the corresponding energy 
formulas. For example, in chain II with states (3.1Oa) one 
has, up to an N-dependent term, 

Ell =A 1nd +A2nd (nd + 5) +A3v(v + 3) 

+ A4Ld (Ld + 1) + B)nsg + B2nsg (n sg + 10) 

+ B3Vsg (vsg + 8) + B4Vg (Vg + 7) 

( 4.19) 

With the representations of the groups in the seven limits, 
given in Sec. III and the Casimir operator expressions given 
above one can easily construct the typical spectra that ap­
pear ingIBM. 
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v. CONCLUDING REMARKS 

The first task in the study of the dynamical symmetries 
of gIBM is completed in this paper, namely the identification 
of the symmetry group chains, the determination of their 
generators, the construction of the Casimir operators in 
terms of the generators, and finally the solution of the pleth­
ysm problem for the various group-subgroup chains. Now 
one is in a position to construct the energy spectra in all the 
symmetry limits. Moreover, by diagonalizing a linear combi­
nation of the Casimir operators of the groups in a given 
chain, in a convenient basis like Isn';d ndaLd ;gngpLg ;LM ), 
one can construct symmetry defined basis states. 

In order to further investigate which symmetry limits 
have any physical relevance, it is necessary to calculate the 
electromagnetic transition strengths and particle transfer 
strengths, since these calculations would give us a clear in­
sight into the band structure of energy spectra. This pro­
gram, however, requires the derivation of analytic expres­
sions for reduced matrix elements of tensor operators in the 
various group chains. 
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Theta series and magic numbers for diamond and certain ionic crystal 
structures 

N. J. A. Sloane 
AT&T Bell Laboratories. Murray Hill. New Jersey 07974 

(Received 26 September 1986; accepted for publication 25 February 1987) 

Two earlier papers by Teo and the author [J. Chem. Phys. 83, 6520 (1985); Inorg. Chem. 25, 
2315 (1986)] studied circular and spherical clusters in the simplest close-packed structures in 
two and three dimensions. The present work considers clusters in other fundamental structures 
(the hexagonal net, diamond), and applies the results to study clusters in related structures 
(Lonsdaleite, graphite) and in binary arrays with the structure of the idealized ionic crystals 
NaCI, CsCl, ZnS, CaF2 , Ti02 , 03Biz. 

I. INTRODUCTION 

In Refs. 1 and 2 Teo and the author investigated circular 
clusters in the square and hexagonal lattices in two dimen­
sions (2D), and spherical clusters in the simple, face-cen­
tered, and body-centered cubic lattices and the hexagonal 
close-packing in three dimensions (3D), for various choices 
for the center of the cluster. In these papers we gave the theta 
series for each cluster, table of the coefficients and their par­
tial sums, which are the nuclearities or magic numbers of the 
clusters, and coordinates for the atoms in the first few shells 
of each cluster. 

The present paper has two goals: (i) to give the theta 
series for certain fundamental structures not considered in 
Refs. 1 and 2 (e.g., the hexagonal net in 2D, the diamond net 
in 3D); and (ii) to show how these fundamental theta series 
may be used to study clusters in more complicated struc­
tures, including binary and higher-order compounds, and to 
enumerate the atoms of the individual elements in the clus­
ters. This technique is illustrated by considering the hexag­
onal diamond (or Lonsdaleite) net, various 3-D nets related 
to graphite, and binary compounds having the structure of 
the ionic crystals NaCI, CsCI, ZnS (zinc blende and wurt­
zite), CaF2, TiOz, and 03Bi2' For applications of these re­
sults see Refs. 1 and 2. 

Theta series have been used for almost 100 years in the 
calculation of numerical sums (such as Madelung's con­
stant) associated with lattices: see, for example, TosV 
Glasser and Zucker,4 and Borwein et al. 5 However, the pres­
ent series of papers appears to represent the first application 
of theta series (at any rate in recent years) to the enumera­
tive or combinatorial study of clusters. For example, the 
especially simple expressions (17) and (19) for clusters in 
the diamond structure do not appear to have been published 
before. On the other hand, it would not be surprising ifthey 
were to be found somewhere in the older literature. The au­
thor would appreciate hearing of any references that have 
been overlooked. Computer programs (such as MAC­

SYMA 6.7) that are capable of performing algebraic computa­
tions now make it particularly easy to manipulate theta se­
ries. 

Since the methods are similar to those used in Refs. 1 
and 2, the treatment here will be brief. Except for diamond 
we give just an analytic expression for each theta series, and 

the number of atoms in the first few shells of the clusters. The 
nuclearities of the clusters are the partial sums of the latter 
numbers, and can easily be derived from the information 
provided, as is illustrated for diamond in Table I. 

The same methods may be applied to lattices in spaces of 
higher dimension; these results are described elsewhere.8

•
9 

However, it seems worth giving two particularly appealing 
examples. The theta series of the E8 or Gosset lattice in eight 
dimensions (with respect to a lattice point) is 

8 E• (X) = !(02(X)8 + 03(X)S + 04(X)8). (1) 

Comparison of this expression with Eg. (17) shows that Es 
may be regarded as an eight-dimensional diamond lattice. 
The theta series of the notorious Leech lattice in 24 dimen­
sions (with respect to a lattice point) is 

TABLE I. Clusters in diamond structure, centered at (a) an atom, (b) the 
midpoint of two neighboring atoms, and (c) the center of a tetrahedral hole. 
Here S. is the number of points in the spherical shell of radius,[ii, .and G. is 

the magic number of the cluster. 

(a) Diamond, atom (b) Diamond, edge 
n 

o 
3 
4 

2 

23 
4 
4~ 
6 
6~ 
8 
8~ 

10 
10i 
12 
123 
14 
14~ 
16 
16l 
18 
18~ 
20 
20~ 
22 
22~ 
24 

Sn 

I 
4 

12 
12 
6 

12 
24 
16 
12 
24 
24 
12 
8 

24 
48 
36 
6 

12 
36 
28 
24 
36 
24 
24 
24 

Gn n ii Sn 

o 2 
5 1 6 
17 2 12 
29 3 12 
35 4 6 
47 5 18 
71 6 18 
87 7 12 
99 8 30 

123 9 14 
147 10 6 
159 11 30 
167 12 24 
191 13 18 
239 14 30 
275 15 26 
281 16 24 
293 17 30 
329 18 24 
357 19 18 
381 20 24 
417 21 36 
441 22 24 
465 23 48 
489 24 30 

2 
8 

20 
32 
38 
56 
74 
86 

116 
130 
136 
166 
190 
208 
238 
264 
288 
318 
342 
360 
384 
420 
444 
492 
522 

(c) Diamond, hole 
n Sn 

4 
6 

12 
8 

12 
24 
16 
24 
30 
12 
24 
24 
24 
36 
12 
48 
28 
24 
36 
48 
24 
36 
30 
36 
32 

4 
10 
22 
30 
42 
66 
82 

106 
136 
148 
172 
196 
220 
256 
268 
316 
344 
368 
404 
452 
476 
512 
542 
578 
610 
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8LeeCh (X) = !(t'2(X)24 + 83 (X)24 + 84(X)24) 

- ~(82(X)83(X)84(X)r (2) 

There is no 3-D analog of this lattice. 

II. THETA SERIES 

Let T be an array of points (or atoms) in Euclidean 
space (of any numbers of dimensions). The norm s's of a 
vector s is its squared length. The theta series of T with re­
spect to an arbitrary point P is the formal power series 

8
T
,p(X) = IXU-P).(t-P). (3) 

lET 

The sUbscript P may be omitted ifit is clear from the context. 
The coefficient of xn in 8 T,p(X), Sn say, is therefore the 
number of atoms in T at squared distance n from P, i.e., the 

number of atoms on the spherical shell of radius [ii around 
P. The partial sum 

(4) 

is the total number of atoms in the spherical cluster of radius 

[ii centered at P, i.e., the nuclearity or magic number of that 
cluster. 

If T is a binary array, consisting of two types of atoms, 
say 

T=Tx U T y, 

where T x (resp. T y) is the set of atoms of type X (resp. y), 
then the bivariate theta series of T with respect to an arbi­
trary point P is defined to be 

8 T,p(X,Y) = 8 Tx,P (X) +8Ty,p(Y), (5) 

For greater emphasis we sometimes replace X and Yby the 
symbols for the corresponding elements, as is illustrated in 
Eqs. (27)-(29). 

The symbols Z, Z 2, Z 3 denote the integer points along a 
line, the square lattice of points with integer coordinates in 
2D, and the simple cubic lattice in 3D, respectively. The hex­
agonal lattice in 2D (with coordination number 6, and 
scaled so that neighboring atoms are at unit distance apart) 
is denoted by A2 • 

The theta series of the structures considered in this pa­
per may be conveniently expressed in terms of the seven fun­
damental functions given in Eqs. (6)-( 12). These are 

00 

'YIa(X) = '" x(m+a)' 8 (X) ./ £.. Z+a , (6) 
m - 00 

for any real number a, which is the theta series with respect 
to the origin of the I-D array 

... , a - l,a,a + l,a + 2,a + 3, ... ; 

82 (X) = 'T/1Iz(X) = 8 z + 1/2 (X) 

= 2X If4 + 2X9/4 + 2X25/4 + 2X49/4 + "', 
83(X) = 'T/o(X) = 8 z (X) 

(7) 

= 1 +2X+2X4+2X9+2X16+2X25+ ... , (8) 

84 (X) = 83 ( -X) 

= 1-2X+2X4-2X9+2XI6_2X25+ ... (9) 
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(82, 83, and 84 are particular examples of Jacobi theta se­
ries 1o ); and the theta series of the hexagonal lattice with re­
spect to an atom, the midpoint of an edge joining two neigh­
boring atoms, and the center of a triangular hole, 
respectively, which are 

<Po(X) = 8 A "atom (X) 

= 82(X)82(X 3
) + 83(X)83(X 3) 

= 1 + 6X + 6X 3 + 6X 4 

+ 12X7 + 6X 9 + 6X IZ + "', 
<PI (X) = 8 A ,.edge (X) 

= !82(XI/4)82(X3/4) 

(10) 

= 2X 1/4 + 2X3/4 + 4X 7/4 + 2X9/4 + 4XI3/4 + "', 
(11 ) 

<P2 (X) = 8 A
2
,hole (X) 

= 8Z(X)'T/1/6(X 3
) + 83 (X)'T/1I3(X 3) 

= !(<po(X 1/3) - <Po (X) ) 

= 3X 113 + 3X 4/3 + 6X 7/3 + 6X 1313 

+ 3X 16 /3 + .... (12) 

Tables 4-6 of Ref. 1 give the first 80 terms in ( 10)-( 12). The 
Jacobi theta series 82,83,84 satisfy numerous identitiesl

,4,1O; 

these have been used to simplify later formulas whenever 
possible. 

III. TWO-DIMENSIONAL NETS 

Two-dimensional nets have been extensively studied: 
see, for example, Wells ll

,12 and O'Keeffe and Hyde. l3 There 
are three regular nets, two of which (the square lattice 
44 = Z2 and the hexagonal lattice 36 = Az) we investigated 
in Refs. 1,2, and 14. 

We now consider the third regular net, the hexagonal 
net 63 = Hz (Fig. 1). This may be regarded as the union of 
Az and a reflected copy of Az. Let neighboring atoms be at 
unit distance apart. Then, using the results in Ref. 1, it fol­
lows that the theta series of H2 with respect to an atom, the 
midpoint of an edge joining neighboring atoms, and the cen­
ter of a hexagonal hole are, respectively, 

8 H ,.atom (X) = <Po(X 3
) + <P2(X 3) 

= !(<Po(X) + <Po(X 3») 

= 1 + 3X + 6X 3 + 3X4 + 6X 7 + 6X 9 

+ 6X I2 + 6X I3 + 3X I6 + 6X I9 + "', 
( 13) 

8 H ,.edge (X) = <PI (X) - <PI (X3) 

= 82(X3/4)'T/I/6(X9/4) 

= 2X 1/4 + 4x7/4 + 4X 13/4 + 4X 19/4 

+ 2X 2514 + 4X 31 /4 + 4X 37/4 + 4X 43 /4 

+ 6X 49
/4 + 4X 61 /4 + "', (14) 
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FIG. 1. Two-dimensional hexagonal net H 2 • 

8 H ,.hole (X) 

= tPo(X) - tPo(X 3) = 2tP2(X 3) 

= 6X + 6X 4 + 12X7 + 12X 13 + 6X I6 + 12X 19 

+ 6X 25 + 12X 28 + 12X 31 + 12X 37 + ... . (15) 

Remarks: In principal there is no difficulty in calculat­
ing the theta series of any 2-D or 3-D structure (as illustrat­
ed in Sec. IX of Ref. 1). The interesting question is to find as 
simple an expression as possible. Using Refs. 1 and 2 and the 
above formulas simple expressions may be obtained for 
many other 2-D nets. For example the theta series of the 
Kagome net (Fig. 8 of Ref. 13) with respect to an atom and 
the center of a hexagonal hole are 

tPo(z)-tPl(4z) and tPo(z)-tPo(4z), (16) 

respectively. 

IV. THE DIAMOND NET 

The diamond net (p. 117 of Ref. 11, p. 121 of Ref. 12, p. 
26 of Ref. 15) may be regarded as the union of a face-cen­
tered cubic (fcc) lattice [in which the 12 neighbors of the 
origin have coordinates of the form ( ± 1, ± 1, 0)] and a 
translation of this fcc lattice by (!,!,!). The minimal distance 
between atoms is .j37i. Then using the results in Ref. 1 we 
find that the theta series of diamond with respect to an atom 
[e.g., the point (0,0,0)], the midpoint of an edge [e.g., 
(M,D], and the center of a tetrahedral hole [e.g., (0,0,1)] 
are, respectively, 

8diamond,atom (X) 

= !(02(X) 3 + B3(X) 3 + B4(X) 3) 

= 1 + 4X 3/4 + 12X2 + 12XII/4 + "', (17) 
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8diamond,edge (X) 

= B2(~){B2(X2)713/8(X4) + B3(X 2)7]1/8(X4)} 

= 2X 3
/

16 + 6X 19
/

16 + 12X 35
/

16 + 12X51
/

16 + "', 
(18) 

8diamond,hole (X) 

= !(82(X)3 + 83(X)3 - 84(X)3) 

= 4X 3/4 + 6X + 12X 11/4 + 8x 3 + '" . (19) 
TableI displays the first 50 coefficients Sn in ( 17 )-(19) 

and their partial sums G n [see Eq. (4)]. The first column 
agrees with and extends a small table given by Prins and 
Petersen l6 (reprinted on p. 1039 of Ref. 17). 

For the closely related hexagonal diamond or Lonsda­
leire net (Fig. 3.35c of Ref. 12) we give just the theta series 
with respect to an atom, which on the same scale is 

{82(XI6/3)tP2(X2) + 83(XI6/3)tPO(X2)} + {7]1/8(X I6 / 3) 

XtP2(X 2) + (!B2(X 4/3) -7]1/8(X I6 /3»)tPO(X 2)} 

= 1 + 4X 3/4 + 12X 2 + X 25 /12 + 9X 11/4 + 6X 4 

+ 6X 49 / 12 + 9X 19/4 + 2X 16/3 + 18x6 + ... (20) 

(using Tables 16 and 22 of Ref. 1). 

V. GRAPHITE AND RELATED 3-D NETS 

The hexagonal net H2 contains twice as many atoms as 
hexagonal holes, and many different 3-D nets may be formed 
by stacking appropriately displaced layers of H2 (p. 922 of 
Ref. 12). By stacking identical layers, i.e., using the sequence 
AAA ... we obtain the primitive hexagonal array (p. 596 of 
Ref. 13). If the distance between layers is a, and the distance 
between atoms in the same layer is 1, the theta series of the 
primitive hexagonal array with respect to an atom is, from 
(13 ), 

(21) 

By stacking layers in the sequence ABAB ... we obtain 
the ordinary graphite net (p. 922 of Ref. 12), in which there 
are two geometrically distinct types of atoms. With respect 
to an atom which is opposite atoms in the two adjacent lay­
ers, the theta series of graphite is also given by (21). With 
respect to an atom which is opposite holes in the two adjacent 
layers, the theta series of graphite is 

83(X 4a')(tPO(X 3/2
) + tP2(X 3/2») + 282 (X 4a')tP2(X 3/2). 

(22) 

By stacking layers in the order ABC ABC ... we obtain 
the rhombohedral graphite net (p. 923 of Ref. 12), in which 
all atoms are geometrically equivalent. The theta series with 
respect to any atom is 

!tPo(X 2)(383(X 9a') - 83(xa
2
») 

+ !tPo(X2/3)(3B3(xa2) - 83(X 9a'»). (23) 

VI. IONIC CRYSTAL STRUCTURES 

To illustrate the application of theta series to binary 
compounds we consider seven of the most regular ionic crys­
tal structures. The first six are pictured on p. 15 of Ref. 18. 
We use the most symmetrical (idealized) versions of these 
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structures, in which the parameters of the unit cell are such 
as to give the highest coordination number. The same tech­
niques may be applied to more general structures, but the 
resulting theta series are not as simple. 

The first four examples all follow the same pattern. We 
begin with the simplest. 

(i) The idealized rock salt (NaCl) structure consists of 
two types of atoms (N a and CI, or more generally X and Y) 
placed alternately at the points of the simple cubic lattice. 
The theta series with respect to an X-type atom is [from (45) 
and (53) of Ref. 1] 

8 rock salt.X (X, Y) 

= 8 fcc,atom (X) + 8 fcc,oct. hole (Y) 

= W'3(X) 3 + 84 (X)3) + !(83( y)3 - 84( Y)3) 

=X D + 6Y + 12X 2 + 8y3 + 6X 4 + 24y5 

+ 24X 6 + 12X 8 + 30y9 + 24X 10 + .,. . (24) 

The X- and Y-type atoms are geometrically equivalent, so 
the theta series with respect to a Y-type atom is obtained by 
interchanging X and Y in (24). 

(ii) The cesium chloride (CsCI) structure similarly con­
sists of two types of atoms placed alternately at the points of 
the body-centered cubic (bcc) lattice. The theta series with 
respect to an X-type atom is [from (37), (43) of Ref. 1] 

8CsCl.X (X, y) 

= 8 Z "atom (X) + 8 Z '.hole (Y) 

= 83(X)3 + 8z( Y)3 

= X D + 8y3/4 + 6X + 12X 2 + 24y lI
/
4 + 8X 3 

+ 6X 4 + 24y 19
/
4 + 24X 5 + 24X 6 + .,. . (25) 

(iii) The zinc blende (ZnS) structure is obtained in the 
same way from the diamond net. The theta series with re­
spect to an X-type atom is [compare Eq. (17)] 

8 zinc blende,X (X, Y) 

= ~(82( y)3 + 83(X)3 + 84 (X)3) 

=Xo + 4y3/4 + 12X 2 + 12y ll / 4 + 6X 4 + 12y 19
/

4 

+ 24X 6 + 16y27
/
4 + 12X 8 + 24y 35 /4 + '" . (26) 

(iv) The wurtzite (ZnS) structure l9 is similarly ob­
tained from hexagonal diamond. The theta series with re­
spect to an X-type atom is obtained by replacingXby Yin the 
second bracketed expression in (20). 

(v) In the idealizedjluorite (CaFz) structure the two 
types of atoms are not geometrically equivalent, and so it 
seems clearest to replace X and Y by the appropriate chemi­
cal symbols. With respect to a calcium atom we have [using 
(45) and (51) of Ref. 1] 

8 caF"ca (Ca,F) 

= 8 fcc,atom (Ca) + 28fcc,tet.ho1e (F) 

= ~(83(Ca)3 + 84(Ca)3) + 82(F)3 

= CaD + 8 F3/4 + 12 Caz + 24 Fll/4 

+ 6 Ca4 + 24 F19/4 + 24 Ca6 + 32 FZ7 / 4 

+ 12 Ca8 + 48 F35 /4 + ... (27) 

[compare (26) ]. The fluorite structure may also be regard-
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ed as a simple cubic lattice of F atoms with half the holes 
filled by Ca atoms. Therefore, with respect to a fluorine 
atom, we have 

8 caF"F (Ca,F) 

= 8 z ',atom (F) + ~8Z"hole (Ca) 

= 83(F)3 + ~8z(Ca)3 

=pD+4Ca3/4+6F+ 12F2+ 12Ca11
/
4 +8F3 

+6p4+ 12Ca'914+24F5+24F6+ .... (28) 

For antifluorite (p. 161 of Ref. 12) we interchange Ca and F 
in (27) and (28). 

(vi) The rutile (Ti02 ) structure illustrates how less reg­
ular structures may be handled. Rutile consists of Ti atoms 
at the positions of the bcc lattice and 0 atoms at four trans­
lates of the simple cubic lattice Z 3 by the amounts 

± (u,u,O), ± (~ + u,~ - u,O), 

where u;:::: 0. 30. The theta series of the translate Z 3 
+ (u,v,w) is 7]u (X)7]u (X)7]w (X). It follows using (71) of 
Ref. 1 that 

8 TiO"Ti (Ti,O) 

= 8z(Ti)3 + 83(Ti)3 

+ 27]u (0)z83 (0) + 27]u+ I/Z (0)282(0). (29) 

(vii) The final example illustrates how close-packed te-
trahedral structures (such as are described on pp. 161 and 
162 of Ref. 12) may be handled. The idealized 03Bi2 struc­
ture consists of Bi atoms at the points of an fcc lattice in 
which three-quarters of the tetrahedral holes are occupied 
by 0 atoms. The theta series with respect to a Bi atom is 
[using (45) and (51) of Ref. 1, and counting the holes with 
the correct multiplicity] 

8 0 ,Bi"Bi (O,Bi) 

= 8 fcc,atom (Bi) + j·28fcc,tet.hole (0) 

= ~(82(Bi)3 + 83(Bi)3) + ~82(0)3 

= BiD + 6 0 3/4 + 12 Biz + 18011 / 4 + 6 Bi4 

+ 18019/4 + 24 Bi6 + 16027
/
4 + 12 Bi8 

+ 24035 /4 + ., .. (30) 

The coordination number of6 agrees with Table 4.5 of Ref. 
12. 

Erratum o/Ref 1: In Eq. (10) of Ref. 1, the second + 
sign should be omitted. 
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A particular class of nonempty spatially homogeneous orthogonal cosmologies of the Bianchi 
classification is considered in the presence of a nonzero cosmological constant A, i.e., 
cosmologies that can be transformed into a three-dimensional autonomous dynamical system: 
these are. the a~isymmetric type II, the pseudoaxisymmetric type VIo, and the (n~ = 0) types 
V, VIh (IncludIng III = VL I ). A qualitative method to investigate such dynamical systems as 
a whole is presented. The qualitative study yields for every type a set of solutions of nonzero 
measure and another one of zero measure becoming isotropic in an infinite cosmological time 
when A>O. 

I. INTRODUCTION 

The discovery of the microwave background radiation 
in 1965 confirmed the isotropy assumption in the early 
Friedmann-Lemaitre-Robertson-Walker cosmological 
models. However, it left open the question of why our uni­
verse should be isotropic. Several attempts to solve this prob­
lem have been done since that time. The most recent is the 
inflationary model of the Universe, I suggested by Guth.2 In 
this model, a period of exponential expansion can reduce an 
initial anisotropy, but it has been shown by Barrow3 that an 
initially high anisotropy will prevent the Universe from get­
ting into an exponentially expanding phase. Collins and 
Hawking showed4 that the set of spatially homogeneous cos­
mological models approaching isotropy at infinite times is of 
zero measure. They concluded therefore that the isotropy of 
the Universe cannot be explained without postulating spe­
cial initial conditions.s However, they did not consider the 
possible influence of a nonzero cosmological constant A on 
the isotropy of the Universe. In two previous articles6

•
7 we 

have shown then that for the special class of the anisotropic 
cosmologies of the Kantowski-Sachs type, there exist sets of 
solutions of nonzero measure (when they originate at cer­
tain singular points, in the context of autonomous dynamical 
systems, outlined in the following) as well as a set of zero 
measure which is not contained in the preceding ones (be­
cause the models start in this case at a different singular 
point), all approaching isotropy at infinite times, when a 
positive cosmological constant is considered. This brings us 
back to the idea of Misner who suggested8 that our Universe 
started off in a chaotic state with inhomogeneities and an­
isotropies of all kinds. In order to investigate this point of 
view, Misner has considered9 the effects of neutrino viscosity 
in damping out the anisotropy of the homogeneous cosmolo­
gical model of Bianchi type 1. The "dissipative process" we 
use here is only a nonzero cosmological constant. 

The results for the Kantowski-Sachs type, however, 
have been obtained by studying a three-dimensional autono­
mous dynamical system, which gives us global qualitative 

a) Present address: Universite du Burundi. B. P. 2700 Bujumbura, Burundi. 

solutions and quantitative asymptotic behaviors around the 
singularity points. Autonomous dynamical systems are well 
known in cosmologylO,11 but only in the plane case is the 
mathematical theory well established. 12

,13 The generaliza­
tion to three dimensions was initiated by Bihari 14 and 
Couper,15 who studied the modes of approach to the sim­
plest types l6 of singular points (i.e., where the right-hand 
sides disappear simultaneously). When the dimension is 
higher than 3, we have at our disposal a general theorem, 
stated by Bogoyavlensky,17 applying to nondegenerate sin­
gular points of autonomous dynamical systems of any di­
mension. Because of its interest it will be given in the Appen­
dix. Autonomous dynamical systems of (at least) three 
dimensions appear quite naturally in Bianchi cosmolo-

• 10 17 18 W h h d' . gles. ., e present ere a met 0 to InvestIgate globally 
three-dimensional autonomous dynamical systems. Let us 
indicate that our method differs from the one given by Bo­
goyavlensky.17.19 We obtain then the evolutions of cosmolo­
gical models from one singular point to another. In this pa­
per, we will restrict ourselves to a certain class of orthogonal 
Bianchi models containing a perfect fluid: to the class A in 
the notation of Ellis and MacCallum,20 where we analyze the 
axisymmetric model of Bianchi type II and the pseudoaxi­
symmetric one of type VIo; to those of class B, which have 
n~ = 0: the models are then of the types III, V, VIh where 
III = VI _ I' The other axisymmetric models of class A are 
either lower- or higher-dimensional autonomous systems. 
The special case h = - 1/9 of class B will be considered 
elsewhere. 18 The technique for the asymptotic behavior 
around the singularity points for these models has been in­
vestigated by MacCallum. 21 The main results in our paper 
are, as well as the qualitative study of a class of empty Bian­
chi models with cosmological constant, the existence of sets 
of zero and especially nonzero measure of solutions becom­
ing isotropic in an infinite cosmological time when A> 0 for 
all types studied herein. These sets whose scale factor is zero 
at the beginning of the evolution then asymptotically ap­
proach the de Sitter solution, indicated by Wald22 as being 
the asymptotic behavior for all Bianchi models when A> O. 
Some of the models belonging to the set of zero measure have 
the additional property of starting at the Einstein-de Sitter 
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model. Let us indicate that in this paper we present global 
qualitative solutions of a particular class of Bianchi models 
with a particular matter stress-energy tensor whereas Wald 
gives only the asymptotic behavior but for all Bianchi mod­
els without any assumption about the nature of the matter 
stress-energy tensor. Furthermore our method enables us to 
conclude that there exists a set of solutions approaching as­
ymptotically the de Sitter one, which is of nonzero measure. 

The paper is organized as follows. In Sec. II the global 
qualitative method to study three-dimensional autonomous 
dynamical systems is described. In Sec. III we discuss qual­
itatively empty Bianchi models of the types II, III, V, VI, 
and Vlh in the presence of a nonzero cosmological constant 
and in Sec. IV the nonempty models for all these types are 
studied by means of a three-dimensional autonomous dy­
namical system in the presence of the same constant. Con­
clusions are outlined in Sec. V. 

II. QUALITATIVE METHOD 

Einstein's field equations can be written in the form 

x'=x[(3y-2)(1-x)_,8,2+jAz], (2.1) 

,8" =!,8'[4- (3y-2)x-,8,2+ (2A/3)z] 

- 2- I C(4 - 4x _,8'2 - (4A/3)z), (2.2) 

z'= -2z[1+!(3y-2)x+!,8,2_(A/3)z], (2.3) 

with the first integral 

,8'2 = 4 - 4x - jAz - z e2il VI' (2.4) 

for the restricted class of perfect fluid Bianchi models, 10 indi­
cated in Sec. I, in the presence of a nonzero cosmological 
constant, where' = didO is the derivation with respect to the 
time variable 0 = O(t), first used by Misner9.23-25 to study 
the asymptotic behavior of models of the Bianchi types I and 

IX. The variables x = 3fll8 2 and,8' = 2.[30/8 (where u is 
the shear scalar) measure, respectively, the dynamical im­
portance of the matter content and the rate of shear in terms 
of the volume expansion 8, z = 98 -2, and VI is an effective 
potential for the model's anisotropy,21 ,8= (,81,,82)' where 
for axisymmetric models,8 =,81 and for (n~ = 0) models, 

.[3,8 I = k,82' for some constant k, ,8 being then defined by 

- ,8 13+7? = k,8 I + {3Pz. Here C takes the values 4, - 2, 
0,0 < C < 2 for types II, Vlo, V, and VIh , respectively, C = 1 

for type III and C = 2q/~q2 - 3h for type VIh (where q is 
defined for instance in Ref. 20). The equation of state has the 
barotropic form p = (y - 1 )fl, where p is the pressure, fl the 
density of matter, and y a constant whose values lie in 
the range 1 <y<2. The upper limit y = 2 corresponds to 
Zel'dovich's stiff equation of state. 

In order to study the three-dimensional autonomous dy­
namical system (2.1)-(2.3), we first calculate the singular 
points at finite distance (called also critical points or equilib­
rium points or rest points) and examine the behavior of inte­
gral curves in their neighborhood. We obtain the singular 
points at infinite distance by introducing three different 
Poincare transformations6.17 

1659 J. Math. Phys .. Vol. 28, No.7, July 1987 

alternatively in the system (2.1)-(2.3). The first integral 
(2.4) determines the region of physical interest: we have 
,8'2 - 4 + 4x + jAz < 0, since VI is purely exponential for 
the models dealt with in this paper. Let us remember6 that 
for the Kantowski-Sachs type we had ,8 ,2 
- 4 + 4x + jAz> O. In addition we have x > 0, z > O. As for 

a plane system, we distinguish between simple (nondegener­
ate: all the eigenvalues have nonzero real parts) and multiple 
(degenerate: at least one eigenvalue is zero) singular points. 
In the first case, two different types appear: saddles and 
nodes. When two of the three eigenvalues have real parts 
with the same sign, we have a saddle point. If the three real 
parts have the same sign, we have a node, attracting (stable) 
if all the real parts are negative, repelling (unstable) in the 
other case. 

We analyze first a saddle point with the autonomous 
dynamical system put into the canonical form 

X' = AX + j, Y' = flY + g, z' = vZ + h, (2.5) 

whereA,fl, v are (nonzero) eigenvalues and wherej,g, hare 
the three nonlinear terms of the system.26 The singular point 
is at the origin of the coordinates (X,Y,Z). Let us assume 
A > 0, fl > 0, v < 0 for the system (2.5). Here, 8, ¢ intervening 
in what follows correspond to the angles of the usual spheri­
cal coordinates (X = r sin 8 cos ¢, Y = r sin 8 sin ¢, Z = r 
cos 8). The sign of v is denoted by u( v). The following 
theorem 14.27 gives us then the behavior of the separatrices of 
the saddle. 

Theorem 2.1: If the autonomous system (2.5) has its 
characteristic roots as assumed, then there is (a) only one 
orbit tending to the origin with u( v) 0 ..... - 00 and 8

00 

= limoH __ 00 8 = 0 and only one orbit with 8
00 

= 1T; and 
(b) a curve y satisfying the following properties: y and its 
projection on the plane (X, Y) are homeomorphic to a circle, 
and every orbit starting at some point of y is tending to the 
origin with u(v)O ..... + 00 andlimO"il_+008=1T12. The an­
gle ¢ 00 is fixed according to the well-known theorems of 
nodes and foci for a plane autonomous system. 12.13.28 

We consider now a node for the same26 autonomous 
dynamical system (2.5) and assume Ivl < Ifll<IA I. 

Theorem 2.214: If the eigenvalues are all of the same 
sign, there is a sphere centered at the origin such that every 
orbit starting at its surface tends to the singular point with 
uO ..... - 00. 

Theorem 2.314: If the eigenvalues are such as assumed, 
then every orbit which tends to the origin does go alongside 
the positive Z axis or the negative one except those orbits 
which start at a curve y which is homeomorphic to a circle, 
as well as its projection on the plane (X, Y); in this case 
8

00 
= rr/2. The same remark as before applies for the angle 

¢oo' 
These two latter theorems show what is essentially new 

in Bihari's work about nodes in three dimensions: there are 
double infinities of orbits tending to the singular point (in 
this case alongside the Z axis), instead of only simple infini­
ties as in the plane case. The generalization of these theorems 
about the topological structure of nondegenerate critical 
points to yet higher-dimensional autonomous dynamical 
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systems is given in the Appendix. The case where one of the 
characteristic roots is zero and the other two of opposite 
sign, i.e., the case of a multiple or degenerate singular point, 
has been studied by Couper. 15 In this case the behavior of the 
integral curves is significantly more complex than for nonde­
generate critical points. 29 All the theorems in this section 
and in the Appendix apply to the case of isolated singular 
points. When we have continuous sets, i.e., nonisolated sin­
gular points, it is sometimes possible to extend the above 
definitions and theorems to these cases. 30 

In order to arrive at a global picture, we have to join the 
different equilibrium states, at finite distance and at infinite 
distance (if the variables of our system extend that far). We 
do this by analyzing the three surfaces 

{ dx = o} 
df! ' { 

df3' = o} 
df! ' {~=o} df! ' 

in particular their intersections. We obtain then the sign of, 
for instance, dz/ dx along some orbit and can so derive the 
global behavior of all the orbits between the singular points. 

III. PLANE AUTONOMOUS SYSTEMS: THE EMPTY CASE 

When the cosmological constant vanishes, we obtain 
plane autonomous dynamical systems in the variables x, f3 ' 
for all Bianchi types under investigation. They have been 
studied in detail by Collins. 10 For Bianchi type V, C = 0: we 
have a plane system in the variables x, z. By setting x = 0 in 
(2.1), we obtain a class of empty plane autonomous systems 
in the presence of a cosmological constant 

f3" = !f3' (4 - f3'2 + (2A/3)z) - !C(4 - f3'2 - (4A/3)z), 
(3.1 ) 

z' = - 2z(1 + !f3'2 - (A/3)z). (3.2) 

These two latter cases have not yet been studied by qualita­
tive methods and are very useful as further subcases of the 
three-dimensional systems in order to obtain a better idea of 
the global behavior of the integral curves in three dimen­
sions. 

For type II models, the critical points at finite distance 
are simple. The point (2,0) is a saddle point, ( - 2,0) an 
improper node, as well as (0,3/ A), which exists only for 
A> 0. When A < 0, the Poincare transformation 12 
(f3 = vs- I

, Z = S-I) enables us to study the critical point at 
infinity (v = o,s = 0) on the Z-axis, which is a double singu­
lar point. We find three directions of approach (in polar 
coordinates) tP = 0, arctan ( - V, and 1T. For A> 0, the 
typical behavior is the following one: the model starts at the 
critical point ( - 2,0) which is a pancake with the one-axis 
distinguished, where A is negligible while the shear (J' and the 
expansion f) are dominant, and tends to the singular point 
(0,31 A) (from the point of view of an autonomous system), 
which we call a "divergent type," since X --+ 00 and 
Y = Z --+ 00 for f! --+ 00, where X ,Y, Z are time-dependent 
functions on which the metric depends,21 not to be confused 
with the same symbols used in Sec. II as coordinates. The 
quantities A and f) are dominant and (J' is negligible. The 
critical point ( - 2,0) is a cosmological singularity because 
t--+O± and because the curvature invariant Ra{3yfjR a{3ylJ di­
verges as one approaches this pointY-34 The average length 

1660 J. Math. Phys., Vol. 28, No.7, July 1987 

scale 1= e - n is proportional to ( ± t) 1/3. It is not the case 

for (0,3/A), for which t--+ + 00 with l~exp (+~A/3t). 
When A < 0, models start at ( - 2,0), extending to infinitely 
large values of z and coming back to the same critical point. 
One curve is time symmetric. The global picture for A > 0 
and A < ° is drawn in Fig. 1. The arrows depict the entire 
course of evolution, but the time reverses are also possible. 
All the type II models considered here are locally rotational­
ly symmetric (LRS). 

The type V models divide into two classes: those in the 
(x,z) plane and those in the (f3',z) plane. In the variables x,z 
we have three singular points. Two of them, (1,0) and (0,3/ 
A), are improper nodes and (0,0) is a saddle point. Here 
(0,3/ A) exists only for A> 0. By the Poincare transforma­
tion (x = vs- I

, Z = S-I) we find, for A < 0, the double sin­
gular points (s = 0, O,,;;;v,,;;; - A/3). It is a continuous line of 
nonisolated singular points. The direction of approach is giv­
en by tan tP = [( 3y - 2) Vo - 2A/3j /3yvo, where O,,;;;vo 
,,;;; - A/3. When A> 0, models start at (1,0), which is a 
point singularity, where matter is dynamically important, 
and tend to (0,3/ A) which is of the divergent type with the 
matter dynamically negligible but A important. The singular 
point (1,0) is a cosmological singularity with I ~ ( ± t) 2/3y. 

In the case A < 0, all the models are time symmetric. The 
typical behaviors are drawn in Fig. 2. 

The empty case in the variables f3', z contains three or 
four simple equilibrium states according to A < ° and A > 0. 

z 

(bl 

FIG. I. The entire evolution of the empty Bianchi models with A> 0 and 
A <0 is depicted, in terms of the variables,B' = 2,j3(aI8) and z = 98 -2. 

Here x measures the dynamical importance of matter and,B' measures the 
importance of shear anisotropy. When A> 0, arrows refer to the evolution 
of the model with the time reverse also possible. When A < 0, there exists 
one single time symmetric model. The types of arrows indicating the entire 
evolution are otherwise associate. The general behavior of the integral 
curves has been found from the qualitative method and then been used to 
sketch qualitative figures by hand. We describe the trajectories of the 
LRS(,B2='0) type II model when A> ° [diagram (a) 1 and A <0 [diagram 
(b)j. 
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.1 
A (a) 

(b) 

FIG. 2. The plane case in the variables (x,Z) for the (n~ = 0) type V model. 
In (b), all the models are time symmetric. See also the caption to Fig. 1. 

The singular points (2,0), ( - 2,0), and (0,3/A) are im­
proper nodes and (0,0) is a saddle point. At infinitely large 
values for z, we obtain one double singular point, whose di­
rections of approach are tP = 0, 17"12, and 17". As shown in Fig. 
3, we have a single model starting at (0,0) and tending to 
(0,31 A) when A> O. The saddle point (0,0) is then a point 
singularity. All other models evolve from (2,0) or ( - 2,0), 
which are of the cigar type with the three- or two-axis pre­
ferred, to the divergent type (0,31 A). When A <0, there is 
one time-symmetric model; the other ones evolve from one 
node to the other via the singular point at infinity. 

The pseudoaxisymmetric type VIo empty models with 
A = ° have globally behaviors similar to those of type II 
(Fig. 4). These behaviors are in fact corresponding as in the 
case lO of the nonempty models with a vanishing cosmologi­
cal constant. The singular point (2,0) is now an improper 
node which is cigar shaped with the one-axis preferred, and 
( - 2,0) is a saddle point. The directions of approach at 
infinity are tP = 0, arctan!, and 17". 

The type VIh models investigated herein have ° < k < 00, k =1= 3 (k = 3 corresponds to the type BbIl) and 
consequently 0 < C <2 (C =1=/3) whereC = 2k 1..f3+72. A 
particular case is Bianchi III, for which k = C = 1. The 
plane autonomous system for this latter type is the same as 
for the Kantowski-Sachs models6

; the only difference re­
sides in the physical region: we have f3 12 + ~Az 4 < 0 for 
type III whereas this expression is positive for the Kan­
towski-Sachs cosmologies. There are four simple equilibri­
um states. Here (2,0) and (0,31 A) are always improper 
nodes while ( - 2,0) is an improper node except for the val­
ue C = 1, for which it is a proper node. The critical point 
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(hi 

FIG. 3. The plane case in the variables (/J',z). See also the caption to Fig. 1. 

(C,O) is a saddle point. The directions of approach are 
shown in Figs. 5 and 6. When A < 0, (0,31 A) does not exist 
but there is then a double singular point at infinity whose 
directions of approach are tP = 0, arctan (- l/2C), 17". 

When A> 0, there is one single model evolving from (C,O) 
to (0,31 A), which is of the divergent type while (C,O) is a 
point singularity when ° < C < 1, a barrel with the three-axis 
preferred for C = 1, and a cigar with the three-axis preferred 
when 1 < C < 2. Models start from the cigar-shaped singular-

lal 

fJ' 

Ibl 

FIG. 4. The global behavior of the axisymmetric (/Jz ,=0) type VIo model. 
See also the caption to Fig. 1. 
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(a) 

(bl 

FIG. 5. The particular case III = VL 1 for which C = I. See also the cap­
tion to Fig. I. 

ity (2,0) with the three-axis preferred, as well as from 
( - 2,0) being a cigar with the two-axis preferred, a pancake 
with the three-axis preferred, or a cigar with the one-axis 
preferred according to k < 1, k = 1, or k > 1, tending all to 
(0,31 A). When A < 0, one single model evolves from (C,O) 
to ( - 2,0); there is one time-symmetric solution, {3' = - 2 
when C = 1. Typical behaviors are models which evolve 
from ( - 2,0) to infinity and come back either to ( - 2,0) or 
(2,0). 

IV. NON EMPTY BIANCHI TYPES WITH A 
COSMOLOGICAL CONSTANT 

We will follow the method outlined in Sec. II to study 
the three-dimensional autonomous dynamical system 
(2.1 )-(2.3) with first integral (2.4) according to the values 
of C. The region of physical interest is [x> 0, z> 0, {3 '2 - 4 
+ 4x + (4A/3)z < 0]. The singular points (0, ± 2,0) and 
(1,0,0) are simple and exist for all types, when I <r < 2, and 
for A positive or negative (Fig. 7). The topological type of 
(x = 0,{3' = 2,z = 0) is a node except for Bianchi type II for 
which it is a saddle point; the characteristic roots 
A. = 3r - 6, f.L = - 4 + 2C, v = - 6 are negative except 
for C = 4. We have three corresponding characteristic vec­
tors 11 = (1, - 1,0), 12 = (0,1,0), and 13 = (0, - 1,31 A) 
when A>O [or (0,1, - 3/A) when A<O] in all cases, ex­
cept for values of C in the range !<C<2, where we have 

1662 

l<r< (2 + 2C)/3: 1f.L1 < 1,11 < lvi, 
r = (2 + 2C)/3: 1f.L1 = 1,1 I < lvi, 
(2 + 2C)/3 <r<2: 1,11 < 1f.L1 < Ivl· 

J. Math. Phys., Vol. 28, No.7, July 1987 

(4.1 ) 

(4.2) 

(4.3 ) 

When r = (2 + 2C) 13, we have an infinity of characteristic 
directions in the plane (X, Y). No physical orbits tend to 
(0,2,0) for Bianchi type II; there is a double infinity of orbits 
starting at a sphere centered at (0,2,0) (see Theorem 2.2) 
and tending to this point n -+ 00, alongside the vector 11' 
except for the cases (4.1) and (4.2) for which the orbits tend 
to (0,2,0) alongside 12 and along the plane (X, Y), respective­
ly (Fig. 8). 

The point (0, - 2,0) is a node with negative eigenvalues 

(a) 

fJ' 

/3' 

(b) 

FIG. 6. The (n~ = 0) type VIh (h #0) model, whose behavior differs as 
0< C < lor 1 < C < 2. See also the caption to Fig. I. 
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1~y<2;A<·n 

y=2;l\>O y = 2 ; II < 0 

FIG. 7. The region of physical interest for the three-dimensional autono­
mous system, as weU as the singular points at finite distance according to the 
value of rand of the cosmological constant A are depicted. Striped parts are 
outside the region of physical interest. 

A. = 3r - 6, fl = - 4 - 2C, V = - 6, except for the Bian­
chi type VIo. In this case the eigenvalue fl = a and (0, - 2,0) 
behaves as a saddle point, with no physical orbits tending to 
it. A double infinity of orbits tends to (0, - 2,0) alongside 
the vector II for all other types. 

The singular point (1,0,0) is a saddle point for all types 
with eigenvalues A. = - 3r + 2, fl = 3 - Wr, v = - 3r 
and with corresponding eigenvectors II = (1, - 4C I 
(2 + 3r),0), 12 = (0,1,0), 13 = (+ 1,0, ± 3/A) according 
to A> a or A < O. We find a simple infinity of orbits tending 
to (1,0,0) along the vector II (see Theorem 2.1 ). 

In the plane (x,/3') we have two singular points (O,C,O) 
and (C 2 - 3r + 2)/C 2, (3r - 2)/C,0), which do not exist 
for all types. The point (O,C,O) is a saddle point for all types 
and for rE[ 1,2] except when C = 4; in this case it does not 
exist. When C = - 2, it coincides with the singular point 
(0, - 2,0). The eigenvalues are A. = 3r - 2 - C 2

, 

s' 8' 

FIG. 8. We indicate the region of physical interest which is inside the striped 
part in the neighborhood of the critical point (0,2,0) for A> 0 and A < O. 
Here I., 12, 13 are the three eigenvectors. 
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fl = 2 - C 2/2, v = - 2 - C 2 and the corresponding 
vectors 11=(1, (-3C+3CrI2)/(4-3r+C2/2), 0), 
12 = (0,1,0),13 = (0, + 1, ± (4 + C 2/2)1 AC) according to 
A> a or A < O. To C = a corresponds Bianchi type V and 
13 = (0,0,1). An interesting behavior occurs for CE]1,2[ 
and r < (C 2 + 2) 13; in this case there is a simple infinity of 
orbits tending to (O,C,O) along the vector II' 

The critical point (C 2 - 3r + 2)/C 2, (3r - 2)/C, 0) 
exists only when r#2 and for Bianchi types II, VIo, and for 
VIh when r< (C 2 + 2)/3. This latter inequality happens 
only when 1 < C < 2. This critical point is a saddle point with 
two complex eigenvalues. There is one single orbit along the 
vector 13 = (0,0,1). The results concerning the behavior of 
the solutions in the neighborhood of these two singular 
points are valid for A > a and A < O. 

When r = 2 there exists a continuous line of singular 
points in the plane (x,/3'): (4 - 4x _/3'2 = O,z = 0). In this 
case we have a simple infinity of orbits tending to each singu­
lar point along its eigenvector in this plane.3o,35 

There remains finally in the plane «(3',z) the singular 
point (0,0,31 A) when A> a and rEf 1,2], It is a node with 
eigenvalues A. = 3r, fl = 3, v = 2 and corresponding eigen­
vectors 11= (1,0, - 3/A), 12 = (0,1,0), 13 = (0,1, - 31 
2AC) for C #0, 13 = (0,0,1) for Bianchi type V. 

This concludes the study of behaviors around singular 
points at finite distance (Table I). When A <0, by setting 
x=us- I,(3=vs- I,Z=S-1 in (2.1)-(2.4) we find a con­
tinuous line of double singular points at infinite distance: 
(s = 0, v = 0, O<u< - A/3) which are not in the plane 
(x,/3 '). The general expression ofthe directions of approach, 
not in the plane (s = 0) of the singular points (s = 0, v = 0, 
u = uo), is given then by 

([ 4A]-1 
{wJ = 2(3r - 2)uo - 3 ' 

3ruo 
2[(3y-2)uo -2A/3f' 

2C(uo +A/3) ) 
[ (3y - 2) Uo - 2A/3] 2 • 

One should notice that tan if; = wl/w3 = - 1!2C, when 
Uo = 0, in accordance with all plane autonomous systems in 
the variables (3', z; when Uo = - A/3, tan if;- 00. 

By analyzing the three surfaces {dxldO = a}, {d(3'1 
dO = O}, {dzldO = a} we obtain a global picture of the or­
bits. For Bianchi type II models, we distinguish between four 
different cases: (1<r < 2, A> 0); (1<r< 2, A <0); (r = 2, 
A> 0); (y = 2, A < 0). In the first case, we have a double 
infinity of orbits starting at (0, - 2,0), a simple infinity 
starting at (1,0,0), and one single orbit at ((18 - 3y)/16, 
(3r - 2)14, 0) all tending toward (0,0,31 A). The singular 
point (0, - 2,0) is a pancake with the one-axis distin­
guished; the two equilibrium states (1,0,0) and ( ( 18 - 3r) I 
16, (3r - 2)/4, 0) are point singularities and (0,0,31 A) is, 
as before, of divergent type. Around (0, - 2,0) matter is 
dynamically negligible, becoming important during the evo­
lution and again negligible around (0,0,31 A). All these 
models isotropize in an infinite cosmic time as they tend to 
(0,0,31 A) which is the de Sitter model in the Stabell-Refs­
dal36 formalism. The point (1,0,0) corresponds to the Ein-
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TABLE I. In this table the different topological types of the singularity points are indicated for the Bianchi types studied herein. 

Bianchi type II 

C 4 

l<r<2 (x,f3 ',z) 
(0,2,0) saddle point 
(0, -2,0) node 
( I,O,D) saddle point 

(C 2 
- 3r+ 2!C 2 ),(3r- 2)fC, 0) saddle point 

l<r<2 (O,C,D) 
A>O (O,O,3fA) node 

stein-de Sitter (EdS) model. When y = 2 and A > a we have 
a simple infinity of orbits coming from each singular point in 
the plane (x,/3 ') and tending to (0,0,3/ A). All these models 
evolve from (O<Co < 2, qo = 2, a < ~o<!) to the de Sitter 
model. The variables Co,qo,~o are, respectively, the relative 
root-mean-square deviation from isotropy, the deceleration 
parameter, and the density parameter of the perfect fluid at a 
given time t = to' For A < a and 1 < y < 2, a time-symmetric 
surface of orbits approaches the singular points at infinity 
with tP = arctan W)/W3; when Uo = 0, the orbit is identical to 
the time-symmetric one in the (/3 I ,z) plane case and by 
( - 4 + 4x + (4A/3)z = 0) when Uo = - A/3. All the oth­
er orbits start from (0, - 2,0) alongside the vector I). There 
is further a double infinity of orbits starting at (0, - 2,0) 
extending to infinity with tP = 1T and coming back to the 
same critical point. There exists finally a simple infinity of 
orbits starting at (1,0,0) and a single one at (( 18 - 3y)/16, 
(3y - 2)/4, 0) extending to infinity with tP = a and tending 
to (0, - 2,0) alongside I). In the last case, a simple infinity of 
orbits come from each singular point in the plane (x,/3 ') and 
tend to the singular line at infinity with tP = a and 1T when 
- 2</3 I <0; there is then also a time-symmetric surface of 

orbits approaching the singularities at infinity with tP 
= arctan W)/W2' When a </3 '<2, there is only a simple in­

finity tending to the singular line at infinity with tP = O. 
The global behavior of Bianchi type V models in three 

dimensions can be divided into the same four cases as for the 
type II. We obtain the same symmetric picture that we have 
already found in the two plane systems (x,/3 /) and (/3',Z). 
From the points (0, ± 2,0) starts a double infinity of orbits 
and from (1,0,0) a simple infinity, tending all to (0,0,3/ A) 
with x, /3 I, Z being finite for the whole evolution when A> a 
and 1 <y < 2. The simple infinity evolving from (1,0,0) to 
(0,0,3/ A) is the same as in the plane system with variables x, 
z. It corresponds to a set of zero measure of EdS models 
evolving to the de Sitter solution. The points (0, ± 2,0) are 
cigar shaped with the three- and two-axis distinguished, re­
spectively. We have the same behavior as for type II when 
y = 2 and A> O. The singularity types in the plane (x,/3 ') 
are the same as in Ref. 10. For A < a and 1 <y < 2, we have a 
time-symmetric surface of orbits starting at (1,0,0) and 
evolving toward the singular line at infinity with tP = 1T/2: 
this is the plane case (x,z) with A < 0, studied previously (in 
Sec. III). All the other orbits start as a double infinity at 
(0,2,0), tend to the line at infinity with tP = 0, and finally 
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V VIo VIh 

0 -2 0<C<2 

node node node 
node saddle point node 
saddle point saddle point saddle point 

saddle point I<C<2 
saddle point 

saddle point saddle point saddle point 
node node node 

toward (0, - 2,0). When y = 2, we have simple infinities 
starting from each singular point in the plane (X,/3/). The 
behavior at infinity is the same as for y#2. 

For Bianchi type VIo models, we obtain an identical be­
havior with type II. The only differences reside in the cigar­
shaped point (0,2,0) from which starts a double infinity of 
orbits along I) and in the fact that there exists for y = 2 and 
A < a a time-symmetric surface of orbits when 0</3 I < 2. 

The Bianchi type VIh models divide into the same four 
cases as before. In the first case, we distinguish between sev­
eral subcases according to the values of C and y. When A > 0, 
1 < y < 2, and a < C <~.' we have a double infinity of orbits 
starting at (0, ± 2,0) alongside I) and a simple infinity start­
ing at (1,0,0), all tending to (0,0,3/A). When !<C<l, we 
find the same behavior except around (0,2,0). In that case 
for y < (2 + 2C)/3, the double infinity evolves alongside 12 ; 

for y = (2 + 2C)/3, there is a simple infinity in every direc­
tion of the plane (X, Y), and for y> (2 + 2C) /3, there is a 
double infinity alongside I). The Bianchi type III is included 
in this global behavior (for C = 1). When 1 < C < 2, we dis­
tinguish three subcases according to y <, = , > (C 2 + 2) /3. 
In the first subcase, we find in addition to the family of orbits 
around (1,0,0) and (0, - 2,0) discussed previously a double 
infinity of orbits starting at (0,2,0) along the vector 12, a 
simple infinity from (O,C,O) along I), and a single orbit from 
([ C 2 

- (3y - 2) ]!C 2
, (3y - 2)/C, 0), all tending toward 

(0,0,3/ A). For the second and third sub cases, the three typi­
cal behaviors around (0,2,0) occur. When y = 2, we have an 
identical behavior with the previous types. With a negative 
cosmological constant, 1 < y < 2 and a < C <!, we find a be­
havior around (0, - 2,0) identical with the case of Bianchi 
type III. We have a double infinity around (0,2,0) and a 
simple infinity around (1,0,0) tending toward (0, - 2,0) via 
the singular line at infinity. For !<C< 1, the typical behavior 
occurs around (0,2,0). When 1 < C < 2, we distinguish again 
between three subcases according to the value of y. Besides 
typical behaviors, we have to add the simple infinity starting 
at (O,C,O) and the single orbit at ([C 2

_ (3y-2)]!C 2 , 

(3y - 2)/C, 0) extending to infinity and tending to 
(0, - 2,0). For the second and third subcases, we have to 
mention again the triple behavior around (0,2,0). For y = 2, 
we have an identical behavior as for Bianchi type II. The 
singularity types for (0, ± 2,0) and ( 1,0,0) are as mentioned 
in Ref. 10. The point (O,C,O) is of the cigar type with the 
three-axis preferred in the case we are interested in. 
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V. CONCLUSION 

We have carried out a detailed qualitative but global 
analysis of some orthogonal Bianchi models in the presence 
of a cosmological constant by means of autonomous dynam­
ical systems with two and three dimensions. 

The plane autonomous systems gave us a class of empty 
Bianchi cosmologies, with A> ° and A < 0, which have not 
yet been analyzed by qualitative methods and which are im­
portant insofar as there do not exist any known exact solu­
tions for all of these models. 37 

When we considered the three-dimensional autono­
mous systems, we found for every Bianchi type in addition to 
a set of zero measure, one of nonzero measure of solutions 
becoming isotropic in an infinite cosmic time, i.e., tending to 
the de Sitter model. This is an important result regarding the 
isotropy of the present universe because the double infinity 
of solutions found in this paper are global ones, although 
qualitative with quantitative asymptotic behavior. By this 
we particularize the results of Collins and Hawking4 who 
showed that the set of spatially homogeneous cosmological 
models approaching isotropy at infinite times is of zero mea­
sure. However they did not consider a nonzero A, which is 
essential in our discussion and implies an open set of cosmo­
logies approaching asymptotically the de Sitter solution, and 
without postulating any special initial conditions. The pres­
ent work agrees also with the one of Wald,22 done from a 
more general point of view but with different techniques, and 
throws further light on the qualitative but global behavior of 
Bianchi models with a cosmological constant. 

It is clear that we have here a method to be applied to 
other (orthogonal) Bianchi models when A is nonzero, i.e., 
Bianchi IX, in order to obtain global behaviors, which will 
be reported on elsewhere. IS 
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APPENDIX: THEOREMS FOR MULTIDIMENSIONAL 
AUTONOMOUS DYNAMICAL SYSTEMS17 

Consider an n-dimensional autonomous dynamical sys­
tem in the form 

(AI) 

Definition 1: A point (X? , ... ,x~) is a singular point of 
the system (Ai) if}; (X? , ... ,x~) = 0, I <:;;i<:;;n. 

Consider now the eigenvalues AI, ... ,An of the system 
(AI) at the singular point (X? , ... ,x~ ). 

Definition 2: A singular point is called nondegenerate if 
all the eigenvalues Ai have nonzero real parts. 

Definition 3: A nondegenerate singular point is an at-
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tracting (repelling) node, if ReA; <0 (>0), l<:;;i<:;;n. 
Theorem 1: If we have an attracting (repelling) node, 

then all trajectories in the neighborhOOd of the singular point 
approach the point for 0 .... t-) 00. 

Theorem 2: (a) If at some singular point (X? , ... ,x~) 
the system (AI) has m eigenvalues A1, ... ,Am with negative 
(positive) real parts a,<:;;" '<:;;a m <0 (a,;;;'" ·;;;.am >0) 
where the eigenvalues are counted with their multiplicities, 
then there exists a (locally) invariant m-dimensional stable 
(unstable) manifold M :';up on which all trajectories of the 
system (AI) approach (leave) the critical point for 0 .... 00. 

(b) If there is only one eigenvalue Am with the maxi­
mum (minimum) negative (positive) real part am then the 
corresponding eigenvector is tangent to almost all trajector­
ies on the invariant manifold M:';u) (where by invariant 
manifold we mean one such that each trajectory passing 
through some nonsingular point on M lies entirely in M, i.e., 
-00<0<+00). 

Definition 4: A nondegenerate singular point is called a 
saddle if at this point the system (AI) has m eigenvalues 
with negative real parts and n - m eigenvalues with positive 
real parts. 

Theorem 3: There exist two invariant manifolds M ';' 
and M ~ - m passing through a saddle and filled with separa­
trices approaching or leaving this singular point. All other 
trajectories not lying on these manifolds do not approach the 
saddle. 
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