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Some general results on the subalgebras of the Lie algebra AP(1,n) of the extended Poincaré
group P(1,n) (n>2) with respect to P(1,n) conjugation have been obtained. All subalgebras
of AP(1,4) that are nonconjugate to the subalgebras of AP(1,4) are classified with respect to
P(1,4) conjugation. The list of representatives of each conjugacy class is presented.

I. INTRODUCTION

The systematic study of subalgebras of quantum me-
chanics transformation algebras was begun in the funda-
mental paper by Patera, Winternitz, and Zassenhaus
(PWZ) (Ref. 1) in which the general method for classifying
the subalgebras of a finite-dimensional Lie algebra with a
nontrivial solvable ideal with respect to some group of auto-
morphisms was suggested. This method is applied to classify
all subalgebras of Lie algebras of the following groups: the
Poincaré group P(1,3),' the extended Poincaré groups
P(1,2),2P(1,3),? the de Sitter groups O(1,4),* 0(2,3),% the
optical groups Opt(1,2),° Opt(1,3),° the Euclidean group
E(3),” the Schrédinger group §Ef1( 2),8 and the extended
Schrodinger group Sch(2),? the Poincaré group P(1,4),°!!
the Euclidean group E(5),'>"? the Galilei group G(3),!?
and the extended Galilei group G (3).'2 The application of
the general method had allowed us to study the subalgebras
structure of the Lie algebra of the generalized Euclidean
group E(n) (n>2)." The subalgebras of the algebras
AP(1,3), AG(3), and AG(3) were described by another
method.'+"”

The PWZ method needs the development for particular
classes of algebras of its generality. In the present paper we
give the further development of the PWZ method for ex-
tended Poincaré algebras AP(1,n) (n3>2), denoted also by
ASim(1,n). The necessity in the description of subalgebras
of AP(1,n) follows from certain problems of theoretical and
mathematical physics.’ In particular, knowledge of the alge-
bra AP(1,n) subalgebras gives us the possibility to study the
symmetry reduction for the relativistically invariant scalar
differential equation

O(Ou,(Vu)%u)=0,

where
Du = uxoxo - uxlxx -t uxnxn ’
(vu)Z — (uXD)Z_ (ux, )2 e (uxn)2,

and @ is a sufficiently smooth function.'*-*® The description
of the algebra AP(1,n) subalgebras allows us to solve theJ

0 Qo Qo Qon_1
Qo 0 a; Ay
X= af)z — 0 . Ay p i
Ao —1 — 0y, —ay,_y 0
&, —a,, —a,, T _an—l,n
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problem of the reduction of AP(1,n) algebra representa-
tions on its subalgebras.?!??

In Sec. II we describe the maximal reducible subalge-
bras of the algebra AO(1,n), and in Sec. ITI we describe the
completely reducible subalgebras of the algebra AO(1,n)
= AO(1,n) ® (D), where D is the dilatation generator. Sec-
tion IV is devoted to study of the subalgebras of the extended
Galilei algebra AG(n — 1), which is one of the important
subalgebras of the AP(1,n) algebra. In Sec. V which is the
logical sequel to Sec. IV, a number of assertions on subalge-
bras of the normalizer of isotropic subspace of the Minkow-
skispace M(1,n) in algebra A?( 1,n) are conceived. Classifi-
cation of the AP(1,4) algebra subalgebras with respect to
the P(1,4) conjugation is carried out in Sec. VI. The conclu-
sions are summarized in Sec. VIL.

Il. MAXIMAL REDUCIBLE SUBALGEBRAS OF THE
ALGEBRA AO(1,n)

In this section we describe the maximal reducible subal-
gebras and the maximal Abelian subalgebras of the algebra
AO(1,n).

Let R be the real number field; (Y,,...,Y,) is a vector
space or Lie algebra over R with the generators Y,...,Y;; R ™"
is the m-dimensional arithmetical vector space over R;
U=M(Ln) is (14 n)-dimensional pseudo-Euclidean
space with the scalar product

(XY)=X0Yo— X1 )y — """ =X, Vn 5 (2.1)
O(1,n) is the group of the linear transformations of M(1,n)
which conserve (X,X) for every XeM(1,n); E, is the unit
matrix of degree . We suppose that O(1,n) is realized as the
group of the real matrices of degreen + 1.

We call the extended Poincaré group P(1,n) the multi-
plicative group of the matrices

(/IA Y)

0 1/’
where AeO(1,n), AeR,1>0, YeR"* 1,

We denote by AG the Lie algebra of the Lie group G.
Using the definition of Lie algebra, we find that AO(1,n)
consists of matrices

Aoy

" . (2.2)
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Let E,, be the matrix of degree # + 2 which has the unity on
the cross of ith line and k th column and zeros on the other
places (i,k = 01L,...n+ 1). It is easy to get that the basis of
the algebra AP(1,n) is formed by the matrices
D=E00+E11+ "+ E,.; Jo ':—EOa_EaO!
Jab= _Eab +Eba; P0=E0,n+1’ PazEa,n+l
(a<bh, a,b=1,.,n).

The basis elements satisfy the following commutation rela-
tions:

a

[JaB",V&] =ga6‘,ﬁy +gByJa5 —ga,JB‘s hgﬁa']ay s
[Parlpy ] =8apPy —8arFsr Jpu = —Jap s (2.3)
[P,,P;] =0, [DJ,]=0 [DP.]=P,,

Where g()()= -—g”:"': —gnnzly gaﬁzoy When

a#p (af=0,1,..,n).

The generators of turning J,; generate the algebra
AO(1,n) and the translation P, the commutative igeal N,
and moreover AP(1,n) = N&(AO(1,n) & (D)). Let O(1,n)

= {AE,  ,|AeR,A>0}xO(1,n). Evidently, AO(1,n)
= AO(1,n) @ {D). It is easy to see that [X,Y] =X-Y for
all XeAO(1,n), YeN. Let us identify N and M(1,n) estab-
lishing correspondence between P; and the (n + 1)-dimen-
sional column with unity on the ith place and zeros on the
others (i =0,1,...,n).

Let C be such matrix of degree n + 2 over R that map-
ping ¢c: X~ CXC ™ ! is an automorphism of the algebra
AP(1,n). If CeG, where G is a subgroup of P(1,n), then @c
is called G automorphism. The subalgebras L and L’ of alge-
bra Af’( 1,n) are called P(1,n) conjugated if g (L) =
for some l~’( 1,n) automorphism ¢ of algebra AP(1,n). Let
us identify ¢ and C.

Let W be a nondegenerate subspace of the space U. This
subspace we also consider to be pseudo-Euclidean relative to
scalar product defined in U. Let O( W) be the group of iso-
metries of the space W, O( W) =0(W)x{AE, , ,|A€R,
A>0}. A subalgebra FC AO( W) is called irreducible if in W
there does not exist any F-invariant subspace different from
O and W. Otherwise F is called reducible. If for every F-
invariant subspace W' in W there exists an F-invariant sub-
space W " in W such that W= W'e W " then it is called
completely reducible.

Theorem 2.1: The maximal reducible subalgebras of al-
gebra AO(1,n) are exhausted with respect to O(1,%) conju-
gation by the following algebras: (1) AO(1,n — 1) & (D);
(2) AO(n) & (D); (3) AO(L,k) ® AO'(n —k) o (D),
where AO'(n —k)={(J,lab=k+1,..n) (k=2,..n

—2); (4) (Gpy-o's G, _ ) HAO(n — 1) & (J,,,D)), where
G,=Jyp, — I, (a=1,...,n—1).

_ Proof: If L is a maximal subalgebra of the algebra
AO(l,n)thenL = AO(l,n)orL =L, ® (D), whereL, isa
maximal subalgebra of the algebra AO(1,7). Let Fbe a max-
imal reducible subalgebra of the algebra AO(1,n), U’ a sub-
space of the space U invariant under F. If U’ is a degenerate
space then it contains one-dimensional F-invariant isotropic
space W conjugated under O(1,n) to the space (P, + P, ).
In this case

F={XeAO(1,n)|X(Py+ P,)e{Py + P,)}.
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It is not difficult to show that

F=(G,,...G,_,) ¢ (AO(n— 1) {(J,,)).

If U’ is a nondegenerate space of dimension r then it
possesses an orthogonal basis consisting of r vectors with
nonzero length. Let ., #_ be numbers of positive and nega-
tive length vectors, in the given basis of the space U, respec-
tively. These numbers are independent of the choice of basis.
In accordance with Witt’s mapping theorem any two spaces
U'and U, forwhichr, =7r', ,r_ =r'  aremutually con-
jugate under the group O(1,n). Obviously, 7, €{0,1}. Since
U=U'e U and U" is invariant under F therefore F is
O(1,n) conjugated to one of the algebras,

AO(l,n —1), AO(n), AO(Lk)a AO'(n—k) .
The theorem is proved. Let

AE(n) = (P,,....P,)HAO(n) & (D)),

AE (n — k) = (Pi 4 15-,P, YFAO (n - k),
and AG(n — 1) is the extended Galilei algebra with the ba-
sis

M =P, + P, PP, . .P, ,,G,...G,

(a,b=1,.,n—1).

According to Theorem 2.1, the description of subalgebras of
the algebra AP(1,n) is reduced to the description with re-
spect to the P(1,n) conjugation of irreducible subalgebras of
the algebra AO(1,n) and subalgebras of the following alge-
bras:

(Po)&AE(n),

—1 ’Jab

(AP(L,k) @ AE'(n — k))&(D) ,

AG(n—1)&(J,,, D) (k=2,..,n—1).

Let 7 be the projection of the algebra AP(1, n) onto
AO(l n), F a nonzero subalgebra of AO(l n),and F such
subalgebra of AP(1,n) that 7r(F) F. If the algebra Fi is
P(1,n) conjugated to the algebra W&F, where W is an F-
invariant subspace of the space U, then we shall assume Fto
be splitting. If every subalgebra F CAP(1,n) satisfying
7r(F ) = F is splitting, we shall say that subalgebra F pos-
sesses only splitting extensions in the algebra AP(1,n). The
splittability of subalgebras for other algebras of inhomogen-
eous transformations is defined by analogy. If nothing is re-
served, then the investigation of subalgebras of given algebra
for conjugation is carried out with respect to the group of
inner automorphisms.

The affine group IGL(n,R) is defined as a group of ma-
trices

(6 1)
o 1/’
where BeGL(n,R), YeR ". The Lie algebra AIGL(n,R) of
this group consists of matrices

(X Y

0 O) ’

where X is a square matrix of degree n over R. Let O, be the
zero matrix of degreea, P, = E, , , ,. Let us identify X and
diag[X,0,], then AIGL(n,R) = (P,,....P,)*AGL(n,R). If

m < n, then we shall assume that AGL(m ,R) consists of the
matrices dlag[X 0, (_m ] wheredeg X =m.

(2.4)
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Lemma 2.1: Let F be a completely reducible subalgebra
of the Lie algebra AGL(m,R) (m <n), which is not semi-
simple. If Z is a nonzero central element of the algebra Fand
Fis the Lie algebra, which is obtained from F'by replacing Z
by Z+ P, ., then the algebra F is nonsplitting in
AIGL (n,R) with respect to IGL(n,R) conjugation.

Proof: Let X, be a square matrix of the degree m, T

= diag[ X,,0, _,, ], Z =diag[T,0,],

(On Ym +1 )
“\o o, /°
If Fis a splitting algebra, then there exists the matrix C of the
form (2.4) such that C(Z + P,,, ,)C ~' = diag[T",0,]. It

follows that — BTB~'Y + BY, ., =0, which implies
that Y,, ., = (TB ~')Y. However,

TB—l:(Xo 0 )@1 BZ)_(XOBI XoBz)
0 On-m 3 B4 B 0 On——m ’

and therefore

P

m+1

a,
(TB~ Y- Y=

0
This contradiction proves the lemma.

Proposition 2.1: Let Fbe a completely reducible Lie alge-
bra of linear transformations of vector space ¥ over the field
R, Wis an irreducible F submodule of module V. If FW #0,
then algebra F possesses only splitting extensions in algebra
W&F. v

Proof: Since F is a completely reducible subalgebra of
the algebra gl(¥), then F= Q& Z(F), where Q is Levy’s
factor and Z(F) is the center of F.** Using Jacobi identity it
is not difficult to conceive that F = F, & F,, where F;{W =0
and every direct summand of algebra F, annuls in W only
zero subspace. Further we may restrict ourselves only with
the case when F=F,.

Let Q #0; F be such a subalgebra of the algebra W& F
that its projection onto F coincides with F. According to
Whitehead’s the/c\)rc:m23 H'(Q,W) =0. From this it follows
that thg\ algebra F contains Q. Let JeZ (F), YeW, Y #0, and
J + YeF. Since [Q,Y ] #0, then there exists such an element
XeQ that [X,Y ]£0. Let Y, = [X,Y ], W, be the F submo-
dule of module W, generated by Y. Because of the fact that
W,#0and Wis the irreducible F module we have W, = w.
Hence JeF, Therefore, if @ 0 then FCF ie., Fisa splitting
algebra.

Let @ =0, JeZ(F). Since J annuls in W the only zero
subspace is then [J,W ] = W. Whence for every YeW there
exists such element Y'¢W that [/,Y'] = Y. Consequently
we may suppose that JEF IfF containsJ, + Y, where Y, e W
and Y50, then [/, Yl]eF and [J, Yl] #0. Arguing as in the

case Q #0, we get thatJ 1eF ie., Fisa splitting algebra. The
proposition is proved.
Proposition 2.2: Let

AE(n — 1) = (G},...,G,_ Y& AO(n — 1) ® (Jy,))»
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where G, =J,, —J,, (a=1,..,n —1). The subalgebra
FCAO(n — 1) @ {J,, ) possesses only splittable extensions
in AE(n — 1) ifand only if F'is a semisimple algebra or Fis
not conjugated to a subalgebra of the algebra AO(n — 2).

Proof: Let W= (G,,...,G,_, ). Since every subalgebra
of the algebra AO(n — 1) is completely reducible and
[Jon»G.] = — G,, then every subalgebra F of the
AO(n — 1) @ (J,,) algebra is also a completely reducible
algebra of linear transformations of space W.

Let W= W, - - & W, be the decomposition of W into
the direct sum of irreducible F modules. If projection F onto
(Jo,) is nonzero, then [F,W,] = W, for every i = 1,...,s.
Whence according to Proposition 2.1 F has only splittable
extensionsin AE(n — 1). Let us assume that projection of F
onto {(J,, ) is equal to 0. If F is a semisimple algebra then by
Whitehead’s theorem every extension of F in Aﬁ(n —1)is
splitting. Let F not be a semisimple algebra. When dim W,
>2 for every i = 1,...,s we have [F,#;] #0 and in view of
Proposition 2.1 F possesses only splitting extensions in
AE(n — 1). When dim W, =1 (1<i<s), the module W, is
annuled by the algebra F and the algebra Fis conjugated to a
subalgebra of the algebra AO(n — 2). If Z(F) is the center
of F and X is a nonzero element of Z(F) then for every
nonzero YeW, there exists a subalgebra F of the algebra
AE(n — 1), which is gptained from F by replacing X by
X + Y. By Lemma 2.1 Fis not splitting. The proposition is
proved.

From Theorem 2.1 and properties of solvable subalge-
bras of algebra AO(n) it follows that if » is odd then
AQO(1,n) possesses with respect to O(1,n) conjugation only
one maximal solvable subalgebra

<Gl"“!Gn -1 "]129‘,347""]" —2,n—1 ’JOn > .
If n is even then AO(1,n) possesses two maximal solvable
subalgebras

<J12!J34""9Jn ~1,n ) N
(Gl""’Gn —1 ’J129J34!""Jn —3,n— Z’JOn ) .

Since an extension of an Abelian algebra with the help of a
solvable algebra is a solvable algebra itself then maximal
solvable subalgebras of the algebra AP(1,n) are of the form
UG F, where Fis the maximal solvable subalgebra of the alge-
bra AO(1,n). Maximal solvable subalgebras of the AP( 1,n)
are exhausted by algebras U&(F & (D)).

Proposition 2.3: Let AH(¢) be the Cartan subalgebra of
the algebra AO(#). The maximal Abelian subalgebras of the
algebra AO(1,n) are exhausted with respect to O(1,n) con-
jugation by the following algebras: AH(n — 1) & (J,,,,D);
AH(n) @ (D) [#=0(mod 2)]; (G,,...,G, _,,D); AH(2a)

®(Gyy 150G, _1,D) (@=1,..,[n —2/2]). The written
algebras are pairwise nonconjugated.

Proof: If F is a maximal Abelian subalgebra of the alge-
bra AO(1,n) then from Proposition 2.2 F= Q& L& (D),
where L is a subalgebra of the algebra AO(/) @ (J,, ) or the
algebra AO(n) and Q is a subalgebra of the algebra
(G,,...,G, _1). If projection L onto (J,, ) is different from 0
then ) = 0. Let projection L onto {J,,) be equal to 0. If
L =AH(n),then Q) =0.IfL = AH(2a), I1<a<[n —2/2],
then Q = (G,, , 1,....G,, _ 1 ). The proposition is proved.
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lll. COMPLETELY REDUCIBLE SUBALGEBRAS OF THE
ALGEBRA AO(1,n)

In this section we shall prove a number of general results
on completely reducible subalgebras of the algebra A6( 1,n)
and shall indicate how to search invariant subspaces of space
U for these algebras. The main results of this section are
Proposition 3.3 and Theorem 3.1.

Proposition 3.1: If n>2 then any irreducible subalgebra
of the algebra AO(1,n) is semisimple and noncompact.

Proof: Let F be an irreducible subalgebra of the algebra
AO(1,n), Z(F) the center of F. If Z(F)+#0 then Z(F)

= (J),whereJ?>= — E, . Let X be an arbitrary element
of the form (2.2) of the algebra AO(1,n). IfX*= —E,  ,
then aj, + a2, + -+ + a3, = — 1. This contradiction

proves that Z(F) = 0.
If Fis a compact algebra then there exists such symmet-
ric matrix C that C ~'FC CAO(n + 1).?* Since

exp(C~'FCy=C "expF-C

then in O(n + 1) there exists an irreducible subgroup con-
serving simultaneously

xXo+xi+ - +xi and AjxE —-Aix?— - —A2x2
(AgA 1.4, are nonzero real numbers). This contradiction
proves the second part of the proposition.

Proposition 3.2: A reducible subalgebra of the algebra
AO(1,n) is completely reducible if and only if it is conjugat-
edto L, ® L, or asubalgebra of algebra L & (D), where L, is
an irreducible subalgebra of the algebra AO(1,k) (k>2), L,
is a subalgebra of AO’'(n — k) @ (D) and L is one of the
algebras, AO(n), AO(n — 1) & (J,,).

Proposition 3.2 follows from Theorem 2.1, Propositions
2.2 and 3.1, and the fact that G, acts noncompletely reduc-
ible onto the space (P, + P, ,P,).

Let L bea direct sum of the Lie algebras L,,...,L,, Ba Lie
subalgebra of L, and ; the projection L onto L,. If 7, (B)

=L, for i=1,...,5, then B is called a subdirect sum of
L,..,L,.

Proposition 3.3: A completely reducible subalgebra
FC A6( 1,n) has only splitting extensions in Aﬁ( 1,n) if and
only if F is semisimple or F is nonconjugate to subalgebra of
one of the algebras, AO(n) or AO(1l,n —1).

The proof of Proposition 3.3 is analogous to that of
Proposition 2.2.

Let 4; be a Lie algebraover R (i = 1,2), £ A, — A, is an
isomorphism, B = {(X, f(X))|Xe4,}. Here B is the Lie alge-
bra over R with “componentwise” operational rules,

[(X,fOWX, AX'N] ={[XX'], AUUXX'])),
XX+ X, AX))=X+X, X+ X)),
A X, X)) = (AX, f(AX)),

where X, X ‘e4 |, AcR. Let us denote it as (4 1vA.@). Evident-
ly (4,,4,,¢) is the subdirect sum of the algebras 4, and 4,.
Let W, bealeft 4, module (/ = 1,2). Itis easy to see that
W, is the B module if we put
XAX0) Y, =XY, (XAX)Y,=X)7Y,,

forevery Xed,, Y.eW, (i = 1,2). Let Wbe a B submodule of
the module W e W,. If W= W e W, where W CW,
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(i = 1,2) then W is called a splitting B module. Otherwise
the module W is called nonsplitting B module.

Lemma 3.1: Let B = (A,,4,,¢) and V, be a left 4, mod-
ule (i = 1,2). Inthe Bmodule ¥, ® ¥, exists a nonsplitting B
submodule if and only if the B modules ¥V, and ¥V, have iso-
morphic composition factors.

Proof? Let Wbe a nonsplitting B submodule of the mod-
ule ¥V, & V,. Then W is the subdirect sum of the modules W,
and W, where W, CV, (i=12). Let S;,=WNY¥,
(i = 1,2). Evidently, S, is the B submodule of the module W
The module W /(S & S,) is nonsplitting B submodule of the
module V,/S, & V,/S,. Whence we shall assume that WMV,

=0(@=12).

For every element Y,eW, there exists only one such ele-
ment Y,C W, such that (Y,,Y,)eW. We put ¢(Y,) = Y.
The mapping ¢ is the isomorphism of B modules W, and W,
In this case modules W, and W, have isomorphic composi-
tion factors. The necessity is proved.

Let W, be a left B submodule of the module V; (i = 1,2)
and let the composition factor W,/N, of the module W, be
isomorphic to the composition factor W,/N, of the module
W,. Wedenote as W the vector space over the field R genera-
ted by the pairs (Z,,0), (0,Z,), (Y,,Y,), where Z,eN,, ¥,
eW,; (i=12) and ¢(Y, + N,) = Y, + N, for the isomor-
phism ¢: W,/N,— W,/N,. It is easy to see that W is a non-
splitting B module. The sufficiency of the lemma is proved.

Let I': X—X be the trivial representation of the com-
pletely reducible algebra FCAO(1,n), the projection of
which onto AO(1,n) has not any invariant isotropic sub-
spaces in the space U or annuls the isotropic subspaces. Then
I" is O(1,n) equivalent to diag[T",,...,.T",, ], where ['; is an
irreducible subrepresentation (i = 1,...,m). One may sup-
pose that algebra F; = {diag[0,....[; (X),...,0]|XeF} is an
irreducible subalgebra AO(W,), where

I/Vi = (Pki_l+I’Pk,-_1+2’---,Pk,>

(ko = — 1’ km =n, = 1,...,m) .

If F, 40 then we shall call algebra F; an irreducible part of
the algebra F. It is well known that if representations A and
A’ of the Lie algebra L by skew-symmetric matrices are
equivalent over R, thenC-A(X)-C ~ ! = A’(X) for some or-
thogonal matrix C (XeL). Whence and from Proposition 3.1
we conclude that if ", and T'; are equivalent representations
then we can assume that for every XeF the equality I', (X)
= I’; (X) takes place. Having united equivalent nonzero ir-
reducible subrepresentations we shall get a nonzero disjunc-
tive primary subrepresentation of the representation I". Cor-
responding to those subalgebras of the algebra AO(1,n)
built by the same rule as the irreducible parts of £, we shall
call them primary parts of the algebra F. If F coincides with
its primary part then F is called a primary algebra.
Theorem 3.1: Let K, Kg,...,Kq be primary parts of a
subalgebra Fof the algebra AO(1,n), and ¥ asubspace of the
space U invariant under F. Then V=V, 0 oV, 0V,
where V, = [K,,V' ] = [K,V;], [K,,;V;] =0 when j#i
(5,j=1,...,9), V ={XeV|[F.X ] = 0}. If the primary alge-
bra K is the subdirect sum of the irreducible subalgebras of
the algebras AO( W), AO( Wz),...,AG( W), respectively,
then nonzero subspaces W of the space U with the condition
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[K,W ] = W are exhausted with respect to O(1,n) conjuga-
tion by the spaces W,, W, e W,,... W, e W,o - o W,.
Proof: From the complete reducibility of algebra F it
follows that V= V'@ V", where V" is the maximal sub-
space of the space ¥, annulled by F. Further we shall suppose
that = V'. From Proposition 3.1 one can suppose that
FC A6(m ), m<n. Let K, be a subdirect sum of irreducible
parts K, ,....K,. , V; = [K;,V |, m, be a projection of ¥ onto

i i
Y eV
i=1
In view of Lemma 3.1 7, (V) C ¥V and that is why

q
V= 2 o m, (V).
a=1

Since K, annuls in 7, (V) only the zero subspace, then
[K.,V] = [K,,m, (V)] =7, (V).

Let primary algebra K be a subdirect sum of irreducible
subalgebras of algebras A6( W), A6( W;,_),...,A(~)( W,), re-
spectively. If W is a nonzero subspace of the space

Q=3 oW,
j=1

and [K,W'] = W then in view of Witt’s mapping theorem
there exists such isometry B €O(}) that B(W) = W, --*
® W, (1<s<r) and the space W, is invariant under BKB !
(i=1,...,s). Whence BKB ! is a subdirect sum of irreduci-
ble subalgebras of algebras AO( W), AO( W) s AO( W),
respectively. Since irreducible parts of the algebra
LCAO(n) are defined uniquely up to conjugation then one
may consider that BKB ~! = K. The theorem is proved.

On the basis of Theorem 3.1 the description of splitting
subalgebras F CAP(1,n), for which 77-(F) is a completely
reducible algebra and has no isotropic invariant subspaces in
the space U, reduces to the description of irreducible subal-
gebras of the algebras AO(1,k) and AO(k) (k= 2,3,...,n).
The rest of the cases can be reduced to the case of the algebra
AG(n — 1)&(J,,,D).

IV. ON THE SUBALGEBRAS OF THE EXTENDED
GALILEI ALGEBRA

The aim of this section is to study subalgebras of the
algebra AG (n — 1) with respect to P(1,n) conjugation. The
main result concerning this problem is contained in
Theorem 4.1. Theorem 4.2 gives a description of all Abelian
subalgebras of the algebra AG(n—1). Asa corollary, we
obtain the list of maximal Abelian subalgebras and one-di-
mensional subalgebras of the algebra AG(n — 1).

The basis elements of the extended Galilei algebra
AG (n — 1) satisfy the following commutation relations:

[Jab!ch] =gadec +gchad —gachd _gbd']ac s

[Pa’ch]=gach_gach; [Pﬂ’Pb]=O;
[Ga!ch] =gach —gach; [Ga’Gb] =0;
[P.Gy] =6.,M; [PoM ] = [GoM ] = [JupsM ] =0;

[Podas] = [PoM ] = [Po,P,] =0,
(a,bc,d=1,.,n—1).
Let V, = (G,,...,G, _,) be a Euclidean space with or-

[PyG.] =P
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thonormal basis G,,...G,_,, V,=[P,V,] (n>3), M
=V, + ¥V, + (P,M ). We settle on identifying the group
O(n — 1) with the isometry group O(¥V,), O(V,). If Wisa
subspace of ¥, and dim W =k then according to Witt’s
theorem for every a, 0<a<n — k — 1, there exists an iso-
metry B,€O(V,) such that

B, (W) =Vi(a+1a+k) =Gy, 1,Gs13CGari) -

Further, in spaces ¥, ¥, we shall consider only subspaces
Vi(a,b), V,(a,b) = [Py, V,(a,b)]. We call them elementary
spaces. The basis G,, G, ;,...,G, of the space V,(a,b) and
the basis P,, P, , ,,....P, of the space V,(a,b) we shall call
canonical.

Let W,, W, be subspaces of some vector space W over
the field R and W NW, =0. If ¢: W,— W, is an isomor-
phism then we denote as (W ,W,gp) the space
{Y+ @(Y)|YeW,}. As I(W,,W,) we denote the isomor-
phism of elementary spaces W, and W,, by which the ca-
nonical basis of W, is mapped to the canonical basis of W,
with numeration of the basis of elements maintained.

Let AG(n — 1) = AG(n — 1)/(M ). For the genera-
tors of the AG(n — 1) we preserve the notation of the gener-
ators of the algebra AG(n — 1). By 7, 7y, 74, and 7, we de-
note the projection of AG(n —1) and AG(n —1) onto
AO(n — 1) & (P,), Py, V,, and V,, respectively.

Let F be a subalgebra of the AO(n — 1) ® (P,), F an
§\ubalgebra ofthe AG(n — 1) such that T(F ) = F. If algebra
Fis conjugated to the algebra W&F, where Wis the F-invar-
iant subspace of space ¥V, + V,, then F is called splitting in
the algebra AG(n — 1). The notion of a splitting subalgebra
of the algebra AG (n — 1) is defined analogously.

Proposition 4.1: Let L, be a subalgebra of the
AO(n — 1), L, be a subalgebra of the {P,), and F be the
subdirect sum of L, and L,. If P,&¢F then the algebra F only
has splitting extensions in the algebra AG(n — 1) if and
only if L, is a semisimple algebra or L, is not conjugated to
any subalgebra of the algebra AO(n — 2). When PeF, the
algebra F only has splitting extensions in the AG(n — 1) if
and only if L, is not conjugated to any subalgebra of the
algebra AO(n — 2).

Proof: If L is a semisimple algebra and L, = {P,) then
by Whitehead’s theorem™ PeF. Let us assume that
L,=(P;) and P&F. Let F be an subalgebra of the
AG(n — 1) such that 7(F) = F. If L, is not conjugated to
any subalge/lgra of the AO(n — 2) then by Proposition 2.2
the algebra Fis splitting. If L, is conjugated to some subalge-
bra of AO(n —2) then F= (X ) @ F, where X 0, (X ),
and F, are subalgebras of the algebra AO(n — 2) @ (P,).
The algebra

={P,...P, _»,P,_1,G1,....G,_, X+ G,_)&F,

isnot sphttmg by Lemma 2.1. The case L, = O can be treated
similarly.

Let P,eF. If L,CAO(n—2) then algebra (P,
+ G, _, Y&L, is nonsplitting. If L, is not conjugated to any
subalgebra of the algebra AO(n — 2) then by way of com-
plete reducibility of the algebra L, we get that P,eF and
whence algebra F is splitting. The proposition is proved.

Proposition 4.2: The subalgebra F of the algebra
AO(n — 1) (P,) has only splitting extensions in the
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AG(n — 1) if and only if F is a semisimple algebra.

Lemma 4.1: Let W, =(Y,,...,Y,,), W, =(Z,,...Z,.)
be Euclidean spaces over the field R, O(W,) the isometry
group of W, (i=12), O<a ;<< '<a,, So =0, §;
=(Z, 1»nl,,;} (J=1,.,m —t). The subspaces of the
space W, ® W, are exhausted with respect to O(W))
X O(W,) conjugation by the following spaces:

0,(Y,,....Y,), (Z,..2Z,),
(Yo Yo Z iy, Zg)
(Yoo Vi Yi o + @ Zy Y+, Z,) ®S)
tk=1,..m—1, t=1..m—k, j=01..,m—1);
(Y, +a,Z2,..Y, +a,Z,)8S;
(t=1,.,m, j=01,..m—1t).

(r,s=1,..,m);

Proof: Let N be a subspace of W, W, and N #W{
® W), where W is a subspace of W, (i=12). If B,
= NNW,, N, is a projection of N onto W, (i=1,2) and
then N, /B,=N,/B,. Let dim B, = k. By Witt’s theorem
the space B, is conjugated to the space (Y,..,Y,). If
dim(N,|{B,) =t then N contains elements Y, ;
+ a,jZl + 4oz (j= 1,...,t), and moreover the ma-
trix4 = (a;;) is nonsingular. The matrix 4 can be represent-
ed uniquely in the form CT, where Cis an orthogonal matrix
and T is a positively definite symmetric matrix.

The isometry diag|[E,,,C ~LE, _,] maps N onto the
space to which the matrix C ~'(CT) =T corresponds.
There exists such orthogonal matrix C; that C,7C [’
= diag[4,,...,4, ]. The isometry diag|[E,,C,E,, _,_..C),
E,, _,] maps N onto the space to which the matrix C,7C [~
corresponds. Therefore NV is conjugated to the space

Bio(Y ., t+taZ,..Y, ., +ta,Z)eB,,

where 0 < @, <a,<" - <a,. The lemma is proved.

Let K be the primary subalgebra of the algebra
AO(n — 1) which is a subdirect sum of irreducible subalge-
bras of the algebras AO(V;(l,q)), AO(V,(q + 1,29)),...,
AO(V,((r — 1)g + 1,rq)), respectively, and W a nonzero
subspace of the space I with the property [K,W ] = W. If
7,{ W) = 0 then by way of Theorem 3.1 W is conjugated to
the space V,(1,ig) (1<igr). If 7,( W) = 0 then W is conju-
gated to V,(1,ig) (1<i<r). Let us suppose that 7,( #) #0,
7,(W)#0. Then W is a subdirect sum of 7,(W), (W),
where 7, (W) =V,(1,m) and 7,(W) coincides with
V,(1,k) or Vy(m + 1,m + ) or a subdirect sum of V,(1,k)
and V,(m + L,m + I) (k<m). Every number of k, m, and /
is divisible by ¢. Let us consider the case when 7,(W) is a
subdirect sum of V,(1,k) and V,(m + 1,m + ). In the
space W we choose the basis in the following form:

G, +a.P, B.P
(a=1,..m c=m+1,...m+1¢,
i=1,.,km+1,..m+1).

(4.1)

The coefficients of the decomposition we write down as the
corresponding columns of the matrix

(2 3)
4, B,
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havingm + ¢columnsand k + / lines. We call thematrixI" a
coupling matrix of elementary spaces in the space W. With
the coupling matrix we shall carry out the transformations
corresponding to definite O(n — 1) automorphisms and
transformations to new bases of the form (4.1). Let
C,e0(k), C,eO(m — k), C,e0(]), S = diag[C,,C,], Tbea
t X m matrix, and 7T, a nonsingular matrix of degree ¢. The
most general admissible transformations of the coupling ma-
trix have the form

(Al B1> (CIA,S*1 + C\B,T, C,B1T2>
A, By) T \CA,S '+ CB,T, CB,T,)

If B, 0 then according to Theorem 3.1 for some matri-
ces Cs, T, the following equality is correct:

00
emti=(g )
1

where A, = diag[ u,E,,...;u.E, ], gy ="""=pu, =1. By
this transformation algebra K is left invariant. Applying
Theorem 3.1 again we get that with X = m the matrix 4, can
be transformed into matrix

(A2 0

0 o)’

where A, is a square matrix of degree bg. For simplicity we
shall assume that A, is a coupling matrix of elementary

spaces in the subdirect sum of the spaces ¥,(1,bq) and
V,(bg + 1,2bg). One can admit that

K = diag[4 %4 °] = {diag[X,....X ]| Xed},
Y

b
where A4 is an irreducible subalgebra of the algebra AO(q).
Since for every matrix YeA ° the equality A,Y = YA, takes
place then A, = QS, where S is a symmetric matrix, Q is an
orthogonal matrix, and Y-Q = QY. Applying the auto-
morphism diag[ E,Q ~'] we transform the coupling matrix
A, into S. There exists such matrix CeOQ(bgq) that

CSC_I = diag[/ilE(l),/IZE(Z)P“,A[E({) ] ’

where A,%#A; when i#j, and E, is the unit matrix
(i,j = 1,...,t). The automorphism diag[ C,C ] transforms K
into diag[CA4°C ~',CA°C ~'] and the coupling ma-
trix S into CSC~!. If YeCA®C ~' then Y(CSC 1)
= (CSC~")Y. Whence Y=diag[Y,Y,,...,Y,] where
deg Y, = deg E,,. The further decomposition of the blocks
Y, by O(2bg) automorphisms diag[C,C], where C
= diag[C,,..,C, ], deg C; = deg E;, does not change the
coupling matrix. Since irreducible parts of an algebra are
defined uniquely then by the considered transformations of
the coupling matrix the algebra K is left invariant. That is
why one can suppose that with k = m

cutss ' + Bt = (57 ),
where A, =diag[4,E,,..A,E;], 0<A;< - '<d,, and
(a+b)g=1! or Ay=-=A4,=0 and ag=1 If B,#0
then for some C,, T, we have

cnt=(y 4):
where A, = diag[E,,...E, ].
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The complete classification of coupling matrices one
can get for large n.
Further we shall use the following notation:

= (Po,M,Py;..., P, 1,Gies n—1> m=[(n—-1)/2];
F(n—1)= [z Vi Jaio 1217 =0’1] 3
i=1
X,NX, =0ifX,, X,eI'(n — 1) and have no common sum-

mand.

Lemma 4.2: Let T=a X+ "+, X, +2Z, Z
= BJo, + ¥D + 6Py, where X,e['(n — 1), a,#0, a} #a;
X;NX; =0 when i#j (i,j = 1,...,k). If W is a subspace of
the space Mand [T, W ]JCW then W=W,0..0 Wk oW,
where W, = [X,,W]_[ Wi, [ZW]CW,,[ W]
= 0 when j+#i, [X,,W] =0, [ZW]|CW.

Proof Let X=T—Z, W' = [X,M], P = {yem|[X,
Y] =0}, W' be a projection of W onto M, and W be a
projection of W onto M. Evidently, Tt = &M (as
spaces). Since composition factors of the (Z Y module I are
one dimensional, then the composition factors of the (Z )
module W are one dimensional, too. Let IM(P) = {P,
eM|[X,P,]#0}. It is easy to see that (T(P)) and M/
(M (P)) can be represented as direct sums of two-dimen-
sional irreducible (T ) submodules. Whence the dimensions
of composition factors of the {(T) module W' are equal to 2,
too. When we now apply Lemma 3.1 we conclude that
W=WoW.

Let M, = [X,,IM] and W, be a projection of W' onto
M,. Clearly ' =M, @ --- oM. At first let us establish
that [Z,W;]CW,. Since for any Y,eW, we have [J,,

—D,Y;] = — ¥, then we may assume that 3 = 0. Obvi-
ously

[T[T.Y,]] = —alY, +20,[X,[Z,Y;]] + ¥[Z.Y,] .
Let

Y;=2,[X,[ZY,]] +7[ZY],

Y =2a,[X,[Z,Y]]] +¥[ZY]].
The space W, contains Y[, Y ”. It is easy to check that

Y! =40,V [X,[ZY,]] +7(¥ —4aD[Z,Y] .
The determinant constructed by the coefficients of
[X,[Z.Y;]], [Z,Y;] in Y, Y] is equal to — 2o,y
(¥ +4al). If y£0 then [Z,Y,]eW,. If ¥ =0 then W,
contains = [X,[6Py,Y;]] and Y!=[T)Y]]
= —a;[6P,Y,].

In the composition factors of the (T") module I, one

can choose the basis so that the matrix of the operator T is
one of the matrices

@ 0 (0 25)

a; v Qa; -BJ

If for i#j the modules M, and N, are possessed by isomor-
phic composition factors then one of the following condi-
tions is satisfied: af =af; 2y = — 28, V' +al =B+ a}.
Since it is impossible then on the basis of Lemma 3.1 we
conclude that W' = W, & - - @ W,. The lemma is proved.

Proposition 4.3: Let L, be a subalgebra of the
AO(n—1), L,={pJ,, +¥D + 6P,), and F a subdirect
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sum of L, and L,. If Wis a subspace of I and [F,W ] C W
then [L;,,W]CW (j=1.2).

This is proved by virtue of Lemma 4.2.

Theorem 4.1: Let ¥V, = (G,,....,G, _ ), Vo= [Po,V1],
V.. beasubspace of V', V,, = [Po, V1, ]; K1, Ks,....K, bE
primary parts of nonzero subalgebra L, of the algebra
AO(n — 1); R be the maximal subalgebra of algebra IR, an-
nulled by L;; and L, be a subalgebra of the algebra
N&{J,,,D). If Fis the subdirect sum of L, and L,, and Wisa
subspace of I invariant under F, then W= W,a
oW, oW, where W,=[K,W]=[K.W,], [L,W]
CwW, [K;,W,;] =0whenj#i [K,,W]—O (L,W)CW
(i,j= L. »11)

If a primary algebra X is a subdirect sum of irreducible
subalgebras of the algebras AO(V ;),...,AO(V,,), respec-
tively, then nonzero subspaces W of the space I with the
property [K,W'] = W are conjugated to

a
Z Vi z Vai
i=1 i=1
or to subdirect sums of such spaces

ZV“ and EVZ,, le, and

i=1 i=1 i=1 i=a+1

ZV,,, EVZ,, and z Vai

(a=1,...,r)

i=1 i=1 i=a+1
(@a=1,..,r b= Yyod, a=1,.,r-—1,
b=1,.,a, c=a+1,..r).

The subdirect sums of the spaces

z V] i 2 V2,i

i=1 i=a+1
are exhausted with respect to O(n — 1) conjugation by the
following spaces:

2 Vii® z Vz,,';

i=1 J=a+1

Z(le’V2a+l)A I(le’VZa+l))
i=1

a c
® Z V@ z Vi
j=b+1 k=a+b+1
(0</11<...

<Ay, b=1,...

The written spaces are mutually nonconjugated.

Proof: Let Q = [L,,W], S be a projection of W onto %.
It is easy to see that Wis the subdirect sum of Q and S. Since
the composition factors of the L, module R are one dimen-
sional and the composition factors of the L, module [L,,]
have dimension not less than 2 then in view of Lemma 3.1
W = Q@+ S. In virtue of Proposition 4.3 [L,,Q ]CQ. We
canshow, asin Theorem 3.1,that Q = W, & - & W, where
W, =[K,Q], W,=[K,W;] (i=1,.,9). The truthful-
ness of the further statements is established earlier when
considering the transformations of the coupling matrix of
elementary spaces in the space W. The theorem is proved.

Theorem 4.2: Let a,<a,< " '<a,, ¢; =0, and «;
€{0,1}, AH(0) = 0, AH(2d) = (J 12/ 34p--w)2a _ 124)-and L
be a nonzero Abelian subalgebra of the algebra AG(n—1).
If the projection 7, (L) of the algebra L onto (P,) is equal to

;min{a,c —al}) .
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0 then L is conjugated to the subdirect sum of the algebras
L, L, L; and L,, where L, CAH(2d) (0<d<m),L,=0
or Ly =(Gyyy1 +@1Poas1,G2is2 + Py 55sCGoay s
+aPy, ), Ly=0o0r Ly= (P, ,.,P)), Ly=0or
L,= (M ).If1,(L)+#0then L is conjugated to the subdirect
sum of the algebras L,, L,, L,, and L, where L, C AH(2d),
L,=(Py+aG,;,,) (ae{0,1}), L;=0 or L,
=(P,.,PY, L,=0o0r L,= (M) (0<d<m; r=2d +1
whena =0;r=2d + 2 whena =1).
Proof: Let

2d+s
X, =G, + z BiPy, L= Xoyy1rXoays) -
j=2d+1

Obviously, [ X,,X, ] = (Bx; — B )M. Since L is an Abelian
algebra then 3, = f8,; and therefore B = ( 8,.) (i,k =2d
+ 1,...,2d + 5) is a symmetric matrix. Hence, there exists a
matrix CeO(s) such that CBC~'=diag[4,,..,4,].
Whence we can assume up to conjugacy under O(n — 1)
that X, ; = Gogyj + A4 Pouy; (j=1,.,5). O(n — 1) au-
tomorphisms permit us to change the numeration of genera-
tors G,y 15..,Ghy .- That is why we can suppose that
A< <A,. Applying the automorphism exp( — A,P,) we
get generators G, , ; +u; Py, ; (= 1,...,5), wherey, =0,
O0<u,< "<, If pu, >O0then g, = exp & (6eR). Evidently,
exp( — 60, )(Goqy; + 14;Poa ;) €xp(6,)

= exp 6'(G2d+j +pu; exp ( — 9)P2d+j) .
Therefore when g, >0 we can assume that g, = 1.

The rest of the assertion of the theorem follows from
Proposition 4.1. The theorem is proved.

Corollary 1: Let

A(rt) = (G, + a,P,.G, ,
+ar+1Pr+l"--,Gr +aanM) ,

where a,<a, , < '<a,, a, =0, and ¢, = | when a, #£0.
The maximal Abelian subalgebras of the algebra
AG(n — 1) are exhausted up to conjugacy under P(1,n) by
the following algebras:

U, A(l,n—1); A(ls)e V,(s+ L,n—1)
(s=1,.,n—2);

(Gi+P,M)aV,2,n—1);

AH(n —2)e (G,_, + P,M)

AHQd)o (Py) o V,(2d + 1,n) (d=1,...,[(n—1)/2]);

AHQd)e A(2d+ 1,n—1) (d=1,.,[(n—2)/2]);

AHQd) o AQ2d+ 1s)e Vy(s+ L,n —1)
(d=1,.,[(n—3)/21);

AHQd) (G, +PoM)0 V,(2d +2,n— 1)
d=1,.[(rn-3)72]).

The written algebras are not mutually conjugated.

Corollary 2: Let n>3, X, =aJ,+as+ -
+ a1

a; =1, O<a,< <K, <1y t=1,...,[(n - 1)/2];
s=1,.,[{n—-2)/2].

[n=0(mod 2)];
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The one-dimensional subalgebras of the algebra AG(n—1)
are exhausted with respect to P(1,n) conjugation by the fol-
lowing algebras: (P,); (M); (P;); (G)); (G,+ P,);
(G, + Py); X,); X, +P0>; (X, + M); (X, +P2t+l>;
(XS+G25+1)§ <Xs+G25+l + Py); (Xr+G2r+l
+ Py ) r=1,.,[(n—=3)/2]})

The written algebras are not mutually conjugated. Let

(I)(O) = <M>’ q)(l) = (Myply-"’Pi>’ Q(O) = (M’P0> b
Q) = (M,P,P,,....P;), V,(s,t) =(P,,...P) (s<t),
(4.2)

Ar—+—l,k+1(j) = <Pr+d +/lde+d|d= 1’2’--'1j> s
where

Proposition 4.4: Let L = (G|,...,G, ). The subspaces of
the space U = (P,,P,,...,P, ), which are invariant under L,
are exhausted with respect to (~)( 1,n) conjugation by the fol-
lowing spaces: 0, ® (i), Q(k), V,(k + 1,2),

PHheV,(k+1,1), Qk)eVy,(k+ 1,1),
q)(r)@Ar+1,k+1(j) ,
q)(r) @Ar+l,k+ 1 (]) @ VZ(k +.]+ I,S) ’

where i=0,1,..k, t=k+1,.,n—1, r=0,1,.,k—1,
j=lLk—rs=k+j+1,.,n—1

Proof: Let W be a subspace of the space (k) invariant
under L. Since [P,,G,] =M then with W #0 we have
MeW. The normalizer of the algebra L in O(n — 1) contains
O(k). It follows from this and Witt’s theorem that if
W #(M) and PgW then W= ®() (1<i<k). If PeWw
then W= Q(k).

For a description of all subspaces of the space U which
are invariant under L we shall use the Goursat twist meth-
0d.** Since by Witt’s theorem the nonzero subspaces of the
space V,(k+ 1,n — 1) are exhausted with respect to
O(n — 1) conjugation by the spaces V,(k + 1,t) (t=k

+ 1,...,n — 1) we need to classify the subdirect sums of the
following pairs of spaces: Q(k), V,(k+ 1,1); &),
Volk+1,0) (i =01,k t=k +1,....n — 1).

Let NV be the subdirect sum of (k) and V,(k + 1,1). If
Py + AP, eN (4 #0) then N contains P,, P, = — [G,,
Py + AP, , , ], and whence it contains M, too. Let

N'=exp(6G,, ) N-exp( —60G, ).

The space N’ contains Py+ (A —6)P,,, + (622
—A@)M. Since MeN' then Py + (A — 6)P,, ,eN’. Put-
ting @ = A we get that P,eN’ and whence Q (k) CNV'. There-
fore N'=Q(k)e V,(k+ 1,t").

Let N be the subdirect sum of ® (i) and V,(k + 1,1). If
i=0, M+ AP, €N (1 #£0) then N’ contains (1 — 84)
XM + AP, ,.Putting 1 — 04 =0wegetthat N' = V,(k
+ L), If i£0 then MeN. Let us assume that N £P (i)
e V,(k+ 1Lt). Then P)/S,=V,(k+ 1,t)/S,, where
S, =NN®W), S,=NNV,(k+1¢). Let dim(®(i)/S,)
=i -—r=j. Within the conjugation we can assume that
Si=®(r) and S, =0or S, = V,(k +j + 1,5) and that is
why by means of Lemma 4.1 N is conjugated to one of the
spaces,
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P(OA 11 ()
(oA a1 (NeV(k+j+1s).
The proposition is proved.

V. ON SUBALGEBRAS OF THE NORMALIZER OF
ISOTROPIC SPACE

In virtue of Theorem 2.1 the normalizer of the isotropic
space (~P0 +P,) in AP(1,n) coincides with the algebra
K =AG(n — 1)&)J,,,D). In this section we shall establish
a number of assertions on subalgebras of the algebra K pos-
sessing nonzero projection onto {J,,,D}. On the grounds of
these results in Theorem 5.1 we describe all Abelian subalge-
bras of the algebra K that are nonconjugate to the subalge-
brasof AG(n — 1). Asa corollary, we obtain the list of max-
imal Abelian subalgebras and one-dimensional subalgebras
of the algebra K as well as one-dimensional subalgebras of
the algebra AP(1,n).

Further € denotes the projection of K onto (J,,,D) and
& denotes the projection of K onto AO(n — 1) & {J,,,D).

Proposition 5.1: Let L = {G,...,G,.) (1<k<n — 1), and
Fbe a subdirect sum of L and (D). The algebra F has only
splitting extensmns in AP(l n).

Proof: Let F be a subalgebra of AP( 1,n) such that 7r(F )
=F.UptoanO(n — 1) automorphism one can assume that
F contains the generator

X,=G + > a,P, +yD (y#0).

v=10
Clearly,
exp(Z bHP#)'Xl-exp(— > bMP#)
pw =0 =0
=G, + D+ (ap—7by + b)) P,
+ (a1+b0_bn ——ybl)Pl—l_ (an +b1—7/bn)Pn
n—1
+ 2 (a; — vb)P; .
=2
We put
—vbo+6,=0, a,+b,—b,—yb, =0,
a, +b1—7/bn=0’
a,—yb,=0 (i=2,..,n—1). (5.1)

The determinant of coefficients by by, b,, and b,, is equal to
— 7. Since ¥#0 then the systems (5.1) has a solution.
Therefore one can assume that X, = G, + yD. Leta#1,

X,=G,+ Y a,P, +5D.
u=0

Since
[XiX,] = — (2 —a,)P, —a,M + yZaﬂP
(XX, ] —¥X, = —vG, — 6D — (ay—a, )P, —a M,

we shall assume that
X,=G, +aM + BP, + 6D.
Then

[XX,] = (ra —BIM + yBP, (2<a<k).
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If ya — p #0 then we shall consider that @ = 0, 5 #0.
Since

[X,[ XX ]] = —2vBM + V°BP,,

then F contains M — yP,, —2M + yP, and whence M,
P, eF. That is why G, + SDeF.
Let ya —B=0. If f+#0 then P, eF Since [X,,P,]
=[G, +yD,P,] = — M + yP, then MeF and_therefore
G, + 8DeF. If B =0 then @ = 0. It proves that F is a split-
ting algebra. The proposition is proved.

The record F: W,,...,W, means that we deal with the
subalgebras W,&F,.. . W &F.

In virtue of Propositions 4.4 and 5.1 we conclude that
the subalgebras of the algebra I (D) possessing a nonzero
projection onto (D) are exhausted with respect to f’( 1,n)
conjugation by the following algebras [see notations (4.2) ]:

(D): 0, (i), V,(s5,2)

(i=01,., s=0,1, t=s55+ l,..,n);
(G, + a,D,...,G, +a,D, BD): 0, ®(i), (k) ,
Vo(k+ 1,1), ®() @ Vy(k + L), Q(k) @ Vy(k + 1,0),
(oA 1k (D),

D(r)oA 1k (NOVa(k+j+ 1)

n—1,

k=1..n—1, i=01,.,k t=k+1,..n—1,
r=01,..k—1, j=1.,k—r,
s=k+j+1,.,n—1).

These algebras must then be simplified using transforma-
tions contained in the normalizer of each algebra in the
group of O(1,n) automorphisms. If, for example, the nor-
malizer contains exp(6J,,) then instead of (G, + « D,
G, + a,D) we can take (G, + a,D,G,) .

Proposition 5.2: Let L be a subalgebra of AO(n), and F
be the subdirect sum of L and (D). The algebra F possesses
only the splitting extensions in Ai;( 1,n).

Proposition 5.2 is proved by virtue of Propositions 2.1
and 3.2.

Proposition 5.3: Let L, be a subalgebra of AO(n — 1),
L,=(DJ,,) or L,={(D+ 1J,,), where y =0, y*#1,
2y 4+ 1#0. If Fis a subdirect sum of the algebras L, and L,
then every subalgebra F of the algebra K with the property
£(F) = Fis conjugated to the algebra (W, + W,)&F, where
W, CU W,CV, = {(Gy,...G,_,).

Proof: Let L, = (D, J,,, ). On the basis of Propositions
2.2 and 5.1 algebra F contains the elements

n—1

X, =Jo, + 2 P, X,=D+ > BG;.

i=1
Since [X,,X,] =2y, —3B,G, then D+ 3 yPek
Therefore one can suppose that DeF. Whence JOne/ﬁ and
FCF. )

Let L,=(D+ yJ,,). Since [D+vJy,,P,]=2P
[D+ ¥o,,G. 1 = —¥G, (a=1,..,n— 1), then by virtue
of Proposition 5.2 one can admit that F contains the subdir-
ect sum of F and subalgebra of the algebra {P,,P, ). Evident-

ly
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exp(6,P + 6, P,) (D + vJo, + aoPo + a,P,)
-exp( — 6,P,— 6,P,)
=D + Wo, + (@g— 6+ ¥6,) P,
+(a, +v6,—06,)P, .

Since 9% # 1, then coefficients by P,, P, can be transformed
into zero. On the basis of the conditions y*#1,
[D + 7Jon ,F NnMm] C FNM it is not difficult to get that
FCF. R

Let W=FNM, Y=268,G, + Z p; P,eW. Since

[D+7/J0n’Y] = —yzéaGa

~ ¥(PpoPn +PuPo) + > pi P;

and 771 then one can assume that Y=265,G, +p, P,
+p, P,. By the direct calculations we find that

[D+ 9o, Y] = —7 3 8,6,

+ (po— 1P )P+ (p, —¥P)P, ,

[D+7/J0n1[D+7/JOn’Y]]
=7/2250Ga + (7/2,00"27//7:1 +p0)PO
+ (.

The determinant A constructed by the coefficients of
36,G,, Py, P, in Y and the vectors received is equal to
vy + 1) (p: —p3). If A#0 then £ 8,G,, Py, P,eW. If
A =0thenp, = 4 p,. Whenp, =p, we get that

— 2¥po + P )P, .

[D+ %o, Y] —(1 =Y = —zﬁaGa.
Ifp, = — pothen

[D+ 7o, Y] —(1+Y=(-2r-1) ¥ 6,G, .

The proposition is proved.

Proposition 5.4: The subalgebras of the algebra
M&<(J,,,D) containing J,,,, or having the property that their
projection Fonto {J,,,D) coincides with (D + ¥/, ), where
Y# 0, ¥#1, 2y + 1£0, are exhausted with respect to
P(1,n) conjugation by the following algebras [see notation
4.2)]:

F: O, q)(a)y Q(a): VZ(I;d)
(@a=01,.,n—1,d=1,..,n—1);
(Gl,-"’Gk)G.F: O: (I)(l)s Q(k)’

Volk+ 1,8), ®(HeV,(k+1,1),
Q(k)$V2(k+ 19t)y ¢(r)®Ar+1’k+1(j)’
S(N@A 1k (NeValk+j+1s)

(i=0l1,.,k, t=k+1,..n—1,
r=01,..k—1, j=1.k—r,
s=k+4+j+1..n—1, k=1,..,n-—1).

The proof of Proposition 5.4 is based on Proposition 5.3.
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Proposition 5.5: Let L, be a subalgebra of AO(n — 1),
L, = (2D — J,, ), Fasubdirect sum of L, and L,, and Fsuch
subalgebra of K that £(F) = F. The algebra Fis conjugated
to the algebra W& F, where WC I and satisfies the follow-
ing condition: if YeW and projection of Y onto
V, = (G,,....G,_,) is equal to £8,G, then W contains
36,G, +pPyandpM or 2 6,G, + p(Py,—P,).

Proposition 5.6: Let L, be a subalgebra of AO(n — 1),
L,= (D +J,, + yM) (y{0,1}), and F the subdirect sum
of L, and L,. If a subspace W of the space I is invariant
under F then W= W, + W,, where W,CU, W,CV,.

The proof of Propositions 5.5 and 5.6 is similar to that of
Proposition 5.3.

Let 6 = (¥, — ¥,)/2. Since
exp(6P;) (D + Jo, + ¥oPo + 7, P, ) -exp( — 6F,)
=D +Jo. +3io+7.)M,

then further we shall suppose that the projection of the alge-
bra FCAP(1,1) onto (D + J,,,P,P,) contains D + J,,
+ aM where a{0,1}. Proposition 5.6 gives the consider-
able information on the structure of such algebras.

Proposition 5.7: Let L, be a subalgebra of AO(n — 1),

= (D —J,, +yP,) (ye{0,1}), and F the subdirect sum
of the algebras L, and L,. If a subspace W of the space I is
invariant under F, then W contains its own projection onto
(Po,P,) and [L, W ]CW, [yPo, W]CW.

Proof: On the basis of Proposition 4.3 [L,,W ]|CW
(i=1,2). Let M = {YeM|[L,,Y ] = 0}, and ¥ be a projec-
tion of Wonto M. It is easy to see that the matrix diag[2,0] is
the matrix of the operator D — J,,, in the basis P, + P,,

— P, of the space (P,,P,) and in the basis of the space
E)JE[ (Py,P,) the matrix of the same operator is the unit one.
Whence by Lemma 3.1 we conclude that W contains its own
projection onto (PP, ). It remains for us to note that for
arbitrary

n—1

Y=Y (a,P, + G

j=1
wehave [D — J,, + Py, Y]
tion is proved.

Proposition 5.8: Let F be a subalgebra of the algebra
AO(1,n) generated by J,, and G,, where a runs through
some subset J of the set {1,2,..,n — 1} If Fisa subalgebra of
AP(1,n) with 7#(F) = F, then within the conjugation with
respect to the group of translations the algebra F contains
elements G, (ael) and J,,, + 2 §,P, (i = 1,..,.n — 1).

Proposition 5.9: Let L be a subalgebra of the algebra
AP(1,n), X=J, +6Jy, + PP, Y=G. 4+ 2P
(i =1,...,n), where B #0, §#0, and a, b, and c are different
numbers of {1,2,....n — 1}. If X, YeL then L contains G..

Theorem 5.1: Let L be an Abelian subalgebra of the alge-
braK and e(L)#0.Ife(L) = (J,, ) then L is P(1,n) conju-
gated to the subdirect sum of algebras L,, L,, {J,, ), where
L,CAH(2d), L, =0, ot L, = (Pyy , 1,-rPsy ). If €(L)
= (D) then L is P(1,n) conjugated to the subdirect sum of
L, L, (D), where L,CAH(2d), L,=0 or
L,=(Goy, ssGry ). If e(L) =(DJ,,) or €(L)
= (D + yJ,, ), where y#£0, y*#£1 then L is P(1,1n) conju-
gated to the subdirect sum of algebras (L) and
L, CAH(2d).Ife(L) = (D + J,,, ), then L is conjugated to

= Y+ [yPy, Y ]. The proposi-
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the subdirect sum of the algebras L,, L,, L;, where
L, CAHQ2d),L,C{M),L,=(J,, +D).

Proof: If (L) = (J,,) then in view of Propositions 2.2
and 4.3 the algebra L contains its own projection onto
(M,P,—P,G,,.,G,_,). Since [Jon:G.] = — Ga,
[JowsM ] = — M, [Jy,,Po — P, ] = P, — P, then this pro-
jection is equal to zero. Therefore L is the subdirect sum of
L ,CAH(2d) and L,C( P,y 1s.-sP, _ ). If L,70 then by
Witt’s theorem L, is conjugated to (Pag , 15e.sPay 45 )-

Ife(L) = (D) then in virtue of Propositions 4.3 and 5.2
the projection of L onto U is equal to 0.

Ife(L) = (D, Jy, Y ore(L) = (D + ¢J,,, ), where y #0,
¥?*#1, 2y + 1540, then by Proposition 5.3 the algebra L is
conjugated to the subdirect sum of the algebras e(L) and
L,CAH(2d). With (L) = (2D — J,, ) Proposition 5.5 is
applicable.

Lete(L) = (D — J,, ). On the basis of Propositions 2.2
and 4.3 the projection of L onto {G,,....G, _, ) isequal to 0.
Applying the O(1,n) automorphism corresponding to the
matrix diag[1,...,1, — 1] we getthate(L) = (D + J,, ). Ac-
cording to Proposition 5.2 the projection of L onto
(Py,...,P,_,) is equal to 0. Since [J,, +D,Py+ P,] =0,
[Jon + D,Py — P, ] = 2(P, — P,) then by Propositions 2.1
and 4.3 the projection of L onto (P,P,) belongs to
(P, + P,). The theorem is proved.

Corollary 1: The maximal Abelian subalgebras of the

algebra K with the condition €(K) #0 are exhausted withI

Vi. SUBALGEBRAS OF THE ALGEBRA AP(1,4)

respect to P(1,n) conjugation by the following algebras:
AH(n — 1) e {(J,,,D), AH(r —1)e (MJ,,.D),
AH(Zd) ® <P2d+ 1 ,...,P,,_ 1> J0n> ’

AH(2) ® (Gpy . 1,.nG,_ D) (d=0,1,..[(n—2)/2]).

The written algebras are not conjugated mutually.
Corollary 2: Let n>3, X, =a,Jp+a s+
+a, JZr—l,Zt; a, =1, O<a, < <a,LLit=1,
wol(n—=1)721; s=1,...,[(n —2)/2]; a>0. The one-di-
mensional subalgebras of the algebra K with the condition
€(K) #0 are exhausted with respect to P(1,n) conjugation
by the following algebras: (J,); (D); (D + aly,);

Jon + P); (D + G);

(D + Jo, + M); (X, +aD + BJ,,) ( B>0);
(X, + aJy,); (X, +a(D+J,, +M));
(Xs +GZS+1 +(ZD>, (Xs +P2.r+1 +aJ0n> .

The written algebras are not conjugated mutuaily.

Proposition 5.10: The one-dimensional subalgebras of
the algebra AP(1,n) are exhausted wtih respect to the
P(1,n) conjugation by the one-dimensional subalgebras of
the algebra K and the following algebras:

Jio+B1 s+ +Bopn_1 J, n—ln + D),
Vo+Bi s+ +Bupn 1 Ju_10 +Po),
where n=0(mod 2), ¥>0,0< B,<" "' <B ., <L

In this section we make use of the previous results to provide a classification of all subalgebras of AP(1,4) with respect to

P(l 4) conjugatlon
LetF be an subalgebra of AP(1,4) such that 77'(F ) =

F. An expression F + W means that Wis a subspace of U, [F, W]

CW, and F NUC W. As concerns the algebras F + Wi,...F + W, we will use the notation F: W,,...,W._.

Lemma6.1: Leta, 3, veR, a > 0, >0, y #0, and Frun through the full system of representatives of the classes of O (1,4)-
conjugated subalgebras of the algebra AO(1,4) .* The subalgebras of the algebra AO(1,4) @ (D) are exhausted with respect to
0O(1,4) conjugation by the algebras F, F @ (D) and the following algebras:

Jp+abD); (Jp+cly+aD) (0<ekl); (Joo+aD); (J, 4y, + aD)
(Gy—J, +aD); (J;,+aD,Jy,+BD); (Jos+aD,J, +BD); (Jouti + aD);
(G5, Ji +aD); (G, +D,G,); (GyJos +1D); (G, +clos+7vD)  (e>0);
(Gsos + YDJ12 + BD); (G, Joud 2 +2D); (G1,Gydi; + aD);  (G,Godos + ¥D);
(¢>0); (G,+D,GLG,); (G,G5,G3 —Jp +aD);  {(JpaJoundsad12 + aD);

(12 +Tsad 13— Jaasd s + J1anf3a + ¥D); (G,GopJ s + aDJoy + 8D);  (G1,Gypd 13004 + ¥D);
(G1,G»,G5 + DJ1, + BD);  (G1,G,GsJ 1 + aD);  (G,Gy,Gy, Jou + ¥D);  (G,G3,G3J 12 + oy + D)
(c>0); (Jodislndos +aD);  (G1,Gp,GaJyy + aDJy, + 8D);  (G1,G,,Ga0J 1200 130230004 + VD) .

(¢>0); (G;+D);
(Gs + D, sz +ﬁD);

(G1,GyJ 1, + cpy + YD)

Lemma 6.1 is proved with the Goursat method® and the result on the classification of subalgebras of the algebra
AO(1,4).°

Theorem 6.1: Let A(T") be the system of representatives of the classes of conjugated subalgebras of the aigebra AO(1,4)
[respectively, AO(1,4)] found in Lemma 6.1. The splitting subalgebras of the algebra AP (1,4) are exhausted with respect to
ﬁ( 1,4) conjugation by the following algebras:
(1) WEI-F whereFeF WCU, and [FW]CW,
(2) WGF where FeA and the projection of Fonto AO(1,4) coincides with F, FeT;
(3) (JipJss +aD): (P,Py), (Pp,P,Py) (a>0);
(4) (Gl +(1D,G2 +ﬂD> <M’P1)’ (M’Pl + COP3), (M’PI’P3)1 <M:Pl+wP3’P2>
(5) (G, + aD,G, + BD,G,,M,P;) (a>0, B>0, a®+B>#0);
(6) (G, + aD,G,,G; + FD,M,P,,P,) (a>0, B>0, a®+B2%#£0).

(>0, a>0, B>0, a®+[*#0);
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Proof: Let Fbe the subdirect sum of FeI" and (D), and W a subspace of Uinvariant under 7. Then [F,W]CW andonthe
contrary, if [F,W ] C W then [F W ] C W. Therefore we can use the results on the classification of the splitting subalgebras of
AP(1,4).° Only the cases of the algebras FeA simplified by O(1,4) automorphisms demand an additional consideration. Such
algebras correspond to the algebra F coinciding with ( J,,,J3,4), {G,,G,), or {G,,G,,G;). If, for example,

F= (G, + a,D,G, + a,D,G; + a,D)
then this algebra must be simplified using transformations contained in the normalizer of (M.P,), (M,P,,P,), respectively, in
the group of O(1,4) automorphisms. The theorem is proved.

We conceive the classification of nonsplitting subalgebras of AP(1,4) with respect to P(1,4) conjugation by virtue of the
known classification of the nonsplitting subalgebras of AP(1,4) with respect to P(1,4) conjugation.'' The application of the
automorphism exp(&D) allows us to substitute one of the continuous parameters by the translation generators onto 1.

Let (iy,..0iy) = (P, ,....P; ) (awb) = (P, + wP,) (w>0); (04) = (M).

Theorem 6.2: The nonsphttmg subalgebras of the algebra AP(1,4) are exhausted with respect to P(1,4) conjugation by
the nonsplitting subalgebras of the algebra AP(1,4) and the following algebras:

(Jou =D+ Py): 0, (1), (04), (1,2), (04,1), (1,2,3), (04,1,2), (04,1,2,3);

(Jiz+c(Jou =D+ P)): 0, (04), (3), (04,3), (1,2), (1,2,3), (04,1,2), (04,1,2,3) (c>0);

(Juu+ D+M,Jp,+aM): 0, (3), (1,2), (1,23) (a>0); (Jou+D,J;, +M): 0, (3), (1,2), (1,2,3);
(Jou+D+M,J},): 0, (3), (1,2), (1,2,3); (Joy— D+ PoJiy +aPy): (04), (04,3), (04,1,2), (04,1,2,3) (a>0);
(Jou — DJ1, + Py): (04), (04,3), (04,1,2), (04,1,2,3);

(Jou — 2D,G; + Py): (04), (04,1), (04,103), (04,3), (04,103,2), (04,1,2), (04,1,3), (04,1,2,3);

(Jos —2D,G5 + P, — P,): 0, (1), (1,2); (Jou—D,G;+ P;): 0, (04), (04,3), (0,3,4);

(Jou — D,G; + P,): (1), (04,1), (04,103), (04,1,3), (0,1,3,4); (G;+aP,,Jos —D + PL,M,P;) (a>0);
(Jos — D + Py,Gy + aP,,M PPy (a>0); (Gy Jou— D+ Py): (04,3), (04,1,3), (04,1,2,3);

(Gy, Jos +D+M): 0, (1), (1,2); (G3+ PpJia +c(Joy —2D)): (04), (04,3), (04,1,2), (04,1,2,3) (c>0);
(Gy+ Py — P, J,+c(Jou —2D)): 0, (1,2) (c>0); (GyJp+c(Jos— D+ Py)): (04,3), (04,1,2,3);
(GsJip +¢(Upa+ D+ M)): 0, (1,2); (G5 + PoJipdos —2D): (04), (04,3), (04,1,2), (04,1,2,3);

(G + Py — P JnJos —2D): 0, (1,2); (G J s+ aPydoy — D + Py): (04,3), (04,1,2,3) (az0);

(GsJ1p + Podos — D): (04,3), (04,1,2,3); (G3Ji, +aMJo, + D+ M): 0,(1,2) (a>0);

(GyyJ 1 + M, Jou +D): 0,(1,2); (G,G, + PoJos — 2D): (04,1), (04,1,2), (04,1,203), (04,1,3), (04,1,2,3);
(G + Py,Gy +pPy +6P5, Jou — D) (>0, 630); (G, + P5,G,Jyy — D);

(G,G, + P, + 6P, J,, — D) (620); (GG, + PoJo, — D,P;);

(Gy+ P, + AP;,G, — P, + uP, + 6P, J oy —D,M) (u>0, A>0VA=0, §>0);

(G + P, +AP3,G, — P Jos — DM ) (A20); (G, + P3G oy — DM ) ;

(G, + AP;,G, + P, + 6Py, Jo, — DM ) (A>0VA=0; 6>0);

(G, + P,,G, — Py +uP,Jo, —DMP,) (u>0); (G,,G,+ P,Jo,—DMP;);

(G, + aP, + BP,G, + P3,Jo, —D.MP)) (a>0Va=0, $>0); (G,+ P,+BP,G,Jy, —DMP) (B>0);
(G, + P3,GyJos — DMP) ; (G, + aP, + BP,G, + P3,Jyy — DMP, + 0P,) (0>0);

(G, + Py + BP;,G,,Jos — DMP, + oP) (w>0); (G, + P3,GpJoy — DMP, +0P,) (0>0);

(G, + P3,GJoy —DM,P,P,) ; (G, + P,,G,, /s —~ D.M,P,P); (GG, + Py Jy, — D,M,P, + 0Py, P,) (w0>0);
(G, + P;,GpJoy — D,P,P\,P,,P) ; (G, + BP,,GyrJoy — D + PL,M,P,P,) (5>0);

(G1,Gyos — D + Po.M,P\,P),Ps); (G ,Gplou + D+ M) ; (G,Goos+ D+ MP,);

(G + PpGy— P ; +¢c(Jpy —D)): (04), (04,3) (c>0);

(G1,GpJ 1y +¢(Joy — D + Py),M,P,,P,sP,) (¢>0, s=0,1);

(G,GoJ iz +¢c(Jou + D+ M)): 0, (3) (¢>0); {(G,G,,Jyy + PpJou — D,M,P,P,sPy) (s=0,1);
(G1,.Gyp i+ M, Joy +D): 0, (3); (G1,GoJ 15 + 8Py oy — D + P ,M,P,,P, sP,) (630, s=0,1);

(Gy+ PG, — P, J,Jou —D,MsPy) (s=0,1); (G,GoJp,+aMJy+D+M): 0, (3) (a>0);

(G,G,G; + PoJy, — 2D,M,P,,P,,sP;) (s=0,1);

(G\,G, + PG5 + aPy,Jyy — DY; (G,,G, + P,,Gy + aPyJyy — DM ) ;
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<G1+P2+BP3’GZ_P1+,U'P2+'}/P3,G3+ﬁpl+7P2+5P3’Jo4_]D:M>
(8>0);

<G1 +P2 +ﬁP3st ’—PDG:; +ﬂP1 +5P3:J04 - D’M>
(G, + BP,,G, + P3,G; — P, Jou — D,M,P,) (B>0);

(G, +BP, + vP3,G, + P3,G; — P, + Py, J o, — D,M.P,)

(G, + BP, + ¥P3,G,Gs + Py, J o, — D,M,P,)
(Gl + P21G21G3yJ()4 hd D,M,Pl);
(GI’G2>G3:J04 - D + PO’Mvpl’P2;P3>;

(>0, B>0VB=0, v>0);

(>0, B>0VB=0, y>0);
(B>0VB=0, y>0);

(G, + P,,G,,G3,Jo, — D,M,P,,P,) ;

(G,G,G3 oy + D+ M) ;

(GI,GZ,G3 + PoJ i+ c( oy — ZD),M,PI,PZ,SP3) (c>0, 5s=0,1);
<G1+P2’G2—P1»G3+ﬁP39J12+C(Jo4—D),M> (c>0);
(Gl +P2’G2“‘Pl’GB’J12+C( J04"‘D)7M:P3> (C>0) 5

(G1,GoG3 + PyJ 1, +c(Joy —D)): 0, (04);
(G1,Go,GsJ iy +c(Jou + D+ M))  (c>0);
(G,G,,Gs + PoJ 50y — 2D,M,P,,P,sP,) (s=0,1);
(G1,G,,G3,J 1, + 8PoJos — D + Po,M,P,,P,,Py)
(G, + P,,G, — P,G3,J 1208 — D,M,P;) ;
<GI’G27G3’JIZ + MJy + D) ;
(G1,G,,G3J 150 1323004 — D + Po,M,P,,P,,Ps) ;

VIl. CONCLUSIONS

The results of the present paper may be summarized in
the following way.

_( 1) The maximal Abelian subalgebras of the algebra
AP(1,n) have been explicitly found in Corollary 1 to
Theorem 4.2 and Corollary 1 to Theorem 5.1.

(2) The full classification of one-dimensional subalge-
bras of algebra AP(1,n) is contained in Corollary 2 to
Theorem 4.2, Corollary 2 to Theorem 5.1 and Proposition
5.10.

(3) The completely reducible subalgebras of AG(1,7)
which possess only splitting extensions in the algebra
AP(1,n) have been picked out. We have established in
Theorem 3.1 that the description of the splitting subalgebras
Fof Af’( 1,n), whose projection F onto A6( 1,n) does not
have any invariant isotropic subspaces in the space of trans-
lations or annul such subspaces, could be reduced to the
description of the irreducible parts of the algebra F.

(4) A number of assertions on the subalgebras of the
algebra U4K ' has been proved where K ' is the normalizer of
(P, +P,)in AO(1,n). These assertions concern the follow-
ing matters: The splittability of all extensions of the subalge-
braLCK'in Aﬁ( 1,n) or in some other algebras (Proposi-
tions 4.1, 4.2, 5.1, and 5.2); the decomposition of invariant
subspaces into a direct sum of its projections onto certain
subspaces (Propositions 5.3, 5.5, 5.6, 5.7, and 5.8); the ex-
plicit description of some classes of the conjugated subalge-
bras of the algebra AI~’( 1,n) (Theorem 4.1, Propositions 4.4
and 5.4).

(5) The full classification with respect to ?( 1,4) conju-
gation of the nonsplitting subalgebras of AP (1,4) which are
nonconjugate to the subalgebras of AP(1,4) has been car-
ried out.

Note added in proof: In Refs. 26-28 the subalgebras of
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<G1’G27G3"112 + C( JO4 - D + Po)yM’Pl’PZ)P3>
(sz:J13’J23’Jo4 —-D+ P())l

(6>0) ;

(c>0);
0, (04), (1,2,3), (04,1,2,3);

(G1,G,G3J 1, + PoJoy — D,M,P,,P,,P,) ;

(G, + P,,G, — P,G3 + BP3J 13, J0s — DM )
<G1:G2’G3 + PyJ 5000 — D): 0, (04) 5
(G,Gp,G3Ju + M J o+ 6+ M)
(G1,G2.G3J 3 130 a3dos + D+ M) .

(6>0) ;

—

the algebra AP (1,n) were used to construct the exact solu-
tions of many-dimensional nonlinear d’Alembert and Dirac
equations. The invariants of subgroups of the generalized
Poincaré group P(1,n) were constructed in Ref, 29. A num-
ber of general results on continuous subgroups of pseudo-
orthogonal pseudounitary groups had been obtained.**
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An approach to time-ordered operators based upon von Neumann’s infinite tensor product
Hilbert spaces is used to define Feynman-Dyson algebras. This theory is used to show that a
one-to-one correspondence exists between path integrals and semigroups, which are integral
operators defined by a kernel, the reproducing property of the kernel being a consequence of
the semigroup property. For path integrals constructed from two semigroups, the results are
more general than those obtained by the use of the Trotter—Kato formula. Perturbation series
for the Feynman—-Dyson operator calculus for time evolution and scattering operators are
discussed, and it is pointed out that they are “asymptotic in the sense of Poincaré” as defined
in the theory of semigroups, thereby giving a precise formulation to a well-known conjecture of
Dyson stated many years ago in the context of quantum electrodynamics. Moreover, the series
converge when these operators possess suitable holomorphy properties.

I. INTRODUCTION

It has long been an open question as to what mathemat-
ical meaning can be given to the Feynman—Dyson time-or-
dered operator calculus, which was developed in the 1950’s
for the study of quantum electrodynamics. In this paper we
define Feynman~Dyson algebras and show that they give a
natural algebraic framework which allows for the replace-
ment of the noncommutative structure of quantum theory
with a uniquely defined commutative structure in the time-
ordered sense. This approach is analogous to the well-known
method in the study of Lie algebras wherein the use of the
universal enveloping algebra allows the replacement of a
nonassociative structure with a uniquely defined associative
structure for the development of a coherent representation
theory."

The use of this tensor algebra framework allows us to
improve upon the customary formal approach to time-or-
dered operators based upon product integration.

In Sec. II we discuss infinite tensor product Hilbert
spaces V and ¥, modeled on an arbitrary separable Hilbert
space 77 and discuss the relationship between algebras of
bounded linear operators on these two types of spaces. It is
shown that ¥, may be assumed separable with no loss in
generality (see also Sec. IV).

In Sec. III we apply these considerations to the discus-
sion of time-ordered integral operators and discuss how this
approach leads to unique solutions to the Cauchy problem
for the Schrodinger equation with time-dependent Hamilto-
nians. The use of infinite tensor product Hilbert spaces re-
quires the introduction of a new topology, and so we discuss
how uniqueness in the Cauchy problem is to be understood
in this framework.

In Sec. IV we discuss the relationship between various

2 On leave from the Department of Mathematics, Howard University,
Washington, D.C. 20059.

) Present address: Department of Electrical Engineering, Howard Univer-
sity, Washington, D.C. 20059.
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algebras of bounded linear operators on infinite tensor prod-
uct Hilbert spaces and give a mathematically rigorous treat-
ment of algebras of time-ordered operators on these spaces.
The latter algebras, called Feynman—-Dyson algebras, pro-
vide a mathematical treatment of Feynman’s operator calcu-
lus.? Our use of infinite tensor product Hilbert spaces in this
connection can be seen to be the mathematical embodiment
of the method of Fujiwara® in the implementation of Feyn-
man’s approach. The definition of these so-called “expan-
sional” operators has been discussed in a Banach algebraic
framework different from that of the present paper by Mir-
anker and Weiss* and Araki.” Related discussions of time-
ordered operators have been given by Nelson® and Maslov.”

In Sec. V we apply our theory of time-ordered operators
to the discussion of path integrals of the type first envisioned
by Feynman.® We show that there exists a one-to-one corre-
spondence between path integrals and semigroups which are
integral operators defined by a kernel. In this situation, the
reproducing property of the kernel follows from the semi-
group property. In this section, path integrals are written for
more general Hamiltonians than perturbations of Lapla-
cians by making use of some results of Maslov and Shish-
marev™!® on hypoelliptic pseudodifferential operators. In
those cases in which one is dealing with two semigroups, it is
not necessary to assume that the sum of the generators is a
generator of a third semigroup. In particular, it is not neces-
sary to assume that one of the two generators is small in some
sense relative to the other.

In Sec. VI we discuss perturbation expansions for time-
evolution operators. It is shown that these expansions gener-
ally do not converge, but are “asymptotic in the sense of
Poincaré” as this term is used in the theory of semigroups. "'
This nonconvergence of the perturbation expansions was
conjectured in the special case of the renormalized perturba-
tion expansions of quantum electrodynamics in a well-
known paper by Dyson.'> We also prove that these series
converge when the semigroups possess suitable holomorphy
properties.

Section VII consists of some concluding remarks.

© 1987 American Institute of Physics 1459



Il. PRELIMINARIES

Let J=[ — T,T], T> 0, denote a compact subinterval
of the real line and V' = ® ,;5°(s) the infinite tensor prod-
uct Hilbert space, where 5#°(s) = for each s/ and #°
denotes a fixed abstract separable Hilbert space. Here
L[7#] and L[ V] denote the bounded linear operators on the
respective spaces. Here L[7°(s)] is defined by

® I)|BeL [%]}

>r»-T

L[%’(s)]:[B(s): ® 1,@2?@(

Tsres

(2.1)

where I, is the identity operator, and L #[ ¥ ] is the uniform
closure of the algebra generated by the family:
{L[#(5)]|se]}.

Definition 2.1: We say that ¢ = ® ¢, is equivalent to
¥ = &g 1, and write ¢ =~ if and only if

S (bot), — <o,

where ( , ), denotes the inner product on 57°(s). It is to be
understood that the sum is meaningful only if at most a
countable number of terms are different from zero. The fol-
lowing result is due to von Neumann,** but see Guichardet**
for a simplified proof.

Theorem 2,1; The above relation is an equivalence rela-
tion V. If we let ¥, denote the closure of the linear spin of all
Y ~¢, then (1) ¥ not equivalent to ¢ implies ¥V, NV, = {0};
and (2) if we replace J by JCJ, where J is a countable dense
subset, in our definition of V [i.e., V' = ® «7(5)], then Vis a
separable Hilbert space.

Let P, be the projection from ¥V onto V.

Theorem 2.2'3: Forall TeL #[V ], therestriction of T to
V4 is a bounded linear operator, and

P,T=1TP,. (2.3)

Let C[ V] denote the set of closable linear operators on
V.

Definition 2.2: An exchange operator E[#,t'] is a linear
operator defined on C[ V] for pairs ¢,z '/ such that

(1) E[z,t'] maps C[F(¢')] onto C[F#°(#)],

(2) E[tslE[st']=E[tt'],

(3) E[tt']E[t'] =1,

(4) ifss#tt’, then E[t,t')A(s)

A(s)eC[H#(s)].

It should be noted that E[z, '] is linear in the sense that
whenever the sum of two closable operators is defined and
closable, then E[z,¢'] maps in the appropriate manner (see
Gill*®). In particular, E[t,t'] restricted to L#[V'] is a
Banach algebra isomorphism and E[t,¢'] E[s.s']
= E[s,s'] E[t,t'] for distinct pairs (,¢t’) and (s,5") inJ.

Theorem 2.3: If F=I7_,E[7,s,], {(r.5,)e]
XJ |neN} then F is a Banach algebra isomorphism on
L#[V]and

(D) [[F |l =1,

(2)F'=F

Proof: As ||E [7,5]||4+ = 1, Fis a convergent product of
algebra isomorphisms and ||F|[4 <||E [7,.5,]]l¢« = 1. On
the other hand, 1=|/|s = [F(D|ls <|[F [« [+, so
that ||F||, = 1. Since E[7,,5,]E [s,,7,] =1 and ex-

(2.2)

=A(s), for all
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change operators for distinct pairs commute, we see that
F*=]=F~'=F.

Definition 2.3:A chronological morphism (or c-mor-
phism) on L #[ ¥V ] is any (Banach) algebra isomorphism F
on L ¥[V] composed of products of exchange operators
such that

(D |F |y =1,

(2)F'=F.

Definition 2.4: Let {H(¢)|teJ} CC[5#] denote a family
of densely defined closed self-adjoint operators on 7, then
the corresponding time-ordered version in C[¥] is defined
by

Hi= @ L@I?(t)@( ® Is). (2.4)
t>s5»=—-T

Tors>t
Definition 2.5: A family {H(¢) |[teJ} CC[ V] is said to be
chronologically continuous (or c-continuous) in the strong
sense at 1, if there exists an exchange operator E[f,,¢] such
that

lim||E [t,,¢ |H(2)¢ — H(2,)4|| =0, (2.5)

where pe® ., Z{H#(s)].

Definition 2.6: The family {H(r)|teJ} is said to be
chronologically differentiable (or c-differentiable) in the
strong sense at ?, if there exists an operator DH(f,) and an
exchange operator E(t,,¢) such that

,E(to,t)H(t)¢ — H(t,
t—1,
for all ge ® ., L(H(s)).
Theorem 2.4: Suppose the family of operators
{H(t)|te]} have a common domain. Then the correspond-
ing family {H(¢)|teJ} is strongly c-continuous iff
{H(t)|te]} is strongly continuous.
Proof: See Gill."®

)¢ —DH(to>¢| [ =0,

11— t(,

Il INTEGRALS AND EVOLUTIONS

In the following discussion, all operators of the form
{4 (¢)|teJ} are closed infinitesimal generators of contraction
semigroups, while {H(¢)|teJ} are strongly continuous
densely defined linear operators with a common domain,
and generate unitary groups. The corresponding operators
of the form {A(¢)|teJ} [resp. {H(¢)|te]}] are the time-or-
dered versions. Define 4 *(¢) by

AZ(t) =exp{zA(z‘)}—1/z (3.1

and recall that exp{47(¢)} is a linear contraction and
s-lim,,q 4 %(¢) = A(¢) (strong limit). Similar results hold
for H*(t), with z replaced by iz in (3.1).

Definition 3.1: An integral approximateon L ¥V ] isa
family of operators of the form {QZ%[s, — 7] with
— T<1<T, A >0}, where

(ZAT)" k(n)

Qilt,—T]=e #7 i N Apdi(r).
n=20 - Jj=1
For each n,k=k(n)>n and (P, ={—-T=1,

<ty <t =t} nkeN} isafamily of partitions of [ —

such that lim, . _ [P, | = 0 and we take 7,€[ ¢, _ 7).
Definition 3.2: Let {Q%[t,— T'1} and {Q%[t,— T'1}

be any two families of integral approximates. Wesay Q7 isc-

Tit]
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equivalent to Q% and write Q3 ;_Qj (in the uniform sense)

if and only if there exists a c-morphism F=F [Qi,@ﬁ]
such that

}im“Qﬁ[t,—T]~F§§[t,——T]||=O (3.2)

Theorem 3.1: The relation ~ is an equivalence relation
on the set of all integral approximates on L #[¥'].

Proof: Reflexivity is obvious. To prove symmetry, we
note that

Q3 — FOill = IF~'Q3 ~ Qi
since |F||=1, and F=F~'. Hence Q5 ~Q3 implies
0z ~ Q2. Toprove transitivity, suppose F; and F, exist such

that

lim|Q3 —F,Q5[ =0, lm|Q; —FQ3) =0
Setting F = F,F, we have
IQ: — FO3l =03 — F.Q3 + Fi@5 — FiR01|
<@z —FiQ:l + 103 + FQ:ll
hence lim, _ _ [|Q% —F§j|| =0, so that 03 ;33

Here Q°[t, — T'] =s-lim, . Q73 [t#, — T] is called the
time-ordered integral operator associated with the family
{47%(2)|teJ}CL #[ V] if the above limit exists.

Theorem 3.2 (existence): For the family {H*(¢)|te/}
wehave(1) s-lim;  _ Q3[t,— T]=Q°?[¢t, — T ] existsand

Qt, —T]1=Q%[ts]1 +Q%[s,—T], —T<s<t,
(2) s-lim,,, Q%[t, —T] =Q{t, — T'] exists, is a densely

defined generator of a unitary group on ¥, and

Q[t: - T] = Q[t,S] + Q[S5 - T] ’

and
(3) s-lim[s-lim Q5 [¢, — T']1] = s-lim[s-lim Q5 [¢, — T']].
A—- oo zl0 zi0 A- oo

Proof: See Gill,’® Theorems (1.1) and (1.2).

From now on, our results assume that we are working
with the family {H *(¢) |te/}.

Theorem 3.3: Let Q% [z, — T'] and Q% [t, — T'] be two
integral approximates with the same family of partitions but

different points 7,,5,€[¢,_;,4;) (“place values”). Then
Q3 ;Qj (in the strong sense).

Proof: Define

F= Hl(‘HIE[TJ"SJ])

n= A
so that
FQi =e %7 i (MT) 2 ALE [7;,5,1H (5;) . (3.3)
n=20 -

By Theorem 2.3, we see that Fis a c-morphism and

Q%4 — FQid|l
<e — 2AT el (uT)n
n=20 n!
k
X _21 A||H*(7))¢ — E [ 7,5, 1 H (54 -

e
We now note that strong c-continuity of H(#) (cf. definition
2.5) implies strong c-continuity of H?*(¢) so, given €>0,
there exists §>0 such that |r —s| <& implies for g€V,
|H*(r)¢ — E[rs1H*(s)¢|| <e/(t + T). Now, choose N
so large that #n> N implies |P, | <&, then

_J
)z —ZlTN_l (MT)H & z z
1Q5¢ — FQidli<e > pr S Al|H(7;)¢ — E [7,,5, 1H*(5,) ||
n=0 . j=1
_2/1T i (2/1T) z At ”H (7_ )¢ E[T,Sj]Hz(Sj)¢“
nok & MT
—ur'y (AN (2”) S AG||H(7)¢ — E [1,5, 1H (5| +( Ty (24T)" )
n=0 - Jj=1
k
_urz (MT) S AG\H (7))¢ — E [7;5, 1H (s )| + €.
n=0 - ji=1
r
If wenow let A — oo, weobtainlim, . ||Q%¢ — FQid| <e. Py =P Uﬁz and integral approximate Q% with
Since € was arbitrary we are done. TE[L_1t).
Let us note that in Theorem 3.3 it is not necessary to Since F,| CcP,,
require that s;,7,€[,_,,¢;). It suffices to assume that for n = (D" T)" I
sufficiently large, |s — 11 <6, 1<j<k(n) e, Qi =e¥T z z At, H* (7))
Iim,,aw|;vz—7'j1;——0 Y, 1< j<k(n)]. I=1
Let Q7 and Q7 be twointegral approximates generated  may be reindexed to give
from arbitrary families of partitions {P, }, {P,} with re- .
spectlve ylace values T,e(t,_ l,tI), I<i<i(n), and Gi =g AT z (MT) z ALH(s)), (3.4)
[t,_l,t,) 1<, (n). Define a new family of partitions =o nl
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where s, = 7, fort, _,<t;_, <, <t,. Thus Q% and Q2 have
the same family of partitions, but different place values.

Theorem 3.4: 03 ~07.

Proof: We first show that I ;Qﬁ. From the above

remarks, it suffices to show that |7, —s;| -0, n — 0. To see
this, recall that 7,€{t; ,,¢;) and 5; =7, for £,_,<¢;_,
<t,<t, hence |1, —s;|< At; -0 as n— . Therefore
[ ;Qj by Theorem 3.3. The same argument with Q3 re-
placed by Q% shows that Q% ~Q%. We now use the transi-
tivity of ~ to conclude that 0% ~Q5. I

Definition 3.3: A time-ordered integral operator is said
to be chronologically unique (or c-unique) if every integral
approximate is c-equivalent.

Let Q[t, — T] = s-lim,,, Q°*[1, — T'].

Theorem 3.5: (1) Q*{¢, — T'] is c-unique.

(2) Q[t, — T isagenerator of a unitary group (densely
defined and closed).

Proof: (1) is clear; (2) is in Gill.'¢

The uniqueness property in part (1) of this theorem is
an important feature of our theory. There are path integrals
which depend upon the choice of partition. See Ref. 17 for a
discussion.

Theorem 3.6: U*[t, — T'] = exp{ — iQ*[t, — T ]} sat-
isfies

(WU, = T]=U?[ts]U%[s,— T], — T<s<t,
@ 2= gy, - 1y,
dt
(3) UL, = T]=slim U[t, — T]
=exp{ —iQ[t, - T]}

satisfies

UltslU[s,—T]1=U[t,—-T], —T<s<e,
(4)ia—(]l%t_ﬂ=1i(t)U[t,—T].

Proof: See Gill.'"® The derivatives are in the strong
chronological sense. This theorem allows us to give a com-
plete solution to the Cauchy problem. Recall that if
$o<D (H(1))C 5 for te], then the initial value problem

iR F@, =D =,

has a unique solution f(z) provided a few additional as-
sumptions are made. For a direct proof with explicit state-
ments of the required additional assumptions, see Tanabe.'®
We prove a similar result in the Hilbert space ¥ with no
additional assumptions.

Theorem 3.7: Let ¢, = ¢, |[|¢o]l =1, s/, and set
= ®,¢,. Then ¢(¢) = U(z, — T)¢ is the c-unique solu-
tion to
9B _

gy =H(Hé),

H
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where the derivatives are interpreted in the strong chronolo-
gical sense.
Proof: Follows from Theorems 3.5 and 3.6.

IV. OPERATOR ALGEBRAS

Let us recall from Theorem 2.1 that if we replace J by
J CJ, where J is a dense subset and construct
V= 8,5 #(s)then T{, (the closure of the linear span of all
Y~¢) is a separable (Hilbert) subspace. The next theorem
is quite interesting in view of the fact that ¥ and ¥ are not
related as spaces.

Theorem 4.1: L #[V]CL #[¥] (i.e., is an injection
into).

Proof: From (2.1), it is easy to see that L[F7(s)] is a
closed subalgebra of L #[ ¥'] for each seJ (a detailed proofis
in von Neumann'?). This is also true for each seJ, so the
result follows trivially, since L #[¥ ] is generated by
{L[5(s)]|seT}, and L[ (s) | CL ¥V ], sel.

Let us note that the existence and uniqueness of
QF[t,— T and U[t, — T] do not change if we restrict
{r;]1< j<k(n), neN}, toliein Jin defining Q% and U, . This
means that the following holds.

Theorem 4.2;

(1) Q%[t, — T) and U[t, — T] belong to L #¥[V ],
(2) Q*[t, = T|p,eL [V, ], (4.1)
) UIlL,—TllpeL [V,]. (4.2)

Proof: (1) is obvious while (2) and (3) follows from
Theorem 2.3.

The above result shows that both U[t, — T] and
Qlt, — T are well defined (and the same operators as in
V,)when restricted to V,, which is a separable Hilbert
space. This means that all of standard quantum theory can
be formulated in our setting.

We now turn to some other important properties of
L #[V']. First, let us establish some notation. If {B(?), reJ}
denotes an arbitrary family of opertors in L[], the opera-
tor I1,.,B(?) (when defined) is understood in its natural
order:

B .
T>t> —T
Itis easy to see that every operator 4 in L # [ V'] that depends
on a countable number of elements in J may be written as

A=Sa, [ 4.¢t),

k=1
where 4, (.)€l [#°(¢,) ], 11,151, for all i. Define dT:
L#¥[V]-L[#] by

©

dT[4]1= Y a, ] 4:(t0).

i=1 n>k»1

(4.3)

(4.4)

(4.5)

Lemma 4.2: The map dT is a bounded linear map which
is surjective but not injective.

Proof: The proof is trivial. To see that dT is not injective,
note that (for example) dT[E[t,5]14(5)]=dT[A(s)] yet
A(s)eL[F°(s)] while E{t,s]4A(s)eL[5°(t)] so that these
operators are not equal when 7 #s.
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From Theorem 2.2, we know that the algebras
L{77(t)] and L[] are isomorphic as Banach algebras so
that for each e/, there exists an isomorphism 6
L{Z1-L[F()]. Now 18 ' L[ZF(t)]-»L[#]; and
since L[57°(¢)] is a closed subalgebra of L #¥[ V' ], we know
that dT restricted to L{5#°(¢)] is an algebra homomor-
phism.

Theorem 4.3: dT, (5, =16 ~".

_ProofiItisclearthat6 ~'[4(1)] _A(t) anddT [4(2)]

=A(1), A(DeL[H#°(1)], so we need only show that dT is
injective when restricted to L{Z°(¢)]. If A(¢) and B(¢) be-
long to L[F(¢)] and dT{A(t)] =dT[B(:)], then
A(t) = B(t) (by definition of dT) so that A(z) = B(z) by
definition of L{57(¢)].

Definition 4.1: The map dT is called the disentanglement
morphism.

Definition 4.2: The quadruple ({t0|teJ}, L [H#],
dT,L #{V'1), is called a Feynman—Dyson algebra (FD alge-
bra) over 7 for the parameter set J.

We now show that the FD algebra is universal for time
ordering in the following sense.

Theorem 4.4: Given any family {B(z) |te/}e(L[#])’
there is a unique family {B(?)|te/} CL #[ V'] such that the
following conditions hold.

(1) B(hyeL[#()], ).

(2)dT[B(t)] =B(t), te].

(3) For an arbitrary family {{r,|1< j<n}|neN }, 7,eJ
(distinct) the map

0

X (B(r),.B(r))= ¥ a, [ B
n=1 nzj»1
from
1

)

n f
X (B(T ), ,B(Tl))EX {X1L [JV/]] -

J B

o« f@
«‘_’I(B(T,,),...,B(rl))e{ [ L[ﬁ/(rj)]] -~ 3 a,

n=1

so that d70f_ 08 = f.
Example 1: Let

A = @ I,@Z@( ® I,),
Ter>¢ t>73 — T

Bis)= @ I,@T?@( ® I,),
Ts7>s s>7» — T

where A and B are bounded on #. If s < ¢, then by Lemma
2.3 in Ref. 15, we have

A(2)B(s) = B(s)A(1)

® I,)@T?@( ® IT),
s>73 —T

t>71>S5

Trr>t

so that dT[A(t)B(s)] = dT[B(s)A(¢t)] = AB, while
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X [X L[%]}toL[%],
n=1 =1

has a unique factorization through L #{ V] so that

o

Sy a. I E(Tj)

n=0 nxj>1
corresponds to

Za HB(T)

j=1

Here we naturally assume that {a, } is such that
[1 Btpel [#].

o0
2 an
n=2~0 nzj»1

Proof* B(t) = t0[B(1)], ¥teJ, gives (1). By Theorem
4.3 we have dT[B(¢)] =8 ~'[B(t)] = B(z) which gives
(2). To prove (3), note that

e: X {X L[%]]—»X XL[d“V/(T)]

n=1 =1 n=1j=1
defined by
O[Xr_ (4,4, 1,..4,)]
=X7  (1,0(4,], Tu_ 10 [A, 1 ]mO 4]
is one-to-one and onto (7,0 [4;] =A(r,)eL [#(1))]).
The map

X (B(1.),B(71))~ 2 1'[ B(r)eL #[ V]

n=1 Jj=1
factors through the tensor algebra
o {e/_, L[#(r;)]} via the universal property of
that object (Hu, p. 179). We now note that
oy {e]_, L[ (r;)]}CL #[V].Indiagram form we
have

S a, [] B(r)eL [#]

n=1 nzj»1

ar

H B(r)el #[V]

ji=1

J
dT[A4(t)B(s)

=dT[A(t)B(s)
Example 2: Let {H(t)|tcJ} be strongly continuous
(with common dense domain ), and suppose this family gen-

erates a product integral (Dollard and Friedman?°). Choose
any family {P, |neN} of partitions such that

—B(1)A(s)]
—A(s)B(t)} =AB —BA .

lim fI exp{ —iAH(r)}=U[t,-T],

n—oo

then lim, ﬁ,l [t,~T]1=Ult, — T ], where

Uy, —T]

e M7 i (Z/IT)H f[ exp{—zAtH(r y}.

Jj=1
This follows from the fact that Borel summability is regular.
For the same family {P, |[neN}, construct
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U, lt, - T)

> (2”)" A expl — i 3 A, )]

=0 j=1
Asin Ref. 16, we see that Ult, - Tl =lim,__ U,[t,—T]
exists in L *#[V]. Furthermore, dT{U[t, — T1}
=dTlim, _ U,(t, —T]=Ilim,_ dT{U,(t, —T1}
= U[t, — T']. We can interchange limits since d7 is a
closed linear operator on L #[ V' ]. It should be noted that
the above limit can exist even if the standard product integral
does not. This result will be discussed in a subsequent paper
(see Gill and Zachary?').

V. APPLICATIONS TO THE CONSTRUCTION OF PATH
INTEGRALS

In the present section we consider time-ordered opera-
tors in more detail, and discuss the proposition that there

N

Y

T)¢0—exp[ e

J=1J4_

E(r; ,T)Ho(r)dr] b

exists a one-to-one correspondence between path integrals
and semigroups which are integral operators defined by a
kernel. We apply our formulation of time-ordered operators
to the discussion of path integrals of the type first considered
by Feynman.® There have been many approaches to the
mathematical construction of time-ordered operators and
path integrals in recent years. We will not be using any of
these approaches, so we content ourselves with offering the
following admittedly incomplete list of references”'%2*-25
from which the reader can trace these developments.

Let us consider the time-independent self-adjoint gener-
ator H, of a unitary group defined on #”in terms of a transi-
tion kernel K which satisfies the Chapman-Kolmogorov
equation.

If we replace the operator flo by its time-ordered version
{H,(t): teJ}, we induce a natural family of kernels
K (x(1),t; y(5),5) via Theorem 3.2. To see this, note that

=11 [( ® IS)® exp[ — i(z
j=1 t>:>‘rj

—,_1)H,] ®( ® 1)] %o

Ti>s» — T

II

Hf K( WX ot ) dx;_y @,

where ¢ = ® ., 6(s), J=[ — T.T]. In (5.1), x; = x(¢;)
and the index 7; on K is used to indicate the time at which K
acts. Combination of (5.1) with Theorem 3.2 shows that

_[7,{ (t, — T) may be represented in the form
U, (t, — Ty
_ e—ur - (MT)"

f K( ]’J—l’j—l)dx—1¢o'

(5.2)
Since _(7,1 (t, — T) exists as a well-defined bounded operator,
and

lim U/l(t -1 =

Ao
exists in the uniform operator topology, U,(t, — T) has a
natural representation as an operator-valued path integral:

Uy(t,—T)

Ust, — T) =f K(x(0.652(5),8) P[x()],  (5.3)
20 —T)

where 7 (t, — T) = R** ~ D denotes the set of al/ functions
from [¢, — T] to R*. In (5.3) we have used a formal “func-
tional measure” notation, although a measure generally does
not exist, as we discuss in more detail below.

In recent years many authors have attempted to bypass
the difficulty that Feynman-type path integrals cannot gen-
erally be written in terms of countably additive measures,?
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I:—I [(f>s>f ) J K(X!,j’ J-I,J_l)d =1 ®(Tj>S§—TIS)] ¢0

(5.1)

{

as is the case for its closest relative, the Wiener integral. In
the present paper we take the point of view that integration
theory, as contrasted with measure theory, is the appropriate
vehicle to be considered for a theory of path integration. An
essential ingredient in our approach is the idea that it is pos-
sible to define path integrals by giving up the requirement of
the existence of a countably additive measure. Thisidea hasa
precursor in the theory of integration in Euclidean spaces.
That is, it is possible to define a consistent theory of integra-
tion, which generalizes Lebesgue integration, in which the in-
tegrals are finitely additive, but are generally not countably
additive.?® Indeed, Henstock®” has already discussed the
Feynman integral from this point of view.

Returning now to our discussion of (5.3), we note that
many authors have sought to restrict consideration to con-
tinuous functions in the definition of path integrals. The best
known example is undoubtedly the Wiener integral.® How-
ever, the fact that we must see £ (¢, — T) follows naturally
from the time-ordered operator calculus, and such a restric-
tion is probably neither possible nor desirable in our theory.
This means that our approach does not encourage attempts
at the standard measure theoretic formulations with counta-
bly additive measures. In previous work by one of us,'* the
Riemann-complete (generalized Riemann) integral of Hen-
stock and Kurzweil?® was employed, because the time-or-
dered integrals need not be absolutely integrable, even in the
bounded operator case. These issues will be studied in
greater depth at another time. We note in passing that this
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failure of absolute integrability also plays an important role
in the path integral theory of Albeverio and Héegh-Krohn,”
and also in more recent developments (see, e.g., Ref. 24).
Our theory, to be discussed in the remainder of the present
section, allows for more general Hamiltonians.

Before proceeding to a discussion of these results, we
pause to discuss some examples. The first one is well
known—the familiar Laplacian operator. Our purpose in
discussing it here is to show how our theory works in a famil-
iar case.

Let Hy= — A/2 so that H,(t) = — A,/2, where the
subscript # indicates the time slot at which this operator is to
be evaluated. We have

K(x,t; y,5) = (2mi(t —s))~*7 explilx —y|*/2(t —5)] .
In this case it is easy to see that
vn(t’_T)¢0
i —t_ ) |x—x_,|? ]
= (1)
,Hl [ 2 t—t_, |7
dx;
i=1 %o (5.4)
[27i; —5_ )]
I | X;
= exp| i —(t, —t M A A
J;t"" P j; 2(1 j_l) tj—tj_l ]
n dx;
= Bo - (5.5)

lezll [27i(t; —t;_ ) ]*"
By analogy with the definition of H,,(¢) given above, the (7;)
are used to remind us that the corresponding functions in
(5.4) and (5.5) are not ordinary exponentials because they
have a specific time slot at which they are evaluated. This is
our version of the occurrence of expansionals in the usual
approach.®® Using (5.5) with (5.2), we have

v?{ (t’ - T)¢O

_ oo MT)”
— o UT (
n;o n!
JEN | X; — X;_ 2 ]
x | expli S =, —¢,_ ) |21 (r
Lkn p[j;z(’ 1) L —t_, )

X ﬁ D(xj_ 1o,

i=1
where D(x;_,) = (2mi(t; — t;_,))~*/*dx; _ . This means
that U°(t, — T) may be represented by

1 t
exp|—1i
2, ~T) p[Z j_r

X I D))o

tysp» — T

Uo(t’ - T)¢ -

2
ds]
ds

As our second example, we consider the operator
=+ — A + o”. It was shown by Pursey®® that the Barg-
mann-Wigner equation for a relativistic particle of any phy-
sically allowed spin value s = 0,},1,3,... is unitarily equiva-
lent to the equation defining the Cauchy problem for this
square root operator. Foldy and Wouthuysen® showed that
this operator is nonlocal with effective spatial extension
equal to a Compton wavelength. Our interest here is to show
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that it is an integral operator defined by a kernel K.

The method of pseudodifferential operators can be used
to show that a kernel exists and, under reasonable condi-
tions, can provide a phase space representation as we discuss
in detail more general operators later in this section. How-
ever, if we desire a direct representation, then other methods
are required. In our case, we have found that the method of
fractional powers of operator semigroups allows us to solve
the problem in a simple manner. By using results on pp. 281
and 302 of Ref. 31, p. 260 of Ref. 32, and p. 498 of Ref. 11, it
can be shown that the semigroup generated by the closure of

J — A ¥ @7, T(7), can be written in the form

Kz[a)ﬁ/ |x —y[z/;2 —1]
217'2 |x —p|>/7? =1

#(y)dy,
(5.6)

where K,() denotes the modified Bessel function of the
third kind of order 2. It is clear that 7(7) is holomorphic.
From (5.6) we see that we have an example of a semigroup
with a kernel that is not of the form

T(r)¢(x) =

X, — X;
exp[iﬁ e B 2R t—t_,)] (5.7)
2 |t —1_,

Since (5.7) is appropriate for the nonrelativistic regime,
we cannot expect it to have general validity. However, if the
argument of the Bessel function is large, we should expect
the kernel in (5.6) to approximate (5.7) when
|(x; —x;_,)/(; —t;_)| is small compared to unity
( = speed of light). Since K, (z) ~y7/2 e ~*/z for large ar-
gument, we see that we may approximate the kernel in (5.6)

by (using Vo7 — 1 »i/1 —v?)

E(xj!tj;xj_lytj_ )
2

_ i
2P — )
y p exp[—iw(tj—tj_,)yll—vz]
2 Jio(, —t_ WT =02 (1 =%
where v = |(x; — x;_,)/(t; —t;_,)|. Now, lettingv—0 in
the denominator and approxxmatmg the square root in the
numerator, we obtain

K(x)J, j—l’]—l)

372
) exp[ —iw(t; —1,_,)]

2

= + i(——————' d
Zm(tj -t )
X exp[z‘% f"‘ G — 4, )] .
j—1
Thus we see that the kernel in (5.6) reduces to the nonrelati-
vistic limit except for the extra phase factor which corre-
sponds to a rest mass term in the standard approaches. It is
important to realize, however, that two distinct assumptions
are required to obtain (5.8). The first corresponds to obser-
vations far removed from the particle, while the second in-
volves the nonrelativistic approximation. In order to see the
effect of the first assumption, we need only note that for
small z,

Ky(z)~2z72.

X;

(5.8)

(5.9)
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It is also of interest to investigate the limit @ —O corre-
sponding to a massless particle. In this case we replace K, (z)
by (5.9) to obtain

K(x)j; 1_1’_1_1)

O L [1_ % T 2]72. (5.10)
ST —4)° =4

It is very interesting to note that both (5.8) and (5.10) are
propagators for unitary groups.

In order to describe path integrals for more general
situations than covered thus far in the present section, we
consider the case of two families of self-adjoint time-ordered
operators {H,(z): teJ} and {H,(¢): teJ} with respective do-
mains D, and D, which are dense in V. It is assumed that
both families are strongly c-continuous generators of unitary
groups. Consider a partition P, of [ — T,¢] as in Definition
3.1and let 7;,5,€[t; _,t;). We then define

U, @, —T)—exp[z (t; —

Jj=1

]_1){H0(7' ) +H1(S )}]

US(t,—T):exp[zn: (

j=1

_t_,‘l)Ho(Tj)] s

Ul(t, — T) =exp 2 (t tj_l)Hl(sj)].

Jj=1
Since we do not assume any relationship between D, and D,
U, (1, — T) is well defined except when 7; = 5; for some ;. In

the contrary case we have
U,—-T=U0%2-TU)t,— T
=Ult, —DU (¢, —T) .

Now, defining U, (¢, — T), US(¢t, — T),and U} (t, — T) by
combining the notations of Theorems 3.2 and 3.6, we have
the following theorem.

Theorem 5.4'¢:

(1) lim U, (¢, — T)

A—oo

YU, -1 =

=U(t, — T) exists a.s.,
Ultt, - DU(t,— T

=U%, —TNU(t,— T) as.
By specializing the partition 2P, by
—§_, = 1/n, 1< ,j<n, we have
(uT)n [ n

I exp[ Ho(r, )”
eerl]

=1

choosing

Up(t, =T =e~#T

n=0

This is reminiscent of the Trotter-Kato product formu-
1a,>"** but is more general due to our weak restrictions on the
two self-adjoint operator families and our use of the Borel
summability procedure. For example, it is not necessary to
assume that H, 4+ H, is self-adjoint as in Ref. 33. This means
that, in particular, it is not necessary to assume that one of
the operators, H , say, is small in some sense relative to the
other, H,. The fact that Theorem 5.4 does not depend on the
domains is anticipated by the work of Chernoff * on the
“generalized additivity” of generators of semigroups arising
from Trotter-Kato-type product formulas. This author has
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given an extensive discussion of these formulas for quite ar-
bitrary domains. See also Kato* for a discussion of the case
of two positive self-adjoint operators on a Hilbert space
when the intersection of their domains may be arbitrary.

We remind the reader at this point that the Trotter—
Kato formula is one of the standard methods for formal deri-
vations of Feynman’s formula for the nonrelativistic time-
evolution operator.”>*® Similarly, Theorem 5.4 is the basis
for our treatment of the Feynman integral which, however,
is completely rigorous.

We now discuss the results in Theorem 5.4 from a slight-
ly different point of view. We see from this theorem that

U, — 1) = exp[ — if T{HO(T) +H,(n)} df]
exists a.e. and _

U, = 1) = lim U, (t,—-T),
where i

—2AT

o (MT)n
2

U (t,—T)=e
n=0 n!

Xexp[ j {E(r;, ") Hy(1)
j—]

+E(sj,f)H1(r)}dr] (5.11)

with 7;,5,€[¢,_,t;). If we use (5.5), the exponent in (5.11)
can be replaced by

. 2
Z {(ti'—tf—l) & (1)
j=1 L —1_,

_fj E(Sj,T)H](x(T),T)dT] .

Taking limits, we have

Y1 ] dx|?
Ui,—T) = 1 — ==
(t ) J‘J,;W(z,wr) exp[l J;T[ 21 ds
—Hl(x(s),s)] ds] [I Pix). (5.12)
trsx — T

It is clear that our conditions on the family H, (x,s) are suffi-
ciently general to cover most cases of interest in nonrelativis-
tic quantum theory. We can now write (5.12) in the form
originally envisioned by Feynman, namely,

Ui, —1) =J- exp[if L (J'c(s),x(s),s)ds]
P, — T) -7

XTI D (x(s)),

=dx/ds and

L(x(s),x(s),s)_i —‘:Il

where x(s)
— H\(x(s),s)

denotes the Lagrangian.

We now generalize the representation (5.12) by consid-
ering more general choices for the operator H, (). For these
operators we choose the class of hypoelliptic pseudodifferen-
tial operators studied by Shishmarev.'® In this way, we are
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able to derive a representation for U(¢, — 7) analogous to
(5.12) which will include cases useful for studies in relativ-
istic quantum mechanics such as, e.g., perturbations of the
square root operator studied earlier.

Let H (x,p) denote a k X k matrix operator [17 (P ],
i,j = 1,2,...,k, whose components are pseudodifferential op-
erators with symbols 4, (x,7)eC © (RY xXR¥) and we have,
for any multi-indices & and 53,

[ $3) (6,1) |[<Coap (1 + ||y —Elel 0181 (5.13)
where
h 3y (xm) = 9°PPh; (x,m)

with 4, =d/dn,, and p, = (1/i)(3/3x,;). The multi-in-
dices are defined in the usual manner by a@ = (ay,...,ay ) for
integers @; >0, and |a| = 2_, @;, with similar definitions
for B. The notatlon for derivatives is 3* =49 ¢'---d 3" and
PP =ph--py. Here, m, B, and § are real numbers satisfying
0<6<&. Equatxon (5.13) states that each &, (x,77) belongs
to the symbol class®” S 7’5

Let 2(x,m) = [h; (x,'r])] be the matrix-valued symbol
for H (x,p), and let A, (x,n),...,A4, (x,) denote its eigenval-
ues. If | | denotes a norm in the space of k& X k matrices, we
suppose that the following conditions are satisfied by
h(x,m): For || >¢,>0 and xeR" we have

(1) 1A x| <Coplh(x,m) | (1 + 7)) ~ &la| +5818)
(hypoellipticity),

(2) Ap(x,m) = max Re 4,(x,7) <0,
1< j<k

(3) Ih (x,m) |
Ao (x,7) |
We assume that H(x,p) is a seif-adjoint generator of a
unitary group, so that

=0((1+4 |g|)¢ =27 =-9)  €50.

U(1,0)o(x) = exp[ — itH(x,p) 1th(x) = ¢(x,1)
solves the Cauchy problem
taa—tf-=H(x,p)¢,¢(x,O) = tho(x) . (5.14)

Definition 5.1: We say that Q(x,2,9,0) is a symbol for the
Cauchy problem (5.14) if ¥(x,t) may be represented as

P(x,t) = (2m) ™ N/ZJ e"""”)Q(x,t,n,O){bo(n)dn. (5.15)
RN

It suffices to assume that 1, belongs to the Schwartz
space . (R"), which is contained in the domain of H(x,p),
in order that (5.15) makes sense.

Following Shishmarev,'® and using the theory of Four-
ier integral operators, we define an operator-valued kernel
for U(1,0) by

K(x,5;9,0) = (2m) —N’zf e~ D0 (x,t,1,0)d7,

R
so that

Ut,0)o(x) = ¥(x,t) =J K(x,t;3,000,(y) dy. (5.16)
RN

The following results are due to Shishmarev. '
Theorem 5.5: Suppose H(x,p) is a self-adjoint generator
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of a strongly continuous unitary group with a domain which
is dense in L 2(RY) and contains .% (R"), such that condi-
tions (1)—(3) are satisfied. Then there exists precisely one
symbol Q(x,t,7,0) for the Cauchy problem (5.14).

Theorem 5.6: Suppose one replaces condition (3) in
Theorem 5.5 by the condition

Ih(x,ﬂ)l SGk—1~
(3) L2222l — O (1 + |g|)E—®/Ck=1~ey
6>O) |77|>C0.

Then the symbol Q(x,t,1,0) of the Cauchy problem (5.14)
has the following asymptotic behavior as ¢ - 0:
Q(x,t,7,0) = exp[ — ith(x,7)] +o(1),

uniformly for x,neR".
Now, using Theorem 5.6 we see that under the strength-
ened condition (3") the kernel K(x,¢; y,0) satisfies

= , dny
K(x,t; ’O) - J- €X 1{(x — ) -
y L xpl ») P

. dn
- 1).
"'_LNCXP[’(X ym)] 2P o(1)

Wenow apply the results discussed earlier in this section
to construct the path integral associated with H (x,p). The
group property of U(2,0) insures that K has the reproducing
property expressed by the Chapman—Kolmogorov equation.
In our time-ordered version, we obtain

K.(x5,0) = f exp[H{(x —ym) — th, (e}
RV (1)

dn
(2m)

= +o(1).

This representation leads to the Feynman phase space ver-
sion of the path integral.

We can now obtain more general path integrals than
(5.12) by replacing (5.5) by (5.16). It follows from Theo-
rems 5.4-5.6 that path integrals exist which are generaliza-
tions of (5.12). These new path integrals correspond, of
course, to Hamiltonian operators which are perturbations of
the operators described in Theorems 5.5 and 5.6, rather than
to Hamiltonians which are perturbations of Laplacians.
These path integrals constitute a very large class which con-
tain most integrals of interest in mathematical physics.

VI. PERTURBATION EXPANSIONS

In this section we discuss the Feynman—-Dyson operator
calculus for U(t, — T). It is shown that the corresponding
perturbation expansions do not converge in general, but are
“asymptotic in the sense of Poincaré” in the sense used in the
theory of semigroups.'! On the other hand, if we assume that
the semigroups possess certain holomorphy properties, then
the perturbation series converge. Previous investigations of
these perturbation expansions have been confined to the in-
teraction representation in the framework of nonrelativistic
scattering by time-dependent potentials®® and external field
problems in quantum field theory.**

Our results of this section pertaining to the asymptotic
nature of these perturbation expansions affirms a well-
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known conjecture of Dyson'? made in the context of the
special case of the renormalized perturbation expansions in
quantum electrodynamics on the basis of a simple physical
argument. Although presently, many people believe quan-
tum electrodynamics should be formulated in a Hilbert
space with an indefinite metric (see, e.g., Ref. 40 and the
works cited therein), Dyson made no such assumptions. In
our concluding remarks to this section, we make explicit our
basic assumptions and argue that they certainly cover condi-
tions that physicists believe QED should satisfy.

Consider the infinite tensor product Hilbert space
V=8,,7(s) of Sec II, where J=[-T7T],
F(s) = for each se/, and 7 dengtes a fixed abstract
separable Hilbert space. For a family {H (2): teJ} of densely
defined strongly continuous self-adjoint operators on 7,
the corresponding time-ordered family {H(¢): teJ} is de-
finedon V'by (2.4). Let U(t, — T") denote the corresponding
time-evolution operator whose existence is guaranteed by
Theorem 3.2.

Let

o, —-1T) = —if H(s)ds
-7

denote the time-ordered integral of the family { — iH (z):
teJ}. Then the closure of Q(t, — T), which we will also de-
note by Q(t, — T), generates the strongly c-continuous uni-
tary group U(t, — T) = exp[Q(¢, — T)] on ¥. Wealso have
the following.

Theorem 6.1: Suppose #eD (H™(s)) for — T<s<t.
Then U(z, — T)¢ can be written in the form

N—1 1

U(t, — )¢ = Z e — D)Yé+Ry(t, — D¢,
(6.1)

with the following representations for the remainder term:
1
Ry(t,—T¢ =f dv(1 —v)" Texp[vQ(r, — T)]
(o]

(Q(t’ - T))N
0, 6.2
X (N—-1) ¢ (62)

and
RN(t,—-T)¢=(—i)Nf d7'1\,""f2 dr,
-T -T

XH(ry) - H(r)U(r, — T)¢ . (6.3)

Proof: 1t follows from a result of Hille and Phillips (Ref.
11, p. 354) that (6.1) holds with the remainder term given
by (6.2). The equality of the latter with (6.3) is a conse-
quence of the following result, which establishes a Fubini-
type theorem for the Feynman-Dyson operator calculus.
Lemma 6.1: For any N = 1,2,..., we have

1 ! N
——U- H(T)dv']
NILJ_7

=f dTNfN dry_,
-7 -

Proof: Recall that the bounded operators
H, (1) = [explzH (7)) —-1]/z,

f driH(ry) -"H(1,) .
-T

z>0,
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converge as {0 to H(7) on D (H(7)) uniformly in 7 on com-
pact sets. We can therefore, without loss in generality, as-
sume that H(7) is bounded for each 7. The proof can then be
completed by a bounded operator version of the usual inte-
gration by parts procedure for functions.

In the remainder of this section we discuss the problem
of approximating the various terms in the expansion (6.1).
For this purpose we use the form (6.2) for the remainder
term.

Using the fact that Q(z, — T') generates the strongly c-
continuous unitary group U(t, — T), we find from the the-
ory of semigroups'"*! that

P,(t,—T) =(exp[zQ(t, —TH] - I)/z,

convergesto Q(¢, — T) on D (Q(¢, — T))as z10. More gener-

ally, we have the following.
Lemma 6.2: Fix

feb ({QG, — 7)}). Then

s-lim {P, (1, - DYYf={Q(t, - D} f.

z\0

z>0,

some re{l,2,..} and take

Proof: From p. 99 of Ref. 41 we have

(P; —Q’)¢
. fr
L3 o)
r 121 J .]
Z/ (_]Z) k ] r ]
7€ — ,
[(jZ) [ - kZO Q' o'é
so that
Iz = 2gli< sup (e~ DQY,

from which the proof readily follows.
Let us now define the bounded operators

U,(t, - T) =exp[P,(1,—T)]

Nt Pz(ty_T) k
= Z "[—‘ki—]—~+Rfv,
K=o !

where
1

R%(t,—T) =f dv(l —p)VN ! exp[vP,(t, —T)]
0

[Pz(t, - T)]N
(N—-1)!

The boundedness of these operators follows from the esti-
mates,

P, (&, - DYI<2/2), r=12,., (6.5)

which are, in turn, consequences of the fact that Q(z, — T)
generates a contractive semigroup.

Now we have the following Theorem.

Theorem 6.2:

(6.4)

(a) slimU,(t, -T)=U(t,-T),
z10

() slim R} (2, — Tg
z}
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Proof: (a) follows from the fact that U(z, — T) is a
strongly c-continuous unitary group on ¥ and Hille’s first
exponential formula (see, e.g., Ref. 41, Theorem 1.2.2).

To prove (b) we write, using (6.2) and (6.4),

! (I—U)N—l QN vP,p N
(RN-RN)¢=J;dU—(m[e QN —¢"*PY]¢

so that

1 ] vz
IRy = R3)GlI< sup [1(e2Q" — Py

1 vQ vP, N
<7 .Sup [[|(e2— )0

+[le”=(@Y — PNg||] - (6.6)

For the first term on the right-hand side of (6.6) we use the
fact that, by Theorem 1.2.2 of Ref. 41,

l(e?— e Q8|0 as z10,

for geD(Q ™) uniformly with respect to ve[0,1]. The van-
ishing of the remaining term in (6.6) as z10 follows from
Lemma 6.2 coupled with the estimate

llexp[vP, (t, — T)]|I<1, (6.7)

which in turn follows from Hille’s first exponential formula
and the fact that U(¢, — T') is unitary. i

We see from (6.4) that R %, is a bounded operator, and
we find with the help of (6.5) and (6.7),

IR%I<(1/NY(2/2)N.

Now, using this estimate and Theorem 6.2, we obtain an
estimate for the remainder term of the perturbation series:

IRyl <IR Al + [[(Ry — R3S
<(I/ND(©2/2)V||g|| + €, (6.8)

where, for N fixed and given € >0, we choose z,> 0 suffi-
ciently small that

[(Ry —R%)é|l <€, ¢eD(Q"Y),
for z <z,. However, it does not follow from the estimate
(6.8) that Ry¢—0 as N— o because z, cannot be chosen
independently of N. Thus the perturbation series does not
converge.

1t does follow from the above results, however, that the
perturbation expansion is “asymptotic in the sense of Poin-
caré.” Compare the definition of this concept on p. 487 of
Ref. 11 with Theorem 2.2.13 of Ref. 41.

We can use techniques similar to those discussed in the
present section to obtain results for the perturbation series
for the scattering operator, since lim,_ _ U,[T,]

=Ulw,] and limy. _U,[t,~T}1=Ult,— o];
Sloo,— 0] =Ule0,t]U[t, — x].

We now make a few remarks concerning the conver-
gence of the perturbation expansions when the correspond-
ing semigroup is holomorphic. The semigroup that we have
been considering is U(t, — T) = exp{Q(¢, — T)}, which we
now rewrite in the form

U(t, — T) = exp[r{Q(t, — T /7}]
in terms of a parameter 7. We say that U(¢, — T) is holomor-
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phic if, as a function of 7, it can be continued into a neighbor-
hood of unity in the complex r-plane (compare with Ref. 32,
p- 254). It then follows from the general theory of semi-
groups that the perturbation series (6.1) converges. The
proof is similar to that of Theorem 1.1.11 in Ref. 41.

In conclusion, it is important to note that our only as-
sumptions are (1) f](t) = fr I?(t,x)dx is the generator of a
unitary group on & for each ¢ [where H(t,x) is the field
energy density on R"]; (2) the set of operators { H(¢) |rel}is
strongly continuous with common dense domain; and (3)
F is a separable Hilbert space. It could be argued that the
assumption of a common dense domain for the Hamilto-
nians is too strong for any formulation of QED; however,
this assumption is not necessary for our theory to apply. This
will be taken up at a later time when we consider applications
to nonlinear formulations.

Vil. CONCLUDING REMARKS

In this paper we have used an algebraic approach to
time-ordered operators based upon von Neumann’s infinite
tensor product Hilbert spaces to define path integrals which
appear to include most cases of interest in mathematical
physics. We have proved that there exists a one-to-one corre-
spondence between path integrals and semigroups which are
integral operators defined by a kernel. The reproducing
property of the kernel is a consequence of the semigroup
property.

The generality of our construction is intimately con-
nected with the fact that our tensor product Hilbert spaces
are constructed using an abstract separable Hilbert space as
a base. This allows application to many different physical
problems according to different choices of this base Hilbert
space. We will consider some of these applications in future
work.

We have shown that our treatment is a generalization of
the customary approach to time-ordered operators and path
integration by means of product integrals. Moreover, when
Hamiltonians which are sums of two parts (in a certain well-
defined sense) are considered, our results do not depend
upon the domains of the latter operators.

We have also shown that our approach leads to unique
solutions to the Cauchy problem for Schrodinger equations
with time-dependent Hamiltonians. This is clearly of inter-
est for mathematics as well as physics, since one is concerned
here with linear time-evolution equations.

We have advanced the point of view that it is unnatural
to try to force path integrals into a description by means of
countably additive measures. The viewpoint has been ex-
pressed that the theory of integration, rather than measure
theory, is the appropriate vehicle for a general formulation
of path integration. Thus, although path integrals can be
written in terms of countably additive measures in certain
special cases, this is not the situation in general.

We have also discussed perturbation expansions for
time-evolution operators. It has been shown that these ex-
pansions generally do not converge, but are asymptotic in a
certain well-defined sense. On the other hand, these series
converge when the semigroups possess suitable holomorphy
properties. It should also be noted that our approach shows
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that the general belief expressed in Ref. 39, to the effect that
the Dyson expansion can only hold with H(¢#) bounded, is
not quite correct (see p. 283 of that reference).
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A new uniqueness theorem is established for the inverse Sturm-Liouville problem. It is shown
that the measurement of a particular eigenvalue for an infinite set of different boundary
conditions is sufficient to determine the unknown potential.

. INTRODUCTION

In this paper a new uniqueness theorem will be estab-
lished for the inverse Sturm-Liouville problem. We will
show that the measurement of a particular set of eigenvalues
is sufficient to determine the unknown potential.

Specifically, let us consider the eigenvalue problem

PV'x)+ A —gx))p=0, O<x<«l,

where g(x)eL ?(0,1) has to be determined in addition to
y(x).

In the typical formulation of the inverse Sturm~Liou-
ville problem one seeks to recover both g(x) and the con-
stant 3, by giving the eigenvalues 4, (¢,8),forj = 0,1,2,... for
(1.1), together with another piece of spectral data. These
data can take several forms, leading to many versions of the
problem, some of which can be shown to be equivalent.

In the Gelfand-Levitan formulation,' if y; (x,g,4,) de-
notes the jth eigenfunction of (1.1), then one gives, in addi-
tion to the eigenvalues A, the values of the norming constants

P>

(1.1)

:Ily,-(',q/lj)llz —012. (1.2)
T 0gA)]
Here |- - ||, denotes the L #(0,1) norm, and one usually gives

the normalization y; (0,¢,4;) = 1.

Another possible set of norming constants that leadstoa
unique determination of both g(x) and S is

p; = log (( - 1)!M£)—] , j=012., (13)

Y (0,g.4;)
as given by Dahlberg and Trubowitz.? (See also Levinson®
and Isaacson—Trubowitz.*)

If the boundary condition at x = 1 is changed, say to the
Dirichlet condition y(1) = 0, and the corresponding set of
eigenvalues 4, (¢), k = +,1,2,...,is also given, then at most
one pair (g,/3) can satisfy this data. This is the classical two
spectrum version of the inverse Sturm—Liouville problem
studied by Borg.> See also Refs. 6 and 7. We will use this last
result in the proof of our theorem.

Finally, if it is known a priori that g(x) is symmetric
about the midpoint of the interval, that is, g(x) = ¢(1 — x),
then this information together with a knowledge of the
eigenvalues 4, (¢,B) is sufficient to determine g{x) and £.58
Further information on these results may be obtained from
the survey article, Ref. 9.
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Recently, other kinds of spectral data have been consid-
ered and uniqueness results have been established. In partic-
ular, it has been shown by McLaughlin,® that the potential
g(x)eL *(0,1) in the Sturm-Liouville problem

V' + A —g)y=0, y(0)=y(1)=0 (1.4)

is uniquely determined by knowledge of the position of one
node (or zero) of each eigenfunction.

In the result to be given here we suppose that we can
measure a single eigenvalue, for example the second eigen-
value, for a fixed unknown potential ¢ (x) but be able to do so
for a countable number of different boundary conditions.
That is, in the notation above we suppose that for a fixed j we
can measure A;(g,8,) for distinct B,, — oo <fBi < o0,
k= 1,2,.... We establish that at most one potential g(x) is
determined by these measurements.

II. THE UNIQUENESS THEOREM

In this section we will establish the result that at most
one potential g(x) can be determined from 4; (¢,8, ), where j
is fixed and B,., k = 1,2,..., are all distinct.

We require two preliminary lemmas, which we shall
state without proof. This first is a well-known oscillation
theorem for the eigenvalues of a Sturm-Liouville problem;
the second is a precise statement of the two spectrum inverse
Sturm-Liouville problem mentioned in the Introduction.

Lemma I: Let g(x)eL ?(0,1). Then

(@) <A;(gB) <4, 1 (9)

forallB, — 0 <fB< .

Lemma 2: If for two values of Sin (1.1), say 3, and f3,,
and for ¢, and g,eL 2(0,1), the eigenvalues of problem (1.1)
satisfy

A’j (ql’ﬁl) - ﬂj (42, 1)’ J = 0’1921---,

ik (ql’ 2) = Ak (q2’B2)’ k= 091,2""-9
then g, =g, a.e.

The uniqueness theorem is as follows.

Theorem: Let ¢, (x) and g, (x)€L *(0,1). Fixj, a positive
integer. Suppose that B, for k = 1,2,... are distinct real
numbers and

/.Lj (quﬂk) =/lj(q1; k); k= 1’2:---,

then ¢, (x) = g,(x) a.e.
Proof: For each A we let y,(x,q;,4) be the solution of the
initial value problem

Y +A—-g)y=0, y(0)=0, y(0)=1.

(2.1)

(2.2)

(2.3)
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Then for each A we have the Sturm identity
0=y, (xg, {3 (x,g24) + (A — 42)y2(x,g2,4) }
— 120,00y (x,94) + (A — )3, (x,g,4)}
= (g1 — 42)¥2(%,g1A)y2(%,92,4)
+ {2 (6,g1,A W5 (X,42,4) — Y2 (%42 A W5 (x,ql,/(l ;}‘;.)

We shall denote by A ;(g;) the eigenvalues of the prob-
lem (1.1) when homogeneous Dirichlet boundary condi-
tions are imposed at x = 1, that is, y,(1,g; ,;lj) =0.

We now use the simplified notation

B =A(q0Be) = A (@Br), k=12,...

Setting A =, in (2.3) and integrating from 0 to 1, we see
that the term in brackets on the final line has value zero at
x =0and x = 1 for each k = 1,2,..., and we are left with

1
f (g1 — 82)2 (g1 ) Y2 (Xsqouty Jdx =0, k=1,2,...
0
(2.5)

It is now observed from Lemma 1 that the sequence
{u,}7_, forms a bounded set on the real line and conse-
quently has at least one finite accumulation point. Further,
since for fixed x, y,(x,q;,4) is an analytic function of 4, we
can show that

1
F(A) = f (g1 — ¢:)¥:(%,9,4)y,(x,9,,4 ) dx (2.6)
0

is also an analytic function of 4. However, since F(1) = O at
an infinite set of values of A with a finite accumulation point,
then

F(A)=0
for all complex A.
We now seek to show that all of the eigenvalues of (1.1)
with £ = 0 and all of the eigenvalues of (1.4) are the same

for the function g(x) set equal to ¢,(x) or ¢,(x), that is, we
will show that

Ai(q) =4, (q2), n=12,., (2.8)

Am(g1,0) = 4,,(g,,0), m=0,1.2,... (2.9)
From Lemma 2 we would then be able to conclude that
g, =¢q,a.e

(2.7)
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In order to prove (2.8) and (2.9), we return to the iden-
tity (2.4) and recall that when A=A1, (¢,,0), then
ya(Llg 4, (g,,0))#£0, whiley;{1,4,,1,, (¢,,0)) = 0. Integrat-
ing (2.4) from O to 1 when 4 = 4,, (¢,,0) and using (2.7),
we must have

yé(lqu’lm (41,0)) =0,
This implies that each A, (¢,,0) is an eigenvalue for (1.1)
and (1.2) when (g¢,8) is chosen to be (g,,0). From the
asymptotic forms that 4, (¢,,0) must satisfy, it follows that
(2.8) holds.

Similarly set A = A, (g,) in the identity (2.4) and note
that y,(1,4,,4,(4,)) =0 while y;(1,4,,4,(g,))#0. Then,
again using (2.4) and integrating from O to 1, we must have

Vi(Lgnd, (g))=0, n=12,...

The proof is now complete.

Remark: The uniqueness theorem also holds when
j=0, provided that we have the existence of an M,
M> — « such that M < A,(q;,8,), forallk=1,2,....

m=12,....
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A plausibility argument presented by the first two authors in an earlier paper {J. Math. Phys.
26, 3042 (1985)] concerning the existence of partially invariant solutions for some equations
of the Fokker—Planck type is made precise by the explicit construction of one such solution. In
the process a substantial simplification of Ovsiannikov’s method for finding partially invariant
solutions is achieved. In addition, the class of partially invariant solutions obtained by
Ovsiannikov for the equations of transonic flow of a gas is enlarged.

I. INTRODUCTION

In a recent paper’ a plausibility argument for the exis-
tence of a certain class of solutions for some equations of the
Fokker—Planck type was presented. That argument is made
precise in the present paper by the construction of one such
solution, thereby showing that the class referred to is not
empty. At the same time, the method of Ovsiannikov, used
in that construction, is substantially simplified. Finally, the
class of solutions of the same type as above, obtained by
Ovsiannikov for the nonlinear equations of transonic flow of
a gas, is enlarged.

The notation and definitions used here are the same as
those of Refs. 1 and 2, which in turn are the same as those of
Ovsiannikov.>* The reader is referred to the work of Ovsian-
nikov** for a full discussion of the ideas involved.

The method used here is that of Ovsiannikov, which
differs from the standard method of finding similarity solu-
tions in that it regards a partial differential equation as a
system of first-order equations rather than a single higher-
order equation. To be specific, let us consider one of the
equations discussed in some detail in Ref. 1, namely, the one-
dimensional heat equation

Ju _ 3%

g ox?

In Ovsiannikov’s method one considers, instead of Eq.
(1), the equivalent system

(— o<x<w, t>0). (1)

u, =v, u, =0, (2)

and proceeds to construct its group of Lie symmetries. It can
be shown®* that Eq. (1) and the system (2) have the same
group of Lie symmetries and that it is infinite dimensional.
The infinite-dimensional component arises from the fact
that the heat equation, like any other linear homogeneous
equation, is invariant under translations in # by solutions of
the equation. If one takes the quotient of the full group by
this infinite-dimensional component due to translation,
which forms a normal subgroup, one obtains a six-dimen-
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sional group G whose infinitesimal generators are

.
Y
d x @ 8
X, =t— ——— — ——
2= et T 2a
t
T
()2
2 2 4/’
J
X, =—,
4T o
X, = ﬁ__ﬂ_i_(_”.+£‘i)_‘i,
ox 2 Jdu 2 2/ ov
and
J J
Xe=uU—+v—.
¢ du v

Let H be a subgroup of G. A solution f(#,x) of Eq. (1) is
said to be invariant under H if the surface u = f(¢,x) is invar-
iant under H. Solutions that are invariant with respect to
(w.r.t.) some subgroup of G are simply called invariant or
similarity solutions. A solution f{(#,x) is said to be partially
invariant®* w.r.t. H if the surface u = f(#,x) is contained in
some surface invariant under H.

The invariant solutions of Eq. (1) can be found, and
have been found,’ by the standard method. The question is,
does Eq. (1) have partially invariant solutions w.r.t. some
subgroup of G which are not invariant w.r.t. any subgroup of
G, and if so, how does one construct them? It has been
shown' that the standard method of finding similarity solu-
tions cannot be used to construct them even if they exist; the
presence of the extra variable v in the system (2), the “super-
fluous variable” in Ovsiannikov’s terminology, turns out to

® 1987 American Institute of Physics 1473



be essential. The question raised is answered in the affirma-
tive in the present paper.

At this stage, a criterion for checking whether a given
solution f(¢,x) is invariant or not w.r.t. a subgroup H would
be useful. This is provided by the theorem on p. 31 of Ref. 3,
which says that if X' denotes the infinitesimal generator of H
and if F(t,x,u) =u — f(t,x), then f(#,x) is an invariant solu-
tion w.r.t. H if and only if XF(z,x,u) =0 whenever
F(tx,u) =0.

Il. EXAMPLES

Let H denote the one-dimensional subgroup of G whose
infinitesimal operator is aX, + BX,, a8 #0. Then it has
been shown' that solutions partially invariant w.r.t. H are of
the form

u=e""f(Au), (3)

where A = x and u = ve ~#/* and f obeys the partial differ-
ential equation (PDE)

luzf,u,u + 2/1f,_,f,1,, — 2uf, /Lf;m
— 2foSon F oS + S oS

+ (B/a)uf}, — (B/a)ff’, =0. (4)

It is in the derivation of this PDE that Ovsiannikov’s
algorithm (as described in the example on p. 286 of Ref. 3)
can be substantially simplified. Following that algorithm,
Eq. (4) was derived in Ref. 1 by the imposition of the compa-
tibility criteria v,, = v,, and f,; = f,,, and of the condition
that u,v must satisfy the system (2). The calculations,
though straightforward, are tedious and take about six pages
when written in longhand. The easier (and quicker) method
still involves assuming that u,v satisfy the system (2) and
that f;, =/, but dispenses with the assumption that the
superfluous variable v satisfies the compatibility condition
v,, = U,,; instead, it is assumed that v, = v,. What this
amounts to is a weakening of the assumption that u is thrice
continuously differentiable, which implies that v,, = v,,, to
the assumption that u is twice continuously differentiable,
which implies that v, = v,. Interestingly, this weakening of
the assumption reduces the work involved in deriving the
PDE for f by a factor of at least 6. This is true for any
subgroup of G, but since Eq. (4) was derived earlier' using
Ovsiannikov’s algorithm, let us derive it using the easier
method.

We have u = ”/%f(A,u), where A = x, u = ve ~#"/%, so0
that A, =1, A, =0, L, =ve P, = (v,

—uB/a)e =P So

u, =f;‘vx +ﬁeﬁt/a,
u, =f,v, — fLo(B/a) + (B/a)fe e,
U = (fun + Sl 270 + fL0,

+ (f;l,t +f;z,uvxe—ﬁt/a)eﬂt/a‘

Use now of the conditions v, = u,, and v, = v, as well
as the relation v, = (1/£,)(v — f, (v/p)) gives

S = + 2S5 (e —f2) + fofua
+ (B/a)f2 uf, —f) =0, (5)

1474 J. Math. Phys., Vol. 28, No. 7, July 1987

provided f, #0. Equation (5) is just another form of Eq.
(4). Although the above simplification is specific to the heat
equation, for which the assumption v, = v, is meaningful, it
seems reasonable to believe that similar assumptions, appro-
priate to the equation under consideration, would lead to a
simplification of the Ovsiannikov method. Of course one
could use computer software such as MAPLE and MACSYMA
to carry out these calculations, but even when such packages
are used, shortcuts would be helpful in reducing the amount
of computing time used.

It is interesting to note a simple pattern that emerges in
the case of the heat equation. For the subgroup with the
generator aX, + SX,, we have

v=Av, +B, v, =Av, +C, (6)

where 4 = f,,, B=f,e"/*, C= (B/a)f®’* — f,v(B /a).
Equations of the same form hold for different subgroups of
G, with different A, B, and C. Use of the heat equation and
the condition v,, = v, leads to the equation

A(C—B,)=A4,(v—B).
This equation contains Eq. (4).

Going back to Eq. (3), one way to find u is to solve Eq.
(4) for fand use that solution in

v, = (77°/f, ) (we P — 1) (7)
and
1 B eBt/zz B
Uz=U(E+;)—72“(f:1 +E—ﬁ:u) (8)

and substitute the resulting quantities in Eq. (3).

Two remarks concerning Eq. (4) are in order. First of
all, since it is derived by a process of differentiation, Eq. (4)
is necessary but not sufficient for « given by Eq. (3) to satisfy
the system (2); it is conceivable~in fact it is easy to show-
that solutions of Eq. (4), which contain arbitrary functions,
will not in general be such that (s.t.) u, given by Eq. (3),
satisfies the system (2) unless the arbitrary functions are
chosen appropriately. Thus one may regard Egs. (3) and
(4) as a source for finding functions u, some of which turn
out to be solutions of Eq. (2) as well. The second remark is
that although Eq. (4) is substantially harder to solve than
Eq. (2), it is not the general solution of Eq. (4) we are inter-
ested in but particular ones which lead to solutions of the
specific form (3) of Eq. (2). In other words, the method of
partially invariant solutions leads to the construction of trial
solutions of Eq. (2).

It is easy to check that f{Au) =e** + cu, where
a® = f /a and c is an arbitrary constant, is a solution of Eq.
(5). Choosing ¢ so that ¢5£0 and ac+# 1, one can construct
the following solution of Eq. (1):

u(tx) =g(tx) + h(t,x) + k(1,x), (%)
where
g(tx) = (g/a)e”/a* =, (10)
h(tx) = Ae' e, (11)
and
k(t,x) = Be'/Se =, (12)
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where 4, B are arbitrary constants, and ¢ = p/(1/c* — B/
a), withp = a/c* + B /ac.

Observe that each of g, A, k is a solution of Eq. (1);
therefore so is g + / + k. Observe also that each of g, h, k is
an invariant solution w.r.t. a subgroup of G consisting of
simultaneous translations in ¢ and x and stretching in the
dependent variable. Nevertheless, we claim thatg + 4 + kis
not an invariant solution w.r.t. any subgroup of G other than
the identity group. Assuming that this claim has been estab-
lished, one may ask, considering the simple nature of
g + h + k, whether one cannot construct such noninvariant
solutions by some ad hoc means using the standard ap-
proach. The answer to that is twofold. Our aim has been to
show that the Ovsiannikov method yields, in a natural way,
partially invariant solutions which are not invariant; the ex-
ample being presented here shows that. Second, using the
simplified Ovsiannikov method, the authors have derived
for several subgroups of G the PDE’s that lead to partially
invariant solutions; these will be listed later.

It is sufficient to consider the action of G on the (#,x,u)
space in order to check whether a given solution is invariant
or not. Now any subgroup of G is generated by some linear
combination of {X,}, 1<i<6. So, in view of the theorem
mentioned earlier, it suffices to show that if

F(tx,u) =u —g(tx) — h(tx) — k(tx),

then for any constants c¢,,c,,...,c¢, the statement

6
(Z c,-X,-)F(t,x,u) =0 whenever F(zx,u) =0

i=1
implies that ¢; = 0 for all i s.t. 1<i<6. Operating 2¢_ ¢, X,
on F(tx,u) and setting F(t,x,u) = 0 after differentiation,
one immediately finds that ¢, = ¢; = ¢ = 0 because of the
linear independence of g, /4, and k. One then obtains

—pB/a —a 1\ /¢
-1/ —1/¢ 1
— 1/¢* /e 1) \c
The determinant of the coefficient matrix is (2/¢) (8/
a — 1/¢%), which is different from zero if c*#£a/f. Hence,
for the choice of ¢, ¢, = ¢, = ¢, = 0. This proves that the
solution given by Eq. (9) is noninvariant.
We shall now list some examples which can be worked
out in a similar manner.
(1) Generator: X, + aX, + BX;

Invariants: ' =x — at, I*=ue #,
I’=ve=?, u=~2"f(Au);
where A = I'', u = I?, and fsatisfies the PDE
fufar + RSy + 2uRAL,
—f2(Bf —afy —Buf,) =0, (13)

withR =1 — f, /u.
(2) Generator: X, + aX, + BXg;

Invariants: 7! = ux — %%,

u=x*f(Apn);

2 12,
I?=ux' "%,

Is=x2/(a+t)’
where A = I3, u =12, and
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2uf? +2B(2B =)L + AL (A -2+ 8B)

+ 44 fn + RS,

+ 4ARS, fo, — 2(1 = BY(1 = 2B)uf, =0, (14)
with R = p — 281 — 24f;.

(3) Generator: aX, + BX, + vX,;

12— a+pt

Bx/2+7)*’

u=fAu);

Invariants: 7' = u,

I’ =v(a + A1),
where A =12, u =13 and
2874 3f,2,fu - ‘1'ﬁ\/,17/1 3/2Rf,lf/m + (2uf,, +1.)R g

+BAG3BA — DS}, — 2Buf . =0,

with R = 1 + (BA>/p)f;.
(4) Generator: aX, + BXs + vXg;

I’ =v/u+ Bx/2(a +Bt),

(15)

Invariants: ' =1,
I3 = yesten.
where g(x,t) = (x/(a + Bt))(fx/4 —y),
u=e " E*0f(Au);
where A =71, u =12 and
fl4p*(a +BAY + (a + BAY (B — 8yu) +27°]
—2(a + BAYY,, L* —2Bula + BA),
+2(a + BA)Yf, =0, (16)
with L = ( f/f, ) — v/ (a + BA)).

In all the above examples, it is assumed that f,, #0.Iff, =0,
the solutions reduce to invariant ones. Observe that example
1 is a more general case of the example discussed in detail
earlier. Although Eqs. (13)-(16) are very difficult to solve,
special cases of them may be amenable to solution. For ex-
ample, if f depends only on x, Eq. (13) becomes

wF ) = Bf () f—pf (@) =0, (17)
while Eq. (14) becomes
20 (w) + 2826 — F () + (1 — 28 )" ()
—2(1 =1 =2B)uf?u) =0. (18)

If Bis chosen to be | and if it is assumed that 4 — f #0 (the
case u = f'is not interesting), Eq. (18) becomes

21wy + (w—f)f"(u) =0. (19)

Equations (17) and (19) are typical of the second-order,
nonlinear ordinary differential equations (ODE’s) one ob-
tains in attempting to construct partially invariant solutions.
Rather than solve those equations, we shall sketch here the
solution of a similar second-order ODE derived earlier’ by
one of the authors in trying to enlarge the class of partially
invariant solutions obtained by Ovsiannikov>* for the equa-
tions of the transonic flow of a gas.

The equations are

uu, = — vy}

, xpeR. (20)

u, =u,

It has been shown? that solutions of Eq. (20) partially
invariant w.r.t. a certain one-dimensional subgroup (pa-
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rametrized by a constant ¢) of the group of Lie symmetries of
Eq. (20) are given by

v=k(Apu)—clny, (21)
. AWk, + (c/y) — (A /x)k Kk, , (22)
Btk
A k k,k k
u = (Au/x)k, + (A /y) 2,1 .+ (ck, /y) ’ (23)
pt+ky

where A = x/y, 4 = u, and k(A,u) satisfies a complicated,
second-order nonlinear PDE. The PDE for & as well as Egs.
(22) and (23) are derived® under the assumption that
U+ kfl #0.

Now the assumptions that ¢ =0 and that £ depends
only on u lead? to the partially invariant solutions given by

u+ k() =0, (24)
which gives k(u) = + 3( — u)*'? + a, with g, arbitrary,
and

v=k(u), (25)

u, = F (—u)u,. (26)

The solutions given by Eqgs. (24)~(26) are the ones
found on p. 293 of Ref. 3.

Suppose now that & still depends only on x but that

¢#0. Then one obtains?® additional partially invariant solu-
tions given by

m+k () +ck" () =0, (27)
v=k(u)—clny, (28)
u, =uk’'(u). (29)

Equations (27) and (29) are consequences of the PDE for £,
derived under the assumption that y + k2 #0. Equation
(27), which is similar to Egs. (17) and (19), was derived in
Ref. 2 but not solved there. We shall sketch its solution now.
The transformation® z = exp((1/c) § k' du) changes Eq.
(27) into

2" + (u/c*)z =0, (30)

whose solution can be expressed’ in terms of Bessel functions
as follows:

Z(/u) =\/'7;[AJ1/3((2/3C),U3/2) +BJ_|/3((2/3C),U3/2)],
(31)

where A, B are arbitrary constants. Use of this solution and
of the relation k(u) = ¢ § (2'/z)du gives the desired result.

i1l. CONCLUDING REMARKS

Suppose that H is a subgroup of G. If the infinitesimal
operator X of H does not contain d /du, then whenever f(z,x)
is an invariant solution w.r.t. H, so is f{z¢,x) + ¢, where ¢ is
an arbitrary constant. If, however, the operator X does con-
tain d /du, the claim is false in the sense that if /(z,x) is an H-
invariant solution, then f(¢,x) -+ ¢ will be an invariant solu-
tion not w.r.t. / but w.r.t. some subgroup of the full group
which includes translations in u as well. For example,” let
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be the subgroup of G whose infinitesimal operator is
X=a(d/dt) +B(3/dx) + yu(d /du). It is easy to check
that f(#,x) = ace'™**/*, where a and ¢ are nonzero arbi-
trary constants, is an H-invariant solution of Eq. (1) pro-
vided that ¥y = @/a” + 3 /a. Now let b be an arbitrary con-
stant. Then f(£,x) = ace‘®™** "% 4 b is an invariant solution
w.r.t. the group H’' whose infinitesimal generator is
X=a(d/ot) +B(3/9x) + (yu + 8)(d /du), provided
that ¥y = a/a® + B /a as before and § = — by. Observe that
H' is not a subgroup of G, but of the full group, since it
includes translations in u also.

We remark that since the method of partially invariant
solutions essentially provides trial solutions, one can some-
times bypass the PDE for f, which is a second-order equa-
tion, and actually work with the PDE for v such as Eq. (6),
which is a first-order equation, by judiciously guessing the
form of /. This is because the PDE for fis obtained by differ-
entiating Eq. (6).

Observe that the Ovsiannikov method is quite general
and applies to any PDE. Its simplification, as indicated ear-
lier, depends on the equation under consideration. Finally,
as far as the authors are aware, there are no physically signif-
icant examples in which partially invariant solutions, as op-
posed to invariant solutions, play an essential role. True,
Ovsiannikov considers®* the transonic flow equations, but
no specific problem with initial/boundary conditions is con-
sidered. It is our next goal to find such an example.
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The linear first-order boundary conditions that will lead to a stable (well-posed) problem for
the telegraph equation in quarter space are established.

I. INTRODUCTION

We consider the telegraph equation with initial square
integrable Cauchy data prescribed on ¢ = 0, and then make
use of a technique introduced by Hersh' to establish suitable
linear first-order boundary data on x = O which will ensure a
stable solution in x,z > 0. It is found that instability may oc-
cur when GL = RC (together with some auxiliary condi-
tions) which is of some interest since under this condition
minimum attenuation and distortionless transmission will
take place.

In Sec. II we give a brief summary of the procedure
introduced by Hersh while in Sec. III we apply this theory to
the problem under consideration, namely,

av  aI

C—+4+—+4GV=0,
at dx (1)
al IV
— 4+ — +RI=0,
a +8x +

with suitable Cauchy data on ¢ =0 and to-be-determined
boundary conditions on x = Q. The constants C, G, L, and R
are all positive and have their usual physical meaning.

Il. BOUNDARY CONDITIONS AND STABLE SOLUTIONS

Following Hersh, we consider an arbitrary system of n
linear differential equations, of any order, in m + 2 indepen-
dent variables, namely,

P(D,.D,.D,)U =0,

where I< j<m, U is an n-vector, and P an nXn matrix of
differential polynomials with constant coefficients. We sup-
pose that P is correct in the sense of Petrovsky, i.e., for all
real £ and 7; there exists a single fixed constant M, such that
all the roots 7 of det P(7,i£,in;) = O satisfy Re 7 < M,,. It is
well known that the associated Cauchy problem has a unique
square integrable solution for all square integrable initial
data if and only if P is Petrovsky correct.

We consider the following mixed initial-boundary-value
problem: Uis to satisfy PU=0ont>0,x > 0,y; unbounded.
On ¢t =0, x>0, square integrable Cauchy data are pre-
scribed, while on x =0, ¢> 0, are given a k-vector F(z,y;)
and a k X n matrix B(D,,D, ,Dyj) of differential polynomials
with constant coefficients, such that BU |, _, = F.

Our aim is to find all B for which the problem is correct-
ly set in L,, determination of k being part of our task. The
analysis is simplified by two assumptions: that the Cauchy
data are all identically zero, and that the boundary data are
all delta functions, which entails no loss of generality, as
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arbitrary data can be treated in the usual “Green’s matrix”
fashion.

A solution of PU = 0 is called an exponential solution if
it is of the form

exp[Tt +i Z njy]-] 3 C,.x"exp[£ix],

where the sum is over a number of terms <d, the number of
roots &, of det P(7,£,in) =0, i.e., the degree of £ in det P;
C, . is a set of constants and if £, has multiplicity m, , r runs
from O to m,, — 1. For each 7,7 the set of exponential solu-
tions forms a vector space of dimension d, while those solu-
tions corresponding to £ with real part negative form a sub-

space £ ~, with dimension d —.
The set of n vectors U which satisfy both PU=0 in

t,x >0 and the homogeneous boundary conditions BU = 0
onx =0, >0 forms a vector space N. The pair B,N will be
called unstable if N contains exponential solutions in £ ~ for
7 real and Re 7 arbitrarily large, since in this case a sequence
of solutions can be chosen for which the values at any point
where > 0 grow arbitrarily large even when the initial val-
ues are uniformly bounded. The original boundary value
problem is then not well posed.

If B,N is not unstable, it is called stable (a definition
validated by the existence theorem soon to be stated ). Stabil-
ity means that for some number M, it is true that
{NNE ~}=¢ forallreal yand Rer>M,. Let W(r,in) bea
matrix whose columns form a basis for £ —, i.e., Wis an
nXd ~ matrix. We denote the k Xd ~ matrix formed by
BW |, _, ase™+ ™R, Itis not difficult to show that if one of
the columns of W lies in A, then the function space spanned
by the columns of B would have dimension less than d ~.
Thus stability amounts to possession of B of rank d ~ for all
real y and Re 7> {M,M,}. In particular, it is clear that this
is possible only if 79, and therefore B, has at leastd ~ rows, so
that k must be >d ~.

We may now state the fundamental theorem established
by Hersh: If B has d ~ rows and is stable, then there exists
exactly one U such that PU = 0 and e~ *'U is a tempered
distribution in #,x > 0; BU = éI on x =0, t> 0, and having
zero Cauchy data on ¢ = 0, x > 0. Here U is a distribution of
finite order, and has the representation
M + i

U= —i(27T)“’"'1J-

M—ix

drf WB~'dy,---dy,,,
where W is a column basis for E ~, and M > max(My,M,).
To establish stability for any problem we therefore need only

establish whether B is stable in the sense described above.
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lll. STABILITY OF THE TELEGRAPH EQUATION

It is well known that the system (1) is Petrovsky cor-
rect, so that we may apply the procedure outlined in Sec. 1I.
We rewrite (1) as

PD, D HYU=0,
where
CD,+G D,
P(D"D")z( D, LD,+R)

and U7 is the vector (V,I). It follows easily that
det P(7,£) = 0 leads to

CL7 + (CR+ GL)T+ GR — £ =0.

This equation obviously has only one root £, with negative
real part, i.e.,

& = —{CL™ + (CR + GL)r + GR}'", 2)

so that the solution space E ~ is one dimensional, and we are

led to the study of boundary conditions of the form
aV+bI+eﬂ/—+diI—=f(t) (3
dx dx

on x = 0. We shall establish the following theorem.

Theorem: The initial-boundary-value problem associat-
ed with (1), with suitable Cauchy data on ¢t =0 and (3)
prescribed on x = 0, will have unique, stable solutions in
x,t > 0 except in the cases where

d\JC +eJL =0
and either
GL —RC=0, bC +a/L =0,
or
d*(GL — RC) —2L(be —ad) = 0.
Proof: We rewrite (3) as
BU={,

where B = (a + eD,,b + dD, ). A basis of E ™ is easily ob-
tained, viz.,

“§1>
W=( -rr+§,x,
Cr+ G, ¢

from which follows
BW|, _,= Be™,
where
B= —af, —E%e+ bCr+ bG +d(Cr + G)E,.
On setting &, =p + ig, 7= w + iv, it follows immediately
from det B = 0 that
—ap — ep® + eq* + bCw + bG + dCup
—dCvq +dGp =0, (4)
1

—aq — 2pge + bCv + dCwq + dCuvp + dGg = 0. (5)

These two equations must be taken in conjunction with (2),
which can be rewritten as

p*—¢*— CL(w* —v*) — (CR + GL)w—GR =0, (6)
2pq — 2CLwv — (CR + GL)v=0. (7

Instability will occur iff we can find “‘suitable” solutions to
the system (4)—(7), viz., v, w, p, and g, which are such that
P <0 and w can be made arbitrarily large positive.

From (3)

g = (bCv + dCpv)[a + 2ep — dCw — dG ]!,
and substitution into (7) leads to
2p(bC +dCp)v[a + 2ep —dCw —dG ]~ —2CLuv

—(CR+GLywv=0. (8)
Obviously (8) can be satisfied only by v = 0 or by
2pC(b +dp) — (a + 2ep — dCw — dG)

X (2CLw + CR + GL) =0. 9)

We first consider the simple case of v = 0: The system
collapses, since from (7) it follows that ¢ = 0 (since we de-
sire p < 0). We need only consider (4) and (6):

—ap —ep® + bCw + bG + dCwp + dGp =0, (4

p?>— CLw* — (CR + GL)w — GR =0. (6")
By eliminating w we obtain
p*C(d*C —e’L) + p*[2C(bdC — aelL)

+ (LG — CR)ed ] + p*[C(b*C —a’L)
+ C(eb + ad)(GL — CR)] + Cab(GL — CR)p = 0.
(10)

From (6) it is obvious that w can be made arbitrarily large
only if p is, so that the restriction (10), which would ensure
that p is finite, must fall away, i.e., all coefficients must be
identically zero. This occurs iff

d°C—e’L =0, GL—CR=0,

b2C —a’L =0, bdC — agel =0.
If these conditions are met, it follows without difficulty that

the sought-after solution of the system is given by v = ¢ = 0,
p arbitrarily large negative and

W= —p/NCL —G/C,
where the conditions (11) reduce to

d\C +efL =0, b{C +aJL =0,

GL —CR =0.

We now turn to the other alternative in (8), viz., that
v##0and (9) holds. We used (5) and (7) to obtain (8), solet

us now consider (4) and (6). On substituting ¢ from (5)
into (4), we obtain

(1)

(12)

[a+2ep—dCw—dG [ —ap — ep® + bCw + bG + dCuwp + dGp]

+ eC** (b +dp)* — dC** (b + dp)(a + 2ep — dCw — dG) =0,

while similarly (6) becomes

[p> — CL(w* — v*) — (CR + GL)w — GR 1[a + 2ep —dCw — dG 1> — (b + dp)*C** = 0.
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On eliminating v* from these two equations we obtain

[ —eC*(b+dp)*+dC*b+dp)(a+2ep—dCw—dG)][p* — CLw* — (CR + GL)w — GR ]

— [ —ap — ep® + bCw + bG + dCwp + dGp][ (b + dp)>C? — CL(a + 2ep — dCw — dG)*] = 0. (13)
Obviously (13) and (9) have to be compatible for solutions to exist. For convenience we set
W=2w+ (RC+GL)C'L™', B=CR—GL, (14)
so that (9) becomes
dCLW? — (dB + 2aL + 4epL)W + 4p(b + dp) =0, 9
while (13) becomes
ILC3d*(b+dp)W? + {JCL(b + db) ( — 3adC + Cbe — 5edCp — 2d *CL ~'3) — J\C’LD*(a + ep)p}W?
+{(6 +dp)[(26’LC — d>C?*)p* + p(2LaCe — C*bd + 2edCB) + 1d *CB*L ~' + adCB + LLCa® — 1C?b ]
+ LdCp(a + ep) (a + 2ep + 3dBL ~")}W + {(b + dp) [2edCp® + p*(2ad + Cd *BpL ~' — 2¢°B)
+ p(abC — 2aeB + bdCBL ~' — 3edB>L ~') — L(ad + be)B*L ~' + 1(Cb> — a’L)BL ']
—p(a+ep)(a+2ep+dBL~")*} =0. (13"
We now subtract {C 2d(b + dp) W times (9') from (13'), arriving at
—1LC?*[2ed*p* + p(2ad* +d°BL ') + b(ad — be +d*’BL ~ ") |W?
+ [(4LCe’d — 2d*C?)p* + p*(3d*Cef + 5LaCde + 2LCe’b — 4d*C?b)
+ p(2bCdef + 2abCeL — 3dC*b* + 3LCa’d + 3ad *CB + 1d*CB*L 1)
+ (1bd*CB*L ~' + adCbB + LLCa®h — \C?b *) | W
+ [(2ed*C — 4¢’L)p* + (2edCb + 2aCd* — 8Le*a — 4e*df + Cd *BL ~')p*
+ (—ed?B*L ~' +2bCd*BL ~' — 5aedf3 — 2¢*bB + 3abCd — 5a’eL)p’
+ (abC — La® + 3b*dCBL ~' — 2aebB — 3a°dB — edbB>L ~' — lad *B*L ~')p
—adb + eb*)B* + 1(b3C — a’Lb)BL ~'] = 0. (15)
|
The .two eql.latio.ns 9 al.nd (15) may be regarded as qua- X [262C — 2a*L — (ad + be)B |
dratic equations in W, which we can rewrite, respectively, as
X [aeL — Cbd + edfS ] = 0. (17)
aW?+oW+y=0, (9") It is therefore necessary that
AW?> + BW + C =0, (15") d2C — &L =0 (18)
where the symbols have the obvious meaning. It is well ;4 aither
known that two such quadratic equations will have a com-
mon root iff £=0 (19)
(aC — yA)? = (yB — oC) (0A — aB), a6
2b%C — 2a*L — (ad + be)B =0 (20)
which, in this case, becomes an eighth degree polynomial in
p. If it has roots they will be finite, and the corresponding or
values of W will be finite, contrary to our desire. Hence the ael — Cbd + edff = 0. (21

only possibility that could lead to arbitrarily large W is that
the condition (16) vanishes identically, i.e., every coefficient
be zero.

The construction of (16) is routine, but extremely labo-
rious. To reduce the calculations, let us first calculate only
the coefficients of p® and p°, leading to

16¢’°d *L(d*C — e ’L)*p® + --- + 1ab3C2Lp
4
}

We shall assume (18), from which it follows that (20) can
be rewritten as

(ad + be)d 7*[ —d*B+ 2L(be —ad)] =0.
For convenience we shall introduce the notation
T= —d?B + 2L(eb — ad).

On making use of (18) we can now write the terms of (16) as

(22)

0A — aB = LC [deCTp* + { — 1Cd *B(ad + 2be) — Ya’d *LC — abCdeL + 3b**CL}p
+ 1Cb{ — Bd(ad + be) + 2b( — aeL + Cbd)}],

yB — 0C = 4edCTp* + [ — bd %¢’8? + (20d *bCe — 2bad *C)f + 44abCdel — 18LCe’b? — 2bLCa’d *]p®
+ [ —ed3L ~1B3 — (2bde® + qad %e)B* + (14b*Cde + Sabe’L — 21%aedL)f + 12ab*CeL
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+ 14a°bCdL — 14a’eL.” — 10db>C? — 2¢*b*d 1p* + | — (ed *b — Jad *)L ~'B*
+ (3b7€* — Sabde — 3a°d *)B* + (8ab>Cd — 4a*dL + 2b*Ce — 6a’beL)f3
+4a**CL — 2C*%* — 2a*L*|p + 1(aB + 2aL)BbL ~'[ — (ad + be) + 2(b*’C — d’L)],
aC — y4 = CL [26*Tp* + { —d3eB*L ~' — Saed *B + 2bde*B + 6abCd* — 5a*deL — Cb’de}p’
+{2ab*Cd — La*d — Cb e + $b e’ — 2aebdf — 3a°d *f — Yad°L ~'B*

—edbL ~'B%}p — 1 BL ~'[ — (ad + be)B + 2(b*C — a’L)]].

(23)

Making use of (23) we may now determine (16), which can be shown to be
4C2Le2(Le2—dZC)T2p6+2C3edT3p5 + T["']p4+ T["']p3+ T["']p2

+T[+1p+1ab>C>LB [aeL — Cbd + edf | (ae + bd)d —*T = 0.

Obviously a necessary and sufficient condition for (24), and
hence (16), to vanish identically is (18) and

T'=0. (25)
From (9”) and (15") it then follows that

W= (aC—yA)(tA —aB) ™,
and if 7= 0in (23) this expression reduces to

W =2ped ~'C ',
so that from (14)

W=pC 'ed ' — (RC+ GL)(2CL)™ . (26)

Hence we have the final condition, viz., ed ~! <0, so that for
arbitrary large negative P we can make W arbitrarily large
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(24)

l
positive, and instability will occur. This means that (18)
should be written as

dJC +eJL =0,
and the theorem is proved.

[ We remark that the condition (25) could be more ele-
gantly written as

dG+\2 + Re/C +2bC + 2ayL =0.]

(18")

'R. Hersh, “Boundary conditions for the equations of evolution,” Arch.
Rat. Mech. Anal. 16, 243 (1964).
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The three-dimensional Schrodinger equation inverse scattering problem is solved using an
orthogonalization approach. The plane waves propagating in free space are orthogonalized
with respect to an inner product defined in terms of a Jost operator. The resulting integral
equation is identical to the generalized Gel’fand-Levitan equation of Newton, although the
present derivation is simpler and more physical than that of Newton. Newton’s generalized
Marchenko equation is derived from the defining integral equation for the Jost operator. These
integral equations are shown to be solved by fast algorithms derived directly from the
properties of their solutions. This paper thus presents a simple interpretation of Newton’s two
integral equations, two fast algorithms for solving these integral equations, and relations
between the various approaches. This is a generalization of previously obtained results, which
are also reviewed here, for the one-dimensional inverse scattering problem.

I. INTRODUCTION

The inverse scattering problem for the Schrédinger
equation in three dimensions with a time-independent, local,
non-spherically-symmetric potential has a wide variety of
applications. For example, the inverse seismic problem of
reconstructing the density and wave speed of an inhomogen-
eous isotropic acoustic medium from surface measurements
of the medium response to a harmonic excitation can be for-
mulated as a Schrédinger equation inverse scattering prob-
lem, as was done by Coen et al.’!

A major breakthrough in obtaining an exact solution to
the three-dimensional Schrodinger equation inverse scatter-
ing problem was made by Newton.” In Ref. 2 Newton pre-
sented generalized versions of two integral equations ob-
tained for the one-dimensional inverse problem by
Marchenko? and Gel’fand and Levitan.* These generalized
Marchenko and Gel’fand-Levitan integral equations recon-
struct the scattered field in the vicinity of the scattering po-
tential from far-field data, just as their one-dimensional
namesakes do (for details of the one-dimensional problem
integral equations, see Refs. 5 and 6). The scattering poten-
tial is then recovered from the scattered field using an equa-
tion Newton calls the “miracle” equation. This completes
the solution of the inverse scattering problem. In Ref. 1 this
procedure was applied to the inverse seismic problem noted
above.

Recently it has been noted that the derivation of the
generalized Gel’fand-Levitan integral equation in Ref. 2 re-
lies implicitly on the existence of a so-called “‘regular” solu-
tion. It was not firmly established in Ref. 2 that this regular
solution is always well defined. However, this does not inva-
lidate the results of Ref. 2; it merely limits their applicability
to situations for which the regular solution does exist. In this
paper the inverse scattering problem is restricted to situa-
tions in which the regular solution exists and is well defined;
this is expected to cover most physical inverse scattering
problems. Since a major goal of this paper is to underscore
ways in which one-dimensional results generalize to three
dimensions, this is an acceptable limitation.
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Although Ref. 2 is a highly significant contribution to
inverse scattering theory, the derivations contained therein
shed little insight into the actual mechanism of the inversion
process. Several recent papers have presented much simpler
derivations of Newton’s Marchenko integral equation. In
Ref. 7 the frequency-domain Schrédinger equation was
transformed into a time-domain plasma wave equation, and
the interpretation of various frequency-domain properties
(e.g., analyticity in the upper half-plane) as time-domain
properties (e.g., causality ) lended some physical insight into
the inversion process. Newton’s Marchenko integral equa-
tion was derived in Ref. 8 using a representation theorem,
and was derived in Ref. 9 using a generalized Radon trans-
form; both of these derivations are much simpler than New-
ton’s derivation. However, there are no such simpler deriva-
tions as yet for Newton’s generalized Gel’fand-Levitan
integral equation.

For the one-dimensional inverse problem the integral
equation procedures of Refs. 3—6 are known to have differen-
tial counterparts, which are called layer stripping algorithms
(in the seismic literature they are known as “downward con-
tinuation” algorithms). These algorithms may be derived by
exploiting the Toeplitz or Hankel structure of the kernel of
integral equations'®; however, derivations that are more
physical and insightful result if basic physical principles
such as causality are exploited.'* Since they exploit the in-
herent structure of the inverse scattering problem, which
manifests itself in the structure of the kernel of the integral
equation, these algorithms require significantly fewer com-
putations than would solving the integral equations; hence
they are referred to as ““fast” algorithms. An important point
is that these differential, layer stripping algorithms are inti-
mately related to the integral equation procedures; these re-
lations are discussed in Ref. 11.

Layer stripping algorithms for the three-dimensional
Schrodinger equation inverse scattering problem have been
proposed in Refs. 9 and 12. Although the numerical perfor-
mance of these algorithms is unknown at present, their com-
putational complexity is significantly less than that of the
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integral equation procedures of Newton. A relation between
the algorithm of Ref. 9 and Newton’s Marchenko integral
equation procedure was presented in Ref. 9; this relation
involved a generalized Radon transform. However, this rela-
tion did not extend to Newton’s generalized Gel’fand-Levi-
tan integral equation, and a differential fast algorithm for
this integral equation has not been obtained previously.

In this paper Newton’s generalized Gel’fand-Levitan
integral equation is rederived by treating the inverse scatter-
ing problem as an orthogonalization problem. A Gram-
Schmidt orthonormalization is performed on the free-space
form of the wave field, which is a probing plane wave in a
given direction of incidence. The orthogonalization is per-
formed with respect to an inner product defined in terms of a
multidimensional Jost operator, and the associated orthogo-
nality principle results in Newton’s generalized Gel’fand—
Levitan integral equation. This is the first derivation of this
equation other than that of Ref. 2. Newton’s generalized
Marchenko integral equation is also derived from the inte-
gral equation defining the Jost operator.

Two differential fast algorithms that also solve these in-
tegral equations are given. One of these algorithms is the
algorithm of Ref. 12; the other is a generalized Levinson-like
algorithm that is new, although it bears some resemblance to
a fast algorithm derived in Ref. 13 for the problem of com-
puting the filter for the linear, least-squares estimate of a
homogeneous, anisotropic random field.

This paper thus provides a unified derivation of two
multidimensional integral equations and two multidimen-
sional fast algorithms, all of which solve the inverse scatter-
ing problem for the three-dimensional Schrédinger equa-
tion. It is thus a generalization of results for the
one-dimensional inverse problem presented in Refs. 11 and
14, and illustrates how all of these procedures are connected.

The paper is organized as follows. Results for one di-
mension are quickly summarized in Sec. II, which contains
some results from Refs. 11 and 14. The new results for three
dimensions are contained in Sec. II1, and the ways in which
the one-dimensional results generalize to three dimensions
are emphasized. The main results of Sec. III are Newton’s
generalized Gel'fand-Levitan and Marchenko integral
equations. In Sec. IV the differential, layer-stripping algo-
rithms are presented and related to the integral equations of
Sec. ITI. Some connections between multidimensional in-
verse scattering and linear, least-squares estimation of ho-
mogeneous, anisotropic random fields are also noted. Final-
ly, Sec. V concludes by summarizing the results of the paper
and noting directions in which further research is needed.

Il. THE ONE-DIMENSIONAL PROBLEM

This section derives the Gel’fand-Levitan and Mar-
chenko integral equations for the one-dimensional inverse
scattering problem using an orthogonalization procedure,
following Ref. 14. It also derives differential fast algorithms
that solve the inverse scattering problem and require fewer
computations than would solving the integral equations.
The purpose of this section is to review these concepts in a
simple setting before proceeding to the more complex three-
dimensional inverse problem, and to demonstrate how the
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concepts for the one-dimensional case generalize to the
three-dimensional case.

A. The fundamental solutions

The one-dimensional inverse scattering problem consid-
ered in this section is as follows. The wave field u (x,k) satis-
fies the Schrodinger equation

d2
(—+k2—— V(x))u(x,k) =0, (2.1)

dx?

where the scattering potential ¥(x) is real valued, smooth,
and has compact support. Two different initial conditions
for this differential equation will be considered, resulting in
two different solutions. These correspond to two different
inverse scattering problems: the reflection problem and the
regular problem. The names of these problems come from
the names of their solutions, as will be explained shortly.

The time-domain version of the Schrodinger equation
(2.1) is the plasma wave equation

a* 4a: .

(8x2 P V(x))u(x,t) 0.
Solutions of (2.2) are related to solutions of (2.1) by a Four-
ier transform. In the sequel we will switch freely from the
time domain to the frequency domain and back again.

First, some solutions to the reflection problem are de-
fined. The wave field u (x,k) is split into two waves traveling
in the + x and - x directions, and two different reflection
problems (probing from — « and + o) are considered.
This results in four solutions, which are then arranged in a
2 % 2 matrix ¥ (x,k) and termed the Jost solution. The com-
ponents of the Jost solution W(x,k) = [V¥(xk, + ),
¥(x,k, — )]7to (2.1) are defined by their behavior at + .
Specifically,

Y,k +)=[e”*, R (k)e*]" as x—» — o, (2.3a)

(2.2)

Y(xk, +) = [T(k)e *, 0]" as x>, (2.3b)
V(x,k, —) = [0, T(k)e**]1" as x— — w0, (2.3¢)
Y(xk, — ) = [Rr(k)e™™, 17 as x->ow0 . (2.3d)

Physically, the solution ¥ (x,k, + ) results from a prob-
lem in which the scattering potential is probed from the left,
in the + x direction, resulting in a transmitted wave
T(k)e ** and a reflected wave R, (k)e™*. The solution
U(x,k, — ) results from a problem in which probing takes
place from the right, in the — x direction. Here R (k) and
Ry (k) are the reflection coefficients for the two problems,
and T'(k) is the transmission coefficient, which by reciproc-
ity is the same for both problems. The first component of
each solution is the rightward traveling wave, and the second
component is the leftward traveling wave. The situation is
illustrated in Fig. 1. Note that the complete Jost solution
¥ (x,k) is thus a 2 X 2 matrix. Since the data for these prob-
lems consists of the reflection coefficient R, (k) or Ry (k),
the inverse scattering problem that results in the Jost solu-
tion W (x,k) is termed the reflection problem. Note that given
either R, (k) or R (k) itis possible to reconstruct the other
reflection coefficient and 7(k); see Ref. 6.

Next, some solutions to the regular problem are defined.
The wave field u (x,k) is again split into two waves traveling
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- ikx A -ikx
@ e (incident) Scattering =T (x)e (tronsmitted)
R Tkx Medium
R (x)e * (reflected)°—J o= 0
®) 0= scattering [~ Rri¥)¢ " (reflecteq)
~ ikx Medium x
T (x)e (transmitted) e e—e "~ (incident)

FIG. 1. (a) The reflection problem for an impulsive plane wave incident
from the left. (b) The reflection problem for an impulsive plane wave inci-
dent from the right.

in the + x and — x directions; however, the boundary con-
ditions are changed. Instead of specifying the behavior of the
wave field at + oo, the behavior is specified at the origin
x = 0. Since each wave must be initialized, this again results
in a 2x2 matrix. The regular solution P(x,k)
= [d(x,k, + ),d(x,k, — )]T to (2.1) is defined by the ini-
tial conditions

S(0k) =1, diqno,k) — diaglik, —ik]. (2.4)
X

In the time domain, this corresponds to introducing an im-
pulse at the origin x = 0. Thus in the time domain the regu-
lar solution is actually a noncausal impulse response relating
the field at the origin to the field at x. This is discussed in
more detail in Ref. 15. The term “regular solution” was in-
troduced by Newton in Ref. 2, and has become standard;
hence we use it here. The inverse scattering problem result-
ing in the regular solution ® (x,k) is termed the regular prob-
lem, and it is illustrated in Fig. 2.

Since the reflection and regular solutions are linearly
independent, they are related by a Jost function J(k), which
is also a 2 X2 matrix. We have

d(x,k) =V(x,k)J(k) (2.5)
and at x = 0 we also have
W(0,k) = DO,k) (k) =J (k). (2.6)

Since the total field u(x,k) is the sum of the leftgoing and
rightgoing waves at x, we have

u(0,ky =[1,11J ~ (k). 2.7

All of these equations generalize directly to the three-dimen-
sional case, as we shall see in Sec. III.

Since the one-dimensional problem is defined on the en-
tire real line, and the potential ¥(x) has compact support,
we may without loss of generality restrict its support to the
half-line x>>0. Then the Jost solution condition at — « may
be replaced by a similar condition at x = 0. Equations (2.3)
and (2.6) then yield

J k) =[ (2.8)

0
R (k) T(k )] )
This explicit representation of the Jost function will not be
available in the three-dimensional case, since that problem is
radial, i.e., defined on |x|>0.
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ik | = ikx

- e e —
FIG. 2. The regular problem. For the 1-D problem:
an impulsive boundary condition at x = 0. For the
Scattering 3-D problem: an impulsive boundary condition on
Medium the plane e;-x = 0.
)l 0

B. Orthogonalization

It is well known that the Jost solutions ¥ (x,k) are or-
thonormal on the real line with respect to the usual L  matrix
inner product, i.e., that

1

2r J- »
where the superscript H denotes Hermitian transpose. This
naturally suggests that the reconstruction of the field result-
ing from a scattering problem might be regarded as an ortho-
gonalization procedure. However, such a procedure would
clearly have to start from a point and proceed outward, and
for the Jost solutions there is no clear place to start. The
regular solutions ®(x,k) would be an ideal candidate for
such a procedure, since they are formed starting at x = 0 and
propagate outward in the + x directions, but they are not
orthonormal. But the regular solutions are orthonormal
with respect to the inner product with weighting matrix
(JH~'(k), since

W(x,k)¥(y,k)" dk =8(x —y), (2.9)

Zif D(x.k) (TN~ (K B,k P dk
ﬂ — o0

=2Lf°° Wk W (k) dk =8(x —p) . (2.10)
T - co
Note that
1 R*(k)
BI) (k) = - 11
(JH) " 1(k) [RL(k) : , (2.11)

which follows from (2.8) and the conservation of energy
relation

IR, (R)*+ |T(R)[*=1. (2.12)

This suggests that the solutions ® (x,k) may be constructed
from the scattering data from the left, R, (k), as follows.

The quantities to be orthogonalized are, in the time do-
main, the free-space leftgoing and rightgoing impulsive
plane waves resulting from the impulse introduced at the
origin. In the frequency domain, these waves have the form
e* ™ and arranging them into a 2 X2 matrix as was done
with the reflection and regular solutions results in the free-
space solutions

— ikx 0 ]
0 eikx ¢
In the absence of a scattering potential these would consti-

tute the regular solution to the Schrodinger equation (2.1),
so that we would have ®(x,k) = E(x,k).

E(xk) = [e (2.13)
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Since there is a scattering potential, the solution ® (x,k)
is formed by orthogonalizing E(x,k) in increasing |x|. This is
done by projecting E(x,k) onto the subspace of already-
orthogonalized ®(x,k), which is span{®(y,k), |y

< |x|} = span{E(y,k), |y| < |x|}. The projection onto a sub-
space is a linear combination of the elements of the subspace;
here it takes the form

X

P{E(xk)} = — M(x,)E(y,k)dy,

where M(x,y) is a matrix kernel to be specified momentar-
ily. Note that the linear combination has been taken over the
elements of span{E(y,k), |p|<|x|}, rather than
span{®(y,k), |y| < |x|}; since the orthogonalization of a
subspace does not change its span these two subspaces are
equal, and the projection can be taken to be a linear combina-
tion of the elements of either subspace.

The error E(x,k) — P{E(x,k)} is then orthogonal to
the above subspace, and we take the error to be @ (x,k). We
now recognize M(x,t) to be the smooth part of the inverse
Fourier transform of ®(x,k),

(2.14)

®(x,k) = diag[e ~ "] +f M(x,t)e*dt,
R (2.15)

so that M (x,t) is the scattered part of the regular solution to
the plasma wave equation (2.2), which is the Schrédinger
equation in the time domain.

Writing out the condition that the error ®(x,k) be or-
thogonal to E(y,k) with respect to the inner product defined
in (2.9) for |y| < | x| results in the following integral equation
for the scattered field M (x,z):

0 R(x+t)]
[R(x+t) o |TM&D
* 0 R(y+t>] _
+ _,M(X’y)[R(y+t) 0 dy =0, (2.16)
where
R(t)=Lf°° R, (oye™ dk (2.17)
27 J_ &

is the inverse Fourier transform of R, (k). Note that R(?) is
a causal function, which accounts for the lower limit of the
integral in (2.16). The centrosymmetry of (2.16) implies
that M(x,t) is a centrosymmetric matrix, i.e., that

M (xt) =M, (x,t), M,(xt)=M,(xt) (2.18)

[note that this also follows on purely physical grounds from
the definition of ®(x,k)]. This implies that the scattered
field @i (x,t), which is the sum of the waves traveling in the
+ x directions, i.e.,

ﬁ;(X,t)lel(x’t) + M, (x,t), (2.19)
satisfies the Gel’fand—-Levitan integral equation
R(x + 1) + &, (x,1)

+ | 4, (xp)R(y+1t)dy, —x<t<x. (2.20)

—t

Equation (2.20) is a Gel’fand-Levitan equation since
the unknown scattered field i, (x,t) arising from a regular
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problem has finite support — x<f<x, resulting in a finite
interval of integration.

The Marchenko equation for this problem has the same
form, except that the range of validity is changed to >x.
This follows since it has been assumed that the potential
V(x) has support on the half-line x>0. Thus there is no
difference between the regular and reflection problems, so
that the only difference between the regular and reflection
(Jost) solutions is their supports, which are complementary.

The half-line assumption was necessary in order to ob-
tain an explicit representation of the inverse Jost function
J 7 (k). In the three-dimensional case an explicit represen-
tation of J ~!(k) will not be available, and the distinction
between the two integral equations will become important.
This distinction is also important in the one-dimensional in-
verse problem on the full (real) line.

For both the regular and Jost solutions, the potential
V(x) may be obtained from the jump in the scattered field at
the wave front, as follows. The solution to the plasma wave
equation (2.2) can be written as

u(x,t) =6(t—x) + i, (x,t)1(t —x) (2.21a)

for the reflection problem, and

(x,t) =8t —x) + i1, (x5,0)(1(¢ + x) — 1(t — x))
(2.21b)
for the regular problem, where #, (x,t) is the smooth part of
the scattered field and 1(-) is the unit step or Heaviside
funciton. Inserting (2.21) in (2.2) and equating orders of
singularities yields'®
Vix)= + 2—d—zvts (xx), (2.22)
dx
where the + applies for the regular problem and the — for
the reflection problem. Equation (2.22) in conjunction with
the integral equation (2.20) completes the solution of the

inverse scattering problem.

C. Fast algorithms

An alternative to solving the integral equation (2.20) is
to propagate the scattered field i, (x,¢) for all ¢ recursively in
x, obtaining ¥(x) from (2.22) as we go. This is the essence of
a layer stripping algorithm, which recursively reconstructs
the scattered field and potential and strips away their effects.
However, the layer stripping algorithms for the regular and
reflection problems, although superficially similar in ap-
pearance, are actually quite different. The difference is due
to the complementary nature of the support of the scattered
fields for the two problems, as illustrated in Figs. 3 and 4.
The regular solution in the time domain, which is
diag[6(t — x),5(¢t +x)] + M(x,t), has support in ¢ in the
interval [ — x,x]. The reflection solution in the time domain
has support in 7 in the interval [x, o ] for the problem in
which probing takes place from the left, and has support in ¢
in the interval [ — o, — x] for probing from the right. This
produces a major difference in the manner in which (2.22) is
implemented in the algorithms.

A fast algorithm that recursively reconstructs the po-
tential and scattered field for the reflection problem is as
follows.!!
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FIG. 3. (a) Recursion pattern for updating m(x,?) in the fast algorithm for
the regular problem. (b) Recursion pattern for updating n(x,¢) in the fast
algorithm for the regular problem.

(1) Initialize the algorithm with

(0,5 =R(r), §(01)= Z%R(t) . (2.23)

(2) Propagate the following equations recursively in x
and ¢, for > x:

(% + %) i(x,t) = g(x,1t), (2.24a)
(_aa; - gt-) Jnn) = Vi(n) , (2.24b)
Vix)= —2§(x,x) . (2.24¢)

The recursion pattern for this algorithm is illustrated in
Fig. 4. Note that this amounts to successively truncating the
potential—at each recursion, the region to the left of x has
been replaced by free space [ ¥(y) = O for y <x]. Thus the
algorithm is successively reconstructing the potential and
then stripping away its effects; hence the name “layer strip-
ping” algorithm.

A fast algorithm that recursively reconstructs the po-
tential and scattered field for the regular problem is as fol-
lows. For convenience let the scalars m(x,t) and n(x,t) con-
stitute the first column of the matrix M(x,t) of (2.14), i.e.,
m(x,t) = M, (x,t) and n(x,t) = M,,(x,t). Then proceed as
follows.

(1) Initialize the algorithm with

m(0,t) =n(0,t) =0. (2.25)
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FIG. 4. (a) Recursion pattern for updating u (x,¢) in the fast algorithm for
the reflection problem. (b) Recursion pattern for updating g(x,?) in the fast
algorithm for the reflection problem.

(2) Propagate the following equations recursively in x
and ¢, for —x<t<x:

a d

(Ex— + E)m (x’t) = n(x9t) ’ (226a)
ax ot
mxgt= —x)=0, (2.26¢)
V(ix) =2n(x,x)
= — 4-‘%R(2x) —2R(2xYm(x,x)
x d
+f m(x,y)ER(x +y)dy
x d
+f R(x +y){n(x,y) — ER(X +y)
— m(x,z) iR(z +y)dz]dy , (2.26d)
-y dy

where (2.26d) follows from applying (2.26a) to the integral
equation (2.20).

The recursion pattern for this algorithm is illustrated in
Fig. 3. Note that for the regular problem the support in ¢ of
m(x,t) and n(x,?) is the interval [ — x,x], so that the data
R (¢) enters into the algorithm not in the initialization, but in
the computation of V(x) at each recursion. Thus this algo-
rithm solves a boundary value problem, while the reflection
problem algorithm solves an initial value problem. This is
why the additional computation of (2.26d) is necessary for
the regular problem algorithm, but not for the reflection
problem algorithm.

Let the region where ¥(x) has support be discretized
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into N subintervals. Then each of these algorithms requires
O(N) multiplication-and-add operations at each recursion,
for a total of O(N %) operations to reconstruct ¥(x). Solution
of the integral equations by Gaussian elimination requires
O(N?) operations to reconstruct F(x). The fast algorithms
require fewer computations because they exploit the causal
structure of the inverse scattering problem. Both of these
algorithms have their three-dimensional problem counter-
parts, which are given in Sec. IV.

It should be noted that other differential fast algorithms
exist; see Ref. 11. In particular, the more familar continuous-
parameter fast Cholesky and Krein-Levinson algorithms
can be derived by reformulating the Schrédinger equation as
a two-component wave system parametrized by a reflectivity
function. Details are given in Ref. 11.

In this section the Gel’fand-Levitan integral equation
has been derived by considering the inverse scattering prob-
lem as an orthogonalization problem with respect to the in-
ner product defined in (2.10). This result has appeared pre-
viously in Refs. 14 and 17; it has been reviewed here in order
to make apparent the ways in which this approach general-
izes to the three-dimensional problem. In the next section
the three-dimensional problem is treated using a similar ap-
proach, and generalized Gel’fand-Levitan and Marchenko
integral equations identical to those of Ref. 2 are obtained.

lll. THE THREE-DIMENSIONAL PROBLEM

In this section the main results of this paper are present-
ed. The generalized Gel’fand-Levitan and Marchenko inte-
gral equations derived in Ref. 2 are here derived using an
orthogonalization procedure similar to that used above for
the one-dimensional problem. This is a much simpler deriva-
tion than the one used in Ref. 2, and it clarifies the difference
between the solutions of the two integral equations. It also
illustrates how the one-dimensional results presented above
generalize to three dimensions.

A. The fundamental solutions

The inverse scattering problem considered in this sec-
tion is as follows. The wave field u (x,k) satisfies the Schro-
dinger equation

(A+ k%= V(x))u(x,k) =0, (3.1)

where xeR> and the potential ¥(x) is real valued, smooth,
and has compact support. It is also assumed that V' (x) does
not induce bound states; a sufficient condition for this is for
V(x) to be non-negative. It should be noted that bound
states are treated in Ref. 2; we omit them in the present
derivation for simplicity and to emphasize the parallels with
the one-dimensional problem. The time-domain version of
(3.1) is again the plasma wave equation’®
a7 .

(A e V(x))u(x,t) =0,
where solutions to (3.1) and (3.2) are related by a Fourier
transform. As before, we will switch freely from the time
domain to the frequency domain, and back again.

As in the one-dimensional problem, two different sets of
boundary conditions are specified, resulting in two different

(3.2)
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solutions. To emphasize the parallels with the one-dimen-
sional problem, we use the same notation as in Sec. II.

Let ¢(x,k,e;) be the solution to (3.1) with boundary
condition

b(xke) =e 4 (e * X /4r|x|)A ke, e;)

+0(x|7%), (3.3)
where the scattering amplitude is defined by
Alke,e) = — f e “TVWYvke)dy  (34)

and e; and e, are unit vectors. The solutions #(x,k,e; ) can be
considered as a generalizaton of the one-dimensional Jost
solutions (as in Ref. 2), with the ensemble of directions {e; }
replacing the directions + x. These solutions also result
from a reflection problem in which an incident impulsive
plane wave in the direction e; is used to probe the scattering
potential, and the data consists of the far-field reflection re-
sponse in the form of the scattering amplitude. Equations
(3.3) and (3.4) have their time-domain counterparts that
specify solutions to the plasma wave equation (3.2); see
Refs. 7-9. Note that in the present formulation the factor of
477 is incorporated in (3.3) instead of (3.4), as in Refs. 7-9.

Let ¢(x,k,e;) be the solution to (3.2) that is an entire
analytic function of %, is of exponential order |e;*x|, and has
a value of 1 along the plane e;"x = 0. More specifically,
& (x,k.e; ) is specified by the boundary conditions

d(x,ke)=1; Vd(xke)=ike, forex=0;

(3.5)
d(x,k,e;) is thus a generalization of the regular solution
(2.4) to three dimensions. It is also the regular solution re-
ferred to in Ref. 2.

In Ref. 17 it was pointed out that the regular solution
defined in Ref. 2 cannot be guaranteed to exist. This is be-
cause the regular solution in Ref. 2 was defined by a Jost
operator [Eq. (3.6) below; compare to (2.5) for the one-
dimensional problem], and thus it cannot be guaranteed to
be of exponential order |e;<x|. This implies that the Povsner—
Levitan relation (7.3) used in Ref. 2 may be incorrect. Here,
however, we assume that this regular solution exists.

It should be noted that the existence of the regular solu-
tion in general is still an unsolved problem. However, the
corrections made to the results of Ref. 2 in Refs. 18 and 19
obfuscate an already complicated inverse scattering proce-
dure still further, and as noted in Ref. 18, the results of Ref. 2
are “probably correct” in any case. In the sequel we simply
restrict our attention to situations in which it does exist.

We further assume that é(x,k,e;) — e ™ s square
integrable in k. Then, using the Paley—~Wiener theorem, as in
Ref. 2, it follows that gZ(x,t,e,» ) =% ~YHé(x,k,e;)} has sup-
port in ¢ in the interval [ — e;*X,e;*x] (compare this to the
one-dimensional support interval [ — x,x]). Thus #(x,k,e,)
has the Povsner-Levitan representation [compare with
(7.3) in Ref. 2 and (2.14) above]

X

¢(X;k,ef) =e therx f,

[the impulse in the — e;*x direction is included in
é(x,k, — e;)] so that m(x,z,e;) is the nonimpulsive part of

m(x,te e ™ dt

erx

(3.6)
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the regular solytion (Z(x,t,e,. ). Note that in the time domain,
the solutions ¢(x,t,¢;) and ¥(x,t,e;) have complementary
support in that the former has support in 7 on the interval
[ — e;'x,e;x], while the latter has support in # on the inter-
val [e;*X, 0 ].

The solutions ¥(x,k,e;) and ¢(x,k,e;) are related by a
Jost operator J(k). This is an operator on the space L 2(S?)
(S? is the unit sphere) with kernel J(k,e,,e,). The 2x2
matrix multiplication (2.5) becomes

pxke) = [ pixke)I (ke e )de, (3.7)
SZ

The Jost operator has inverse’ J ~! (k) with a kernel defined

as above. Setting x = 0 results in

P(0,k.e;) =J- #(0,ke,)J ~'(k,e,,e )de,
52

=J J " '(ke,.e)de, =1 "' (k), (3.8)
S2

where the effect of the operator 1 is a generalization of pre-
multiplication by the vector [1,1] in (2.7). This confirms
that the Jost operator defined here matches the one defined
in Ref. 2.

In Sec. II the potential was required to have support in
the half-space x>0, allowing an explicit representation
(2.8) of the Jost function to be determined. Unfortunately,
this will not work for the three-dimensional problem, since
the present problem is defined over all of R>. It is noted in
Ref. 2 that the Jost operator satisfies

J(—k)=0S(k)J(K)Q, (3.9)
where S(k) is the scattering operator with kernel
S(k.e,.e;) —I= — (k/2m)A(k.e,.e;) (3.10)

and Q@ is the operator such that QA(k.e,.e;)
= A(k, — e ,e;). InRef. 2 the relation (3.9) leads to a Mar-
chenko integral equation for the kernel J(k,e;.e;). We now
derive a similar equation for the kernel J ~'(k,e,,e; ).

From (3.9) we have that

I =k =0 (kSTKQ, (3.1D)

where the well-known unitarity of the scattering operator
S(k) has been used. Repeating the derivation of Ref. 2 (p.
1707) for (3.11) instead of (3.9) leads to a Marchenko inte-
gral equation for the kernel J ~'(k,e,,e;), as follows. Since
both # and ¢ contain impulses in the time domain, J ~' does
also, and J ~!(k) — 1 is square integrable (see Ref. 2).
Therefore we may write

]

L(te,e)e*dt (3.12)

J Mke,e)=1 +J
0

and, following Ref. 2, this leads to the following Marchenko
integral equation for L(t,e,,e;):

L(tses,ei) = G(t’ - es’ei)
+f f L(r, —e,e)G(t + T.€,e;)de dr,
(o] S?

(3.13)
where G(t,e;,e,) is defined by
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G(t,e,-es) =_1.J (S(k,es’ —e) — l)eikt dk
27 V- w

- 4_1;]— ikd ke, — e)e dk
(note the transposition of e; and e, caused by the Hermitian
operator).

It is indeed unfortunate that the solution of the general-
ized Gel’fand-Levitan equation requires the prior solution
of this Marchenko equation in order to obtain the inverse
Jost operator kernel J ~'(k,e,,e;), but there is no other
known way to obtain this kernel. However, in Sec. III C
below it will be shown that the generalized Marchenko equa-
tion for the scattered field resulting from a reflection prob-
lem can be derived from (3.13) and (3.14).

(3.14)

B. Orthonormalization

It is well known that in the absence of bound states the
solutions ¥(x,k,e,) are orthonormal, in that

(2:7.)3j J‘ w(x’k’e)¢*(y’k’e)k2de dk
0 §?

=6(x—y). (3.15)

As in the one-dimensional case, the solutions {#(x,ke,;)}
are inappropriate candidates for the result of an orthogonali-
zation procedure, since they are initiated in the far field. The
solutions {¢(x,k,e; )} are ideal candidates for such a proce-
dure, since they are generated in increasing |e, x| in the time
domain, and from (3.6) and (3.15) they are orthonormal
with respect to the inner product

(uy(x,k,e),u,(y,k.e))

:(_2;17?]&[ f U (xk,e,) (P~ (kep,e,)
(0] Ss2Js?

X uk(y,k,e,)k 2 de, de, dk . (3.16)

However, the region {yeR> — e, x<e;;y<e;x} in
which the orthogonalization takes place is still not compact,
so a further transformation is necessary. Since the time-do-
main solution é(x,t,ei ) is only defined for 7 > 0, we may re-
gard its smooth part m(x,t.e;) as the Radon transform of a
function 2(x,y) (Ref. 2):

Ah(xy)} = f h(xy)5(1 — ey)dy

=m(x,t,e;)sgn[e; x] . (3.17)
Note that the support of A(x,y) in y is the interior of the
sphere of radius |x|: {|y| < |x|}. This is the triangularity
property that makes an integral equation procedure possi-
ble; we see here that this property follows from time causal-
ity. Using the projection-slice property of the Radon trans-
form, the Fourier transform relation (3.6) becomes

p(xke) =e” "~ J h(xy)e™ " dy

=F{6(x~—y) —h(xy)}. (3.18)

From this point on the argument matches that given in
Sec. II for the one-dimensional problem. The free-space so-
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. — ke . P .
lutions {e ~"**} are orthogonalized in increasing |x|. The
— ikepx

projection of e on span{g(y.k.e), |y|<|x|}
=span{e “*?, |y|<|x|} takes the form [compare to
(2.14)]

P = h(x,y)e "7 dy. (3.19)

lyl<ix|
The reason that the kernel of the projection (3.19) is
h(x,y) is as follows. As in the one-dimensional case, we take
the error

e M P = f h(xy)e” “ dy
Iyl < x|

= d(x,k,€;) (3.20)

to be the regular solution at x, since by the orthogonality
principle the error is orthogonal to this subspace, and thus
may be used to expand it. Comparing (3.18) and (3.20)
proves that the kernel of the projection (3.19) is precisely
h(x,y). The kernel 4(x,y) should be compared with the ma-
trix kernel M (x,y) in the projection (2.14). The difference is
that A(x,y) is the inverse Radon transform of the smooth
part of the regular solution in the time domain, while M (x,y)
is simply the smooth part of the regular solution in the time
domain.

We now derive a generalized Gel’fand-Levitan integral
equation identical to that of Ref. 2. For convenience the no-
tation of Ref. 2 is adopted. Writing out the condition that the
error ¢(x,k,e;) be orthogonal to the subspace element

e~ ™" for |y| < |x|, with respect to the inner product defined
by (3.16), results in

ho(x,y>=h(x,y)+f h(x2)hy(zy)dz, (3.21)
J2} < |x]
which is Eq. (8.4) in Ref. 2. Here
1 - ]
hy(x,y) = f f M(k.e,e
e @2m)3le JszJse 1€2)
Xe HEeX M2 de de, dk
o) J M(ke,e)e "™ de, (3.22)
52

where M(k,e,.e,) = ((JPJ)~! —I)(k,e,e,) is the pertur-
bation of the spectral function (J™J) ~! away from its free-
space representation. Equations (3.21) and (3.22) should
be compared to the one-dimensional problem Egs. (2.16)
and (2.17).

The key fact here is the triangularity of h(x,y) in (3.21).
This follows from the support of the regular solution, al-
though it has also been established rigorously.'® Taking the
partial inverse Radon transform'® of (3.21), and using
(3.17) and the projection-slice theorem results in the gener-
alized Gel’fand-Levitan integral equation®

sgn[e;x]m(x,te;)

lesx|
B f M(t -+ e,-‘X,es,e,- )dey - f f
52 S J — jeex|

Xm(x,7,e, )M(t + 7.e,,e;)dr de,,
where M(t, —ee,) = F {M(k,e,e,)}.

sgn|e,x]

(3.23)
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Once the integral equation (3.23) has been solved, the
potential ¥(x) is then recovered from m(x,t,e;) using the
miracle® or fundamental identity’

V(x) =2e Vm(x,t =e; x,e;), (3.24)

which is the three-dimensional analog of (2.22) and is de-
rived in the same way. Note the sign change in (3.24) as
compared to the equation in Refs. 2 and 7; this is due to the
use of the regular solution instead of ¥(x,k,e;). In Refs. 18
and 19 the gradient of the jump in the scattered field must be
used in (3.24), since the regular solution as defined in those
papers is not known to satisfy m(x,t,e;) =0 for > e;x.
However, in the present case this anticausality follows from
the support of the regular solution.

As in the one-dimensional case, the generalized
Gel’'fand-Levitan equation has a finite interval of integra-
tion, which is an advantage over the generalized Marchenko
integral equation to be derived next. However, it is necessary
to solve the Marchenko equation (3.13) for the generalized
Jost function J ~'(k,e,,e,) first, which is most inconve-
nient.

C. Generalized Marchenko equation

In the one-dimensional case the inverse Jost function
was related to the reflection problem scattered field at the
origin by (2.7). Since the scattered field was known at the
origin, an explicit representation of J ~' could be found. For
the three-dimensional case, the reflection problem scattered
field is not known at the origin, and / ~ ! must be found from
the integral equation (3.13). However, the integral equation
(3.13) can be transformed into an integral equation for the
scattered field at the origin, and then into an integral equa-
tion for the reflection problem scattered field anywhere, us-
ing an observation made in Ref. 2. This integral equation is
identical to the generalized Marchenko equation of Ref. 2.

Integrating (3.13) with respect to e, over the unit
sphere S % and using (3.8) and (3.12) results in

u,(0,z.e;) :J G(t,e,.¢e; )de,
s

+f J G(t+ 1,e'e;)u, (0,1, —e')de' dr,
0 S
(3.25)

where #_(0,t,e;) is the scattered field at the origin for the
reflection problem with probing impulsive plane wave in the
direction e;. This integral equation is equivalent to the gener-
alized Marchenko equation of Ref. 2 with x = 0, since it is
identical to (4.14) of Ref. 7 with x = 0. Here G(t,¢;,e,) is
the time derivative of the inverse Fourier transform of the
scattering amplitude 4 (k,e,e;) [note the transposition of e,
and e,, and compare with (4.11) of Ref. 7].

We now make use of an observation made in Ref. 2. If
the potential ¥(x) is shifted by a translation x’, becoming
V(x —x’), then the solution ¢¥(x,k,e;) becomes
¥(x — x"k,e;)e” "™ and thus the scattering amplitude
A(k,e,e.) becomes A(k,e, e )e” % Therefore to
compute the scattered field #, (x',z,e; ) at x' resulting from a
potential ¥ (x), we compute the field at the origin x = 0 [us-
ing (3.25)] resulting from a shifted potential V(x — x').
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This merely requires that we replace the scattering ampli-
tude, and hence G(t,e;,e,), with its shifted version. This
yields

G(t,e;.e.,x)

= — (277)'zf e 0Nk A (ke ¢, )dk
- (3.26)
and the integral equation (3.25) is modified to

b5 (x,t,€;) =f G(t.e,,e;.x)de,
SZ

+ Jw f G(t + 7,e',e;,X)0, (x,t, — ¢')de' dr,
C (3.27)

where
(3.28)

is simply the delayed scattered field. Equations (3.26) and
(3.27) are identical to (4.11) and (4.14) of Ref. 7, which in
turn are equivalent to the generalized Marchenko integral
equation of Ref. 2.

It has been shown that the generalized Gel’fand-Levi-
tan integral equation of Ref. 2 can be interpreted as an or-
thogonality condition for the construction of the solutions
#(x,k,e;) with respect to the inner product (3.16). The con-
struction of the inverse Jost operator requires the solution of
a Marchenko equation, and this equation can be extended to
the generalized Marchenko integral equation of Ref. 2. This
shows the relation between the two integral equations, and
how this relation is a generalization of the relation that exists
between them in one dimension.

O, (X,1,e;) =11, (X,t — e;°Xx,¢e;)

IV. FAST ALGORITHMS FOR THE THREE-
DIMENSIONAL INVERSE SCATTERING PROBLEM

In this section differential, layer stripping fast algo-
rithms for solving the three-dimensional inverse scattering
problem are presented. These algorithms require fewer com-
putations than solving the integral equations presented
above, but they reconstruct V(x), ¥(x,t.e;), and $(x,t.e;)
just as the integral equations do. They are also generaliza-
tions of the algorithms presented in Sec. 1I.

A. The reflection problem

A major distinction between the one-dimensional and
three-dimensional reflection problems is that for the one-
dimensional problem near-field and far-field data are identi-
cal (save for a time shift), while for the three-dimensional
problem the extrapolation of the near-field scattered field
from the far-field scattering amplitude is a nontrivial prob-
lem. For the reflection problem differential algorithms it is
assumed that the scattered field is observed in the near field.
Since in many inverse scattering problems (e.g., inverse seis-
mic problems) data are actually taken in the near field, this
assumption is not only tenable, but realistic.

A differential algorithm for solving the reflection prob-
lem is as follows.'? For convenience let z = e;*x be the axis
normal to the incident impulsive plane wave, and let y be the
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two directions perpendicular to z, so that any function f(x)
of x can be written as a function f(z,y) of zand y.

(1) Initialize the algorithm on the plane z =¢;x =0
with observations of the scattered field and its derivative on
this plane.

(2) Propagate the following equations recursively in
z=-e;xand t, for t>z and for all y:

(% + %) u(zy,t) =q(z,y,t), (4.1a)
(—a———a—)q(z,y t) =(V(x) — A,)u(zy,t) (4.1b)
dz ot ’ Y e

Vix) = —2q(gyt=2z2), (4.1c)

where A, is the Laplacian operator with respect to y, which
is also the transverse Laplacian operator with respect to x.
The recursion patterns for this algorithm are the same as for
its one-dimensional counterpart, and are illustrated in Fig. 4.

Note that (4.1c) follows using the same argument used
to derive (3.24) (see Ref. 12) and is comparable to (2.22).
Also note that this algorithm requires O(N ®) operations to
reconstruct ¥ (x), while the solution of the generalized Mar-
chenko integral equation requires O(N ') operations. Some
details on ways to implement this algorithm numerically are
given in Ref. 12.

The computational simplicity of this algorithm as com-
pared to the solution of the generalized Marchenko integral
equation (and the algorithm for the regular problem given
below) results from the inherent causal structure of the re-
flection problem, which is fully exploited by this algorithm.
Instead of attempting to reconstruct the scattered field all at
once in one huge operation, the algorithm recursively recon-
structs both the scattered field and the potential as the wave
front penetrates the region where ¥ (x) has support. It then
strips away the effects of the reconstructed region, reducing
the size of the problem and obviating the need to store infor-
mation about the reconstructed region to process the data
associated with the unknown region. Another important fea-
ture is the use of near-field data, which avoids the coupling
between the scattered fields associated with different e; that
makes the generalized Marchenko equation so computation-
ally intensive to solve.

B. The regular problem

The regular problem lacks the causal structure of the
reflection problem, which is why it is harder to solve using
either the generalized Gel’fand-Levitan equation or a differ-
ential algorithm. Two different differential algorithms for
the regular problem are presented. The second algorithm is
similar to an algorithm proposed for estimation of random
fields in Ref. 13, illustrating some connections between in-
verse scattering in three dimensions and estimation of ran-
dom fields. This generalizes the connections between these
two topics that exists in one dimension (e.g., Ref. 20).

A new differential algorithm for solving the regular
problem is as follows.

(1) Initialize the algorithm on the plane z=e;x =0
using

m(z=0,y,t=0)=n(z=0y,t=0)=0. (4.2)
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(2) Propagate the following equations recursively in z
and ¢, for — z<t<z and for all y:

a  4d
(5 + E)m(z,y,t) =n(z,y,t), (4.3a)
(i - i)n(z,y,t) =(V(x) — A))m(zy,t), (4.3b)
dz ot ¥
m(zyt= —z)=0, (4.3¢)
V(x) =2n(z,y,t =2z) (4.3d)

obtained from (3.23). The recursion patterns for this algo-
rithm are the same as for its one-dimensional counterpart,
and are illustrated in Fig. 3. Note that n(z,y,t = z) for the
regular problem must be obtained from the values of
n(z,y,t #z) using the integral equation (3.23). This is analo-
gous to (2.26d) for the one-dimensional problem, for which
n(x,t = x) is obtained from the integral equation (2.20).

Aside from the computation of (4.3d}, a major problem
with this algorithm is that the region in which the computa-
tions are to be carried out has infinite extent in y. This can be
avoided by using the inverse Radon transform, as in (3.15),
which maps the region in which computations are per-
formed into the interior of a sphere. Taking the inverse Ra-
don transform of the Schrodinger equation (3.1) in the time
domain and using (3.18) results in

(A, — ADA(XY) =V(X)h(xy), (4.4)

where A, is again the Laplacian operator with respect to x.
An equation similar to (4.4) was encountered in the prob-
lem of deriving a fast algorithm for the linear least-squares
estimation of a homogeneous random field,'* and a variation
of the algorithm presented in Ref. 13 is useful here.

Another differential algorithm for solving the regular
problem is as follows.

(1) Initialize the algorithm at the origin using

£(0,0) =g(0,0) =0. (4.5)

(2) Propagate the following equations recursively in
r= |x| and s = |y|, for O<s<r:

ad ad

- - h ] = 3 ’ 4
(ar+as) (x,¥) =g(x,y) (4.6a)
d ad

R 3 =H ] ’ .
(ar as)g(x y) (x,y) (4.6b)
H(xy) = V(x)h(x,y) + (A — AD)A(x,y), (4.6¢)
h(x,0) obtained from aih(x,y =0)=0, (4.6d)

AY

V(x) = —2g(x,|y| = |x]|)/r (4.6e)

is obtained from (3.21).

Here A° is the transverse radial Laplacian operator in
spherical coordinates, which is

ol 2 fanpl) s L 2

A=\ %) Y Fas e 47
The quantity #(x,y) being computed in this algorithm is
actually rsh(x,y), where A(x,y) is defined in (3.20) as the
inverse Radon transform of the scattered field m(x,t.e;).
Multiplication by rs = |x| |y| is a normalization that results
in better numerical behavior near the origin.
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FIG. 5. (a) Recursion pattern for updating 4(r,s) in the fast algorithm for
the 3-D regular problem. (b) Recursion pattern for updating g(7,s) in the
fast algorithm for the 3-D regular problem.

The recursion pattern for this algorithm is illustrated in
Fig. 5. Note that since the radii  and s are both non-negative,
the recursion pattern differs from the previous algorithm in
that s is required to be non-negative. The only other signifi-
cant difference is that computations need only be performed
over the interior of the sphere of radius r, rather than over
the infinite slab — e;*x<¢<e;*x. This is a considerable ad-
vantage over the two preceding algorithms, both of which
require computations over an infinite region in y. However,
(4.6¢) still requires a considerable amount of computation
at each recursion, although now the simpler integral equa-
tion (3.21) is used to compute g(x,|x|) from values of
g(x,¥). This computation is absent in the reflection problem
algorithm, since this problem has a causal structure that is
more easily exploited.

The amount of computation required by the above algo-
rithm for the regular problem is O(N #) operations. This is a
significant reduction from the O(N '?) operations required
to solve the generalized Gel’fand-Levitan integral equation.
Note that the ratio of the exponents of the orders of compu-
tations required for the integral equation procedure to the
differential procedure is the same in both one and three di-
mensions, viz., 12 = 3. Also note that the layer stripping algo-
rithm for the reflection problem requires only O(N ) com-
putations. This is because the layer stripping reflection
problem algorithm is initialized using near-field data, while
the regular problem procedures all use far-field data in the
form of the scattering amplitude [in order to compute the
Jost function J(k)].

This algorithm is quite similar to the algorithm given in
Ref. 13 for computation of the optimal filter for the linear,
least-squares estimation of a homogeneous random field.
Since the integral equation (3.21) looks much like a multidi-
mensional Wiener—Hopf equation, this is not surprising. The
form of (3.21) suggests that the well-known connection
between inverse scattering and linear least-squares estima-
tion that exists in one dimension®® extends to higher dimen-
sions. Details of this connection are given in Ref. 21 for iso-
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tropic random fields and spherically symmetric potentials,
and in Ref. 22 for a more general class of random fields and
nonspherically symmetric potentials.

V. CONCLUSION

This paper has presented a unified treatment of various
differential and integral equation procedures for solving
three-dimensional inverse scattering problems. The relation
between the generalized Gel’fand-Levitan and Marchenko
integral equations of Ref. 2 has been explored by noting that
the former can be interpreted as an orthogonality principle
with respect to an inner product defined in terms of a weight-
ing function computed using an integral equation equivalent
to the latter. The problems solved by the two integral equa-
tions, and the resulting scattering solutions, are complemen-
tary in their support. This is emphasized by the differential
counterparts to the integral equation procedures, which re-
quire less computation since they directly exploit the causal
structure of the inverse scattering problem.

An important feature of this presentation is the empha-
sis on how results for the one-dimensional inverse problem
generalize to three dimensions. The parallels between Secs.
IT and III are remarkable, considering the greater complex-
ity of the three-dimensional problem. These strong parallels
in the derivations of both the integral equation procedures
and their differential, fast algorithm counterparts suggest
that the approach taken in this paper may be particularly
insightful for further research.

Several topics developed in this paper require further
research. The most important one is the connection between
multidimensional inverse scattering and linear least-squares
estimation of random fields. A useful starting point would be
the characterization of the class of covariance functions that
can be put in the form of (3.22). Connections between other
exact inverse problem procedures and those of Ref. 2 should
also be explored, in the spirit of Ref. 9; this could result in
further insights and more fast algorithms. Finally, the nu-
merical performances of all of these procedures need to be
investigated.
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Any physical, monopole equation of motion structure uniquely determines
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It is proved that, in the context of a conformal causal structure, (2) any acceleration field
decomposes uniquely into the sum of an affine structure that is compatible with the conformal
structure and an n-force, and (b) any directing field, such that the n-force of the
corresponding family of acceleration fields is due to tensor fields and is orthogonal to the
n-velocity, uniquely decomposes into a projective structure that is compatible with the
conformal structure and an (n — 1)-force. Moreover, if there are no second clock effects and
variable rest masses do not exist, there exists a unique pseudo-Riemannian metric on space-
time that determines the unique standard of no acceleration for all massive monopoles. It
follows from this that a non-null result for the E6tvis experiment entails the existence of a fifth
Jorce rather than a violation of the universality of free fall.

I. INTRODUCTION

We prove that the conformal causal structure of space-
time reduces to a Weyl structure provided that there exists
on space-time either an acceleration field 4 £ (x',% ) or a di-
recting field 25 (x,£¢) such that the n-force of the corre-
sponding family of acceleration fields is due to tensor fields
and is orthogonal to the n-velocity. Moreover, the Weyl
structure and hence its affine and projective structures are
unique unless there are second clock effects or variable rest
masses or both. To put the significance of these results in
perspective, we briefly outline some of our previous results.

According to the principle of the universality of free fall
(UFF), the motions of all neutral monopole particles are
governed by one common path structure. In a previous pa-
per," we formulated this principle as follows.

UFF: The set of all actually existing equation of motion
structures for massive monopoles constitutes a one-param-
eter family of directing fields of the form

ES(XET) = WEXED) + (@Q/mF* (X £), (D
where W is a specific directing field and Q /m is the electro-
magnetic charge to mass ratio. The principle UFF does not
require that the universal equation of motion structure
W< (x',£7) be geodesic, that is, cubic®? in the variables £ ¢,
denoting the three-velocity. However, if the special theory of
relativity is valid in every sufficiently small region of space-
time, then at every point of space-time the first-order part of
the microsymmetry (invariance) group of the field W must
contain a subgroup that is isomorphic to the Lorentz group.
In our paper,' we proved that any second-order equation of
motion structure, either an acceleration field 4 | (x,% ) ora
directing field Z§ (x",£ {), that satisfies this microsymmetry
condition and is C ' in its velocity variables (% or £ ¢), must
be geodesic. Hence the field W that governs the motion of all
neutral monopoles must be a projective structure. A
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theorem proved by Ehlers, Pirani, and Schild (EPS)* asserts
that any projective structure that is causally compatible with
the conformal structure of space-time determines a reduc-
tion of the conformal structure to a Weyl structure; that is,
the two structures jointly determine a unique symmetric lin-
ear connection on space-time. A weaker theorem proved by
Weyl*¢ asserts that the conformal and projective structures
determined by a given Weyl structure, in turn, uniquely de-
termine that Weyl structure. See also Ref. 7, Sec. 8.

In Sec. II, we discuss the additional constraints on phys-
ical acceleration and directing fields due to the fact that the
n-velocity of material particles must be future timelike, and
define the concepts of n-force and (n — 1)-force. The de-
composition theorems for acceleration and directing fields
are presented in Secs. III and IV, respectively. The signifi-
cance of our results for the constructive axiomatics of the
general theory of relativity (GTR) is noted in Sec. V. Final-
ly, in Sec. VI, we discuss the implications that our results
have for the interpretation of the EStvos experiment and for
the existence of a fifth force.

Il.LPHYSICAL ACCELERATION AND DIRECTING FIELDS

Let M denote the space-time manifold and let y: R — M
be a curve in M such that y(0) = p. Then the k-jet j& v is the
k th-order curve element determined by ¥ at peM. The set of
such elements at peM for all curves through p is denoted by
J*(Ry,M, ). The space of all curve elements forms an asso-
ciated fiber bundle

S M) = (KR, M) 7, ,MJ (R, RS ),G %), (2)

where J “(R,,IR7 ) is the typical fiber and G ¥ is the Lie group
of k-jets j§ f of diffeomorphisms £ R"-R” such that
f(0) = 0. The natural projections
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7 T (RM) - J “(Rp,M), for k<, (3)

are defined by truncating the /-jets. An acceleration field is a
map 4: J '(Re,M) - J *(Ry,M) such that

7T;°A = idJl(]R()’M)- (4)
Denote by (x',7;) and (x',7},7 ) the coordinates of j, ¥ and

J2y with respect to some local chart (U,x) »- Then the field 4
is determined locally by

AX) = Ao (X754 (X 71),45 (X))
= (74,4 5 (X 71)) (5)
The corresponding second-order equation of motion for the
curve y: R—-Mis

Y () =45 (D)7 A). (6)
The causal structure of space-time is determined by a confor-
mal structure that determines an equivalence class of pseu-
do-Riemannian metrics up to an arbitrary, possibly noninte-
grable choice of gauge.

{e**"g, (¥ }. )
Curve elements of world lines that describe the motion of
physical particles must satisfy the condition that the #-veloc-
ity ¢} be timelike and future pointing; that is,

g;7ivi>0 and >0 (8)
The open subbundle of / k(M) defined by this condition
will be denoted by #*(M). A physical acceleration field is
thus defined by a map 4: H ' (M) — H*(M) such that (4) is
satisfied.

Given two elements (x,y,754) and (x'%},755) of
H?(M), one can form the geometric object (x',),Ay.),
where

A'}é =7’;B _7’;,4- %
Under a change of space-time coordinates ¥} and Ay} trans-

form in the same way; however, under a change of param-
eter, they transform according to

i = Duri (10)
and

AY;, = (Du)’Ay;. (11)
The bundle of geometric objects (x',7; ,Ay4 ) will be denoted
by F (M). An n-force is determined by a map F:
HY(M) - F(M) such that

77 oF =idy., (12)
where

77 (X7LA75) = (XA). (13)
If u: R— R is a diffeomorphism such that 4 (0) = 0, then G §
is the Lie group of k-jets jtu of such diffeomorphisms. This
group acts on the fibers of H*(M) in a natural way. The
equivalence classes determined by this group action are the
elements of the bundle Z*(M) = F#*(M)/G * of k th-order
path elements with total space D*(M). If the space-time co-
ordinates are x’ = (t,x%), where t is the timelike coordinate,
then a kth-order path element is described by
(t.x%¢ §,...& ¢ ), where the coordinate £ ¢ corresponds to the
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r th derivative of x® with respect to . The elements of D* (M)
satisfy the condition

g00+2g0p§,1’ +gp0§€§7>07 (14)
where x° = 1.

A physical directing field is defined by a map E:
D!'(M) - D?*(M) such that

7B0E = idp. (15)
Such a field is locally described by

ExED) = ETEF(XED)) (16)
and determines the second-order equation of motion

d 2 é— a - ( d§ a )

1) = =51 ,E%(1), t 17
dtz() 2§()dt() (17)
for the path 71— (£,§ “(2)).

Given two elements (x',£7,£5,) and (x'£%,E%,) of
D?(M), one can form the geometric object (x\E9,AE9),
where

ASS =89 — &5 (18)
Under a change of space-time coordinates, £§ and A§S
transform according to

Eq=(X5+X32E5)/ (X +X%ET) (19)
and

aEe_ XoAE8(X +X06%) —XJALE (XS +X2ER)
2 (X2 +X07)> ' '

(20)

The total space of the bundle of geometric objects
(xL£€ $,A&%) will be denoted by F(M). An (n — 1)-force is
determined by a map F: D'(M) —F(M) such that
78 oF = idy,. (21)
Although a curve structure need not determine a path
structure, to every path structure there corresponds a family
of curve structures (Ref. 1, Theorem 3.1).

Theorem 1: An acceleration field A determines a direct-
ing field = iff 4 is of the form

AL (X)) =Pxyidv + 15 (x), (22)
where I (x',} ) is orthogonal to ¥, and
I (AP ) = A (). (23)

In much of the following analysis, the variables x’ play
the role of spectators. Functional dependence on these vari-
ables will be suppressed and indicated derivatives are with
respect to the variables 7 unless explicitly stated otherwise.

It is useful to have a concrete example in mind. Consider
the acceleration field defined by

A 12 (7/’1 ) = (grsﬁﬁ )l/z:rj':"}/jlI -+ Tj’:‘jz»}/jll;yflz
+ (grxyqysl)“I/ZTJ’:IJ-ZL'}/]I“}//;:,}/]; + .

+ (&, Vi 7)) T RTRATL k-

(24)
This field is homogeneous of degree 2 in the variables 7| and
therefore determines a directing field. Under a change of
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coordinates, — 7'} , transforms like a symmetric linear con-
nection and the other coefficients transform like tensor
fields. The usual family of electromagnetic acceleration
fields is the special case in which

T, = — T (25)
where I’} ; is the symmetric linear connection determined

by the space-time metric g;, and

T} = uFj, (26)
where F; is the electromagnetic field tensorand . = Q /m s
the specific charge.

For the acceleration field (24) with T} , = — T ; the
n-force is clearly

Fiiyn=s45() + T, vhve. (27)
In order to rule out variable rest masses, the n-force must be
orthogonal to the n-velocity,

gViF (1) =0. (28)
It is easy to satisfy this condition by requiring that the fields
T;,..., (for r#2) have the symmetry obtained by antisym-
metrizing on the first two indices and then symmetrizing on
the last 7 indices. This symmetry condition also guarantees
that

Fi(vi) =0, (29)
and therefore that
5. (V1) = =207, (30)

where I, =T%,.

Even if the n-force has a more general form than that
given by (24) and (27), it must still satisfy the orthogonality
condition (28) because this condition is necessary (but not
sufficient) for rest masses to be constant.

ill. THE DECOMPOSITION OF PHYSICAL
ACCELERATION FIELDS

In this section, it is shown that the conformal structure
of space-time and an acceleration field together determine a
symmetric linear connection and hence determine the free
fall and force components of the acceleration field. The anal-
ysis does not apply to every mathematically conceivable ac-
celeration field, but it does apply to a very large class of
acceleration fields that includes all acceleration fields with
force terms due to tensor fields.

At each space-time point, a conformal structure deter-
mines a pseudo-Riemannian metric up to an arbitrary, possi-
bly nonintegrable choice of gauge

{e=g, (x)}, (31)

and an equivalence class of symmetric linear connections,
such that the conformal structure is preserved under the par-
allel transport of each of these connections, namely,

Fji'k =K + (1/n) (5;Fk + & r; — gjkgirrr )
where the trace of the connection I, is arbitrary.

Remark: The geometric object determined by the I';
may reasonably be called a “volume connection” since the

I"; determine a principal connection on the bundle of vol-
ume elements. |

(32)
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The conformal connection coefficients are given by
2K;k = gir(grj,k + 8 — &)
- (1/n)(5}cpk +5;<¢’j —gjkgi'¢7r), (33)

where

Pr =8 8rsic> (34)
and the indicated derivatives are with respect to the sup-
pressed variables x’. As the standard representative of the
equivalence class (31), we choose g, (x"), such that det
(¢, (x")) = — 1. Let C(y}) transform as [, ¥ does under a
change of local coordinates; that is,

CF) =Cti) =X, "Xt (35)
In view of the structure of (32), it is reasonable to require
that the field that governs free motion be of the form

BL()= —Kiyivi — @/myi C(vi v
+ (1/n) (g7 i 71)E"C. (1) (36)

Such a field gives the correct equations of motion for light
rays and transforms in the same way as an acceleration field
A% (7)) does; namely,

A5 =X A58 + X pvivt. (37)
A general acceleration field may then be written as the sum
of the field (36) and an n-force,

45(m)=B5() +F'(n). (38)

One obtains from (36), (38), and the orthogonality condi-
tion (28) the equation

. Kby A
C, ()t = —n[M+P(VI)], (39)
8 VA1
where
o,
811
Theorem 2: Given an acceleration field 4 () ), define
. Kbyl .
. E_n[gabﬂ Jk7’17”1( +E(7/'1)], (41)
8, ViYi
where
. . TPV
EG) =S0h) + (l’/‘) d 42)
(¢
and S: H (M) — R satisfies
S(AY) =S, (43)

If the integral in (42) exists, then the acceleration field
B! (y)) determined by (36), (41), and (42) determines an
n-force given by

Fi(y=45(n) —B2(n), (44)
which satisfies the orthogonality condition
8uViF (vi) =0. (45)

Proof: It must be shown that (41) is the most general
solution of (39). Since

d . .
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it follows that

d C(A]/' ) _ n gabﬂkay'liV]; P(/17/'1)
2 iy = —
A 8o ViV A
47
Define
i 1 gabﬁK};(?/{y,l(
E(y))=C(y) + n—————. (48)
‘ ‘ a7
Then,
_ Py
%E(/Wl) = (;/1), (49)
and
A P i
E(Ay)) = const +J (fz/l ) du, (50)
0

where const may depend on the direction from which ¥, —0;
that is, const may be a function that satisfies (43) and hence
satisfies the homogeneous equation

NS (r1) =0. (51)
Note that S(}) contributes to the field B (7 ) only if

S (71 ) #0. Hence, the general solution of Eq. (39) is given
by (48), where

. . 'P(AY
0

Finally, note that the field P(3 ) transforms according to

dA. (52)

_ XLy
B — Py, 4 S AT (53)
8 iV1

Since

S =St (54)
and
jl_l_ gab/lﬁ/?kaY"i’{V’x( di = gab’}/lz/?jl?kyjl’}/,l( (55)
o /l gpq/lyxl’lﬂ qu’rZﬂ

it follows that E(#} ) obeys the same transformation law that
P(y,) obeys. [ |

Remark: For the class of acceleration fields (24) that
satisfies (28),

P(1) =8 Vi T ¥V i ¥1/8p Vi1 (56)
Moreover, the field B () will in this case be an affine
structure provided that S(%} ) is chosen to be zero in which
case E(¢) = P(¥}). [ ]

The acceleration field B (7)) is not uniquely deter-
mined by the condition that the rn-force be orthogonal to the
n-velocity. However, if this field governs force-free motion
and therefore represents the inertial structure of space-time,
which is an aspect of the geometry of space-time in the gen-
eral theory of relativity, then it must satisfy additional con-
straints. The essential features of the special theory of rela-
tivity are incorporated into the general theory of relativity by
the requirement that at each point peM, the microsymmetry
group’? of the space-time metric is isomorphic to the Lor-
entz group, SO(1,n — 1). A consequence of this require-
ment is that derivative geometric structures, such as the
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conformal, affine, and projective structures, have microsym-
metry groups at each peM, the first-order part of which con-
tains a subgroup that is isomorphic to the group
SO(1,n —1).

Definition: A space-time geometric structure field is
compatible with the special theory of relativity iff its micro-
symmetry group at each point peM has a first-order part that
contains a subgroup that is isomorphic to the group
SO(1,n—1). ]

In a previous paper,' we proved the following result.

Theorem 3: If an acceleration field B (3} ) is compati-
ble with the special theory of relativity, then it is geodesic.

Remark: Our proof requires that B (v}) be C' on its
domain of definition (8) and that

lim B (47}) = 0. (57)
These conditions are satisfied by the directing field (24). B

If it is required that the field B () in the decomposi-
tion Theorem 2 above represent the geometric inertial field,
then it must be compatible with the special theory of relativi-
ty; consequently, by Theorem 3, it must be geodesic. It fol-
lows that C, (7} ) can not depend on the variables 4, that
S(¥,) can not depend on the variables 7, (and therefore
may be set to zero without affecting the decomposition), and
that P(y} ) must be homogeneous of degree 1 in the variables
¥, . With this additional restriction on the class of accelera-
tion fields, we have the following result.

Theorem 4: Let 4% (7)) be an acceleration field such
that the right-hand side of (39) is linear in the variables ¥ .
Then, this acceleration field together with the conformal
causal structure of space-time uniquely determines a sym-
metric linear connection that is compatible with the confor-
mal structure and an n-force that is orthogonal to the n-
velocity 7.

IV. THE DECOMPOSITION OF PHYSICAL DIRECTING
FIELDS

It has been noted in Theorem 1 of Sec. II that a directing
field = determines only a family of acceleration fields. Since
the term proportional to ¥ is arbitrary, the field P(x'y;)
given by (40) is not known; consequently, the method used
in Theorem 2 of Sec. III to define C(3 ) is not applicable in
the directing field case. However, the analysis can be modi-
fied, for an important class of directing fields to be described
below, to yield a unique decomposition of a directing field
into the sum of a projective structure Il and an (n — 1)-force
F.

According to Theorem 1 of Sec. 11, the field 15 (x',7} ),
which satisfies

g;viI5(x'\v)) =0, (58)
may be used as the standard representative of the equiv-
alence class of acceleration fields determined by the direct-
ing field =. However, the transformation law of the field
I (x,y}) is rather complicated and it is preferable to use the
field

v ()= — [/ (n+ DS, (VD)7

which satisfies

(59)
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W2 (7)) =0, (60)

as the standard representative. Under a change of local co-
ordinates, the field ¥ transforms according to

V) =X [+ XX — [1/(n+ )]
X (&X "Xy + 8. XX ) i) (6D
This transformation law directly corresponds to the well-
known transformation law for the coefficients of a projective
structure.
A projective structure Il determines an equivalence
class of symmetric linear connections that are compatible

with the projective structure. These symmetric linear con-
nections are given by

Ly =1 + [1/(n+ DT, +8.T)), (62)
where the trace of the connection I', is arbitrary. From (32)

and (62), it follows that a conformal structure determines
an equivalence class of projective structures given by

I, =K}, + [1/n(n+ DT, +8,T;)

— (1/n)g;g"T,. (63)
It is straightforward to show that
4 K57 W2 (5
C(Vl)En(n+1) 8ab Vil jk7/17/’1c+ 2 (1)) (64)

n—1 & il
transforms according to (35). The expression (63) moti-
vates the requirement that the field that governs force-free
motion be of the form

vy = —Kivivi —[2/n(n+ DIV C (V)5

+ (1/n) gy 71)E"C, (7). (65)

The field y5 (7)) has the same transformation law (61) as
!, (%4 ) does. One can readily show that the n-force defined
by

Filyn)=v(1) —xi () (66)
satisfies the orthogonality condition
gaViF (1) =0. (67)

Unfortunately, the decomposition (66) is not unique.
The projective transformation

(V) =) + [1/(n+ Do), (68)
where w: H (M) - R and
w(AY)) =do(¥)), (69)

does not change the directing field =, which is given by

ESED =[NV — Y /R (70)
One finds, however, that
C)=CW}) + [n/(n+ Do), (71)

L) =¥ —[2/(n—D(n+ DY)

+ [1/(n— D1(guvivH)e"w,(vi)  (72)
and
Fiy)=F@)+ [1/(n—D1view)
— [/ (n— D guyivi)gho, (¥1). (73)

The terms proportional to ] do not affect the decomposi-
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tion of the directing field =, but the terms proportional to
g"’a),, (%)) do. Fortunately, this arbitrariness in the decom-
position of a directing field can be eliminated for a large and
important class of directing fields, namely, the class of di-
recting fields given by

ESED =[N450) — 545D /A, (18
where
A5 = (V) 2T + T virk
+ i) T ikt +
+ga¥ir) T CTVRT v,
(75)
the 2, are the conformal coefficients and the 7 ; .. ; for

r+2 are tensor densities of appropriate weight that have first
been antisymmetrized on the first two indices and then sym-
metrized on the last r indices. Directing fields that do not
belong to this class are matematically conceivable; however,
they do not seem plausible from a physical point of view. The
following theorem summarizes the above discussion.

Theorem 5: Let = be a directing field given by (74) and
(75). This directing field uniquely determines and is unique-
ly determined by the standard representative W) (¥ ), which
satisfies (60). If C(%) given by (64) is linear in the vari-
ables 4, then the field W, () has the unique decomposi-
tion

V() =) + F' (), (76)
where the projective structure standard representative y is
given by (65) and satisfies

X2 (1) =0, an
and the n-force F(y} ) satisfies the conditions (67) and

Fo(n) =0. (78)

To the decomposition (76), there corresponds the unique
decomposition

EED =M +F(£T), (79)
where I1 is the projective structure corresponding to y and I
is the (n — 1)-force corresponding to the n-force F.

Remark: Note that for the class of directing fields con-
sidered, the condition (78) that ensures the uniqueness of
the decomposition (79) is a consequence of the orthogonali-
ty condition (67). Also, the field C(y/} ) will fail to be linear
in the variables ¥ only if the projective part of the directing
field is incompatible* with the conformal structure. n

V. THE CONSTRUCTIVE AXIOMATICS OF GTR

Ehlers, Pirani, and Schild have proposed a set of con-
structive axioms for the general theory of relativity.* One of
their axioms, the projective axiom, asserts the existence of a
path structure &, the members of which are the possible
world line paths of “freely falling” particles. They were,
however, unable to provide an effective and noncircular pro-
cedure for measuring the geodesic directing field IT which
uniquely determines and is uniquely determined by the path
structure & ;. We presented the solution to this difficulty in
a terse form in Ref. 2 and in greater detail in Ref. 8. Our
solution provides noncircular, empirical procedures for the
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identification of monopoles, for the separation of monopole
particles into distinct classes each of which corresponds to a
particular path structure, for the measurement of these path
structures and for the testing of a given path structure for
geodesicity. Thus our results show that the projective axiom
of EPS is directly testable and hence truly constructive pro-
vided that there exists a class of neutral monopoles governed
by the projective structure of space-time. In our more de-
tailed presentation (Ref. 8, p. 171), we show that the projec-
tive structure of space-time can be measured by measuring
the directing fields of electrically charged monopoles for at
least two distinct charge to mass ratios.

Theorem 5 of Sec. IV greatly simplifies the problem of
measuring the projective structure of space-time. One need
only measure the directing field = corresponding to any one
kind of monopole particle regardless of the type of charge(s)
this kind of particle may have. Thus, rather than having to
measure the projective structure as part of a general para-
metric (charge to mass ratio) analysis of the family of direct-
ing fields, one can separately decompose each directing field
into the sum of the projective structure and an (n — 1)-force
field. The parametric structure of the family of force fields so
obtained may then be analyzed as a separate problem.

VI. IMPLICATIONS FOR THE EOTVOS EXPERIMENT
AND THE FIFTH FORCE

Our results radically modify the interpretation of the
Eotvos experiment. The traditional view is that a null result
for this experiment establishes the principle of the universal-
ity of free fall. But, the analysis of Sec. IV shows that the
equation of motion structure of a massive monopole unique-
ly decomposes into the sum of an (n — 1)-force and a geo-
desic directing field or projective structure that is causally
compatible with the conformal structure of space-time. Thus
one of the two following possibilities holds: (1) the equation
of motion structures of monopole particles all have the same
projective component; or (2) there are at least two distinct
projective structures which are the projective components of
an equation of motion structure for some monopole parti-
cles.

If case (1) holds, there exists a unique projective struc-
ture on space-time that is compatible with the conformal
structure of space-time and hence there exists a unique Weyl
structure on space-time. Moreover, if there is no second
clock effect, the Weyl structure reduces to a Riemannian
structure.

In connection with the second possibility, note that if I"
is an affine structure that is causally compatible with the
conformal structure of space-time, then any other such af-
fine structure is a member of the one-parameter (A1) family
of acceleration fields given by

A5 = —Tyrdri + ASvin, (80)
where S}, is a tensor field of the form
b= (1/n)(Sjw, + 80, —gu8"w,), (81)

where w,, is a covector field. Every acceleration field in the
family given by (80) and (81) determines a distinct Weyl
structure. If S ]’fk #0 and does not have the form (81), the
equation of motion determined by the field (80) for 4 #0has
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solution curves that “break the light barrier.”*

Possibility (2) asserts that there exist at least two
members of the family given by (80) and (81). Note also
that the family is determined by any two of its members.
There are three cases to consider. First, if none of these Weyl
structures reduces to a Riemannian structure, then no mem-
ber of the family (80) is in any way singled out, and hence
there is no natural zero point for the parameter A and no
reason to decompose the affine structures into a particular
affine structure and an n-force. Moreover, in this case there
is a second clock effect for each A. Second, if one of the sym-
metric linear connections satisfies

Fe—I,; =0 (82)
but
; — O ; 70, (83)

then the connection I'j, is Riemannian and determines the
natural zero point for the parameter A. It is then natural to
decompose the other members of the family into this Rie-
mannian affine structure and an n-force. Such a one-param-
eter family of acceleration fields cannot be ruled out by sim-
ply demanding Lorentz microcovariance any more than the
one-parameter family (25) and (26) of electromagnetic ac-
celeration fields can be so ruled out. Unlike the electromag-
netic case, however, the rest mass of any of the monopoles
for which A #0 varies as judged by the standard provided by
the Riemannian metric. The rate of change of the rest mass is
proportional to

gMiviwvE. (84)

Thus the phenomenon of variable rest mass exists unless @,
vanishes identically in which case the Riemannian metric is
unique. Finally, if (82) holds and

a)-’k—a)k,j=0 (85)

J
as well, then there is again no natural zero point for the
parameter A. All of the Weyl structures are, in this case,
Riemannian structures. The phenomenon of variable rest
mass still occurs in a mutual form unless w, = @, vanishes
identically.

Thus if there is no second clock effect and there are no
variable rest masses, and if, moreover, the result of the Eot-
vOs experiment is not null, then case (1) holds and there
necessarily exists a fifth force because there exist at least two
nonelectromagnetic equation of motion structures at most
one of which can be purely geodesic. Whether or not one
would choose to call such a fifth force “gravitational” de-
pends on the details of the model proposed. In any case, the
principle UFF, the existence of a universal standard of no
acceleration, is not in question.

Remark: Our work is clearly relevant to Shiff’s conjec-
ture, which states that the principle UFF entails the Einstein
equivalence principle. See Lightman and Lee® and Ni.'* W

Moreover, the recent reanalysis'' of the experimental
results of Eotvos, Pekar, and Fekete'? (EPF) indicate that
the result of the E6tvos experiment is not null. They suggest
that there may be an additional, intermediate range, vector
coupling to hypercharge. Such a coupling could also account
for some other subtleeffectsin the K © — K ?system; however,
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a coupling to baryon number, which is conserved, would
also account for the EPF data. Moffat'? has recently pointed
out that his theory of gravitation can also account for the
EPF data. All of these proposals are in agreement with case
(1).
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The canonical Hamiltonian structure of the equations of fluid dynamics obtained in the
Boussinesq approximation are considered. New variational formulations of these equations are
proposed and it is found that, as in the case of the KdV equation and the equations governing
long waves in shallow water, they are degenerate Lagrangian systems. Therefore, in order to
cast these equations into canonical form it is again necessary to use Dirac’s theory of
constraints. It is found that there are primary and secondary constraints which are second
class and it is possible to construct the Hamiltonian in terms of canonical variables. Among the
examples of Boussinesq equations that are discussed are the equations of Whitham—Broer—
Kaup which Kupershmidt has recently expressed in symmetric form and shown to admit tri-

Hamiltonian structure.

I. INTRODUCTION

The equations governing the propagation of long waves
in shallow water consist of a pair of coupled first-order par-
tial differential equations which can be interpreted as a
Hamiltonian system in several different ways. First, Luke’s
variational principle' for these equations was cast into ca-
nonical form by Zakharov,” Broer,? and Miles.* But with
this approach it was not possible to obtain an explicit expres-
sion for the exact Hamiltonian in terms of canonical vari-
ables. Recently a new formulation® of these equations in
terms of potentials led to the construction of the requisite
Hamiltonian through the use of Dirac’s theory of con-
straints.>’ Dirac’s theory plays a crucial role for casting an
overwhelming majority of the equations of fluid dynamics
into canonical form because they turn out to be degenerate
Lagrangian systems. In particular, the Hamiltonian for the
KdV equation® was obtained by an application of Dirac’s
theory of constraints and in this paper we shall show that it
can be used to cast the Boussinesq equations into canonical
form as well. An alternative approach to the Hamiltonian
structure of fluid equations is based on the Poisson bracket
Gardner® has introduced for the KdV equation which, as
Macfarlane,'® Bergvelt and DeKerf,!! and Lund'? have
shown, is equivalent to the Dirac bracket. This generalized
Hamiltonian formalism has led to interesting new develop-
ments such as the theory of bi-Hamiltonian structure
through the work of Lenard,'® Olver,'* Magri,"> Gel’fand
and Dorfman,'® and Fokas and Fuchssteiner,!” but it has
some strange features from the vantage point of field theory.
It does not, for example, employ the full set of canonical
variables. The gap between these two approaches is bridged
by Dirac’s theory of constraints. Most recently Olver'® has
clarified this relationship by giving a proof of Darboux’s
theorem for first-order Hamiltonian operators.

The prototype of a field theory where all these structures
emerge is the theory of long surface waves in shallow water.
It will be of interest to find out which properties of this sys-
tem of equations are stable in the sense that they survive in an
appropriately generalized form when the equations are
modified to take into account new effects. To this end we
shall now consider the theory of dispersive waves in shallow
water which are grouped together under the title of “Bous-
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sinesq equations.” We shall briefly discuss the variety of flu-
id equations which are obtained in the Boussinesq approxi-
mation and choose two sets of equations on which we shall
concentrate our attention for the rest of this paper. Among
them are the equations of Whitham,'® Broer,?® and Kaup?*'
(hereafter to be referred to as WBK). Recently Kuper-
shmidt** has found a transformation whereby these equa-
tions assume a symmetric form. Kupershmidt’s equations
admit tri-Hamiltonian structure.””> We shall construct new
variational principles for these equations and find that they
are degenerate Lagrangian systems. Applying Dirac’s the-
ory we obtain primary and secondary constraints all of
which are second class and construct Dirac’s total Hamil-
tonian which yields the canonical formulation of these Bous-
sinesq equations. All of the equations of fluid dynamics in
the Boussinesq approximation can be cast into canonical
form using Dirac’s theory of constraints, but Kupershmidt’s
equations occupy a privileged position among them because
only in this case does the rich structure of the shallow water
equations survive intact in every respect.

Il. BOUSSINESQ EQUATIONS

We refer to Whitham,?* Bona and Smith,?* and Olver®
for complete discussions of the issues in the Boussinesq ap-
proximation. The choice of equations of motion for a fluid in
this approximation may be summarized in the following two
points. The horizontal velocity field « is a function of the
depth y as well as being a function of ¢,x while the surface
elevation # depends only on ¢,x. In place of y we shall use 8
which is normalized so that the undisturbed depth is given
by 0 = 1. The form of the dispersive terms in the equations of
motion changes depending on the choice of 8. The second
ambiguity stems from the fact that we are making an approx-
imation which is not disturbed by adding to the terms of
second order, second derivatives in either ¢ or x of the first-
order terms. This gives rise to 12 free parameters after fixing
the depth €. There are physical and mathematical criteria for
cutting down these possibilities. First of all we shall require
that the equations of motion must be derivable from a vari-
ational principle. If we were to allow time derivatives of an
order higher than the first which we find in the limit of zero
dispersion, then the character of these equations changes
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drastically as far as the initial-value problem is concerned.
This is a particularly important point as we are primarly
interested in the Hamiltonian formulation of these equa-
tions. Thus we shall further require that the Cauchy data for
these equations should essentially be the same as that of the
shallow water theory. This eliminates equations which con-
tain second- or higher-order time derivatives in dispersive
terms. Physically the most important criterion for the selec-
tion of an equation is its dispersion relation. The require-
ments above leave room for equations which are physically
interesting.

The first set of Boussinesq equations we shall consider
corresponds to the choice 8 = 0 (Ref. 26)

h, + (hu), =0, (2.1a)
u, +uu, +h, +vh;, =0, (2.1b)

where subscripts will denote partial derivatives and after the
second one we shall indicate the number of derivatives by a
numerical prefix. The shallow water equations on a flat bot-
tom are obtained when the constant v is set equal to zero. A
variant of Eq. (2.1a) where A, is replaced by #,,, is dis-
cussed in Ref. 27. Next we shall consider the WBK equations
which are given by

@1, + @i, + h, + vt =0,
h, + hii, + @h, + Gity, — vk, =0,

(2.2a)
(2.2b)

where #,5 are constants. By a change of variables®? Kuper-
shmidt has written these equations as

i, +ai, +h, +vit,, =0, (2.2a)

h, + hii, + ith, + &i1,, — vh,, =0, (2.2b)
which is the form we shall use in this paper. Our knowledge
of Egs. (2.3) is much better than that of Egs. (2.1) so that we
shall not need to refer to the limit of zero dispersion and
consequently an arbitrary constant coefficient of the disper-
sive terms has been scaled out.

We shall start with a reformulation of these equations in

terms of potentials. For this purpose note that Egs. (2.1) are
the conditions for the one-forms,

a=hdx — hudt, (2.4a)

o=udx — (JW*+h+vh,)ds, (2.4b)
to be closed

da=0, do=0. (2.5)
Therefore, using Poincaré’s lemma we have locally

a=d¥, o=4do, (2.6)

where ¥ and @ are scalar potentials. In terms of compo-
nents, Egs. (2.5) and (2.6) yield the relations

. =u, Y, =—UuP+h+vh,),

(2.7)

V.=h W,= —uh
between the phenomenological fields 4 and the potentials
®,¥. The integrability conditions of Eqs. (2.7) yield the
original equations of motion, and their compatibility re-
quires that

¥, + D ¥, =0,
q)l + %(sz + lI/.x + V\p}}x = O’

(2.8a)
(2.8b)
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which are nonlinear partial differential equations satisfied
by the potentials. Equations (2.1) can be derived from an
action principle

81 =0, szfdxdt,

where

Li=PV, +O V¥, +D 2V +W¥2—wW_ 2 (2.9)
is the Lagrangian density.

The introduction of potentials for Kupershmidt’s equa-

tions follows along similar lines. The closed one-forms are
now given by

a=udx— (Qu’+h—lu,)dl (2.10a)

o =hdx — (uh + 1h,)dt, (2.10b)
and the potentials satisfy

b, +190.2+ V¥, — 10, =0, (2.11a)

v, +o. ¥, +1V,, =0 (2.11b)

The elimination of ¥ from these equations results in Kaup’s
equation?

@, + 20D, + (&, +10. )P, — b, =0  (2.12a)

for which there is a companion?®

WA W W 4 (W2 — 20, W
$30_ 220 W W, +V¥ W, =0 (2.12b)

Kaup was led to Eq. (2.12a) by seeking an equation for
which he could formulate and solve the inverse scattering
problem where the AKNS potentials depend linearly on the
eigenvalue. Kaup’s results can be used to solve Eq. (2.12b)
as well. Finally,

L,=0 V¥, +V,® +O Y +¥ 2V % (2.13)
is the Lagrangian for Kupershmidt’s equations.

11l. CANONICAL FORMULATION OF BOUSSINESQ
EQUATIONS

For passing to a Hamiltonian formulation of Egs. (2.1)
we shall start with an alternative form of the Lagrangian
(2.9) which depends at most on the first derivatives of all the
fields. This can be accomplished by introducing another po-
tential Y. We can readily verify that the Euler—Lagrange
equations for

f} = q)t\Ijx + ‘Iltq)x + q)xzwx
CAY, W, — 2TV, + €Y+ (1 + )V, 2

e=sgn(v), «x=|v|"? (3.1)
yield Egs. (2.1) together with
YT =¢e¥, —eV¥,,, (3.2)

which serves as the definition of Y.
The Lagrangian (3.1) is degenerate. That is, the canoni-
cal momenta

M, =%, I,=%®, I,=0, (3.3)

cannot be inverted for the velocities and we need to use Dir-
ac’s theory of constraints in order to cast this system into
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canonical form. Therefore we introduce
C1=H¢_Wx’ CZ=H\P _q>xy C3=HT: (34)

as primary constraints. Using the canonical Poisson brack-
ets { , } between the potentials and their conjugate momenta
we find that

{C1(x),C,(x)} = ~ 28, (x —x"), (3.5)

is the only nonvanishing one among the Poisson brackets of
the constraints. The primary constraints are therefore sec-
ond class. The total Hamiltonian

H=fy/dx, H=Hy+ (3.6a)
will be given by

Ho=Me®, + N, ¥, + .Y, — .F,, (3.6b)

H' =AC, + 0C, + BC,, (3.6c)

where 4, o, and B are Lagrange multipliers. These multipli-
ers will be determined from the requirement that the Poisson
bracket of the Hamiltonian with each one of the constraints
should vanish. But we find that

{Co,H} = 2(eX — ¥, +&¥,,)

cannot be set equal to zero because it is independent of the
multipliers. Therefore we introduce a secondary constraint

Y =2(Y -V, +«¥_) 3.7
and modify Eq. (3.6¢),
H' =AC, + 0C, + BC; + puy, (3.6¢")

where ¢ is another multiplier. The Poisson brackets of the
secondary constraint with the primary constraints are given
by

{X9C1} = 0,
Gl = —26,(x —x') + 26, (x — x'),
{x,Cs} = 2e8(x — x"),

and now we must check to see if there are any tertiary con-
straints. It turns out that there are no further constraints in
this problem because with the choice

o= -0V ,
=Y —e¥ v .,
7’ €Y, 4 exV¥, (3.9)
ﬂ= _G(wax)x +6K(¢xwx)xx’
A= —107 ¥, —w,,

the Poisson brackets of the Hamiltonian with C,, C,, C,, and
x all vanish. From Egs. (3.4), (3.6a), (3.6b), (3.6¢"), (3.7),
and (3.9) we find the total Hamiltonian density

H=—0 W, + 2%V, ¥, +2Y¥, —eY? — (1 +€)¥,2
— (e —¥,) (4D, 2 + ¥, +v¥s,)
—(Hy —®,)P, ¥, + e[, ¥, — (P, ¥,),],
(3.10a)

(3.8)

+2e(Y — eV, +ex¥,.)?,

which can be simplified to the form

H =10V, +e¥,>+ vV, %>+ eY? 2TV,
+2YY,, — I, (3P, 2+ ¥, +v¥,,) — @, ¥V, I,
—€[P, V¥, —x (P, ¥,),]. 11y (3.10b)

1501 J. Math. Phys., Vol. 28, No. 7, July 1987

by discarding a divergence. The fact that the constraints are
second class enables us to use them in order to further sim-
plify the Hamiltonian. First eliminating all reference to YT
from Egs. (3.2) and (3.3c) we find

H =10V, — (49,2 + V¥, + v, ), — D ¥ II,.
(3.10c)

Finally using Eqs. (3.3a) and (3.3b) we can express the
Hamiltonian in terms of the potentials and from Egs. (2.7)
we obtain

= Yuh + 3h* + vhh,, + vh,?, (3.10d)

where we have again discarded a divergence. As we shalil
reconfirm later, this is the energy density for Egs. (2.1).

We shall now turn to a discussion of the generalized
Hamiltonian structure of Egs. (2.1). The phase space con-
sists of the set (#,h) of infinitely differentiable functions and
E = (E,,E,) will denote the variational derivative with re-
spect to the variable indicated by its subscript. If 4,8 are two
smooth functions of these variables, the Poisson bracket is
defined by

[A,B] = fE(A)JE(B)dx, (3.11a)
where
0 D a
J_—(D O)’ D—E;’ (3.11b)

is the Hamiltonian operator. With this definition of the Pois-
son bracket, Jacobi’s identity is satisfied. The Hamiltonian
function is given by an integral over the density (3.10d) so
that for z standing for u or 4, Hamilton’s equations

z, =[z,H] (3.12)
reduce to Egs. (2.1). An integral of motion P will satisfy

(PH] =0, (3.13a)
which reduces to the following condition on P:
E,[E,(P)] —hE,[E,(P)] + vE,{[E.(P)]} =0,

(3.13b)

generalizing the result of Benney?® for shallow water waves.

Equations (2.1) are already in the form of a pair of con-
servation laws but they admit two further ones correspond-
ing to the conservation of momentum and energy

(uh), + (u*h + sh? + vhh,, —h?), =0,

(QuPh + 3h* + vhh,, + R 7)),
+ (3u*h + uh* + vhh,, —vhh,,), =0,

(3.14)

respectively. We can read off P from these equations and
verify that it satisfies Eq. (3.13b) in each case. In particular,
the conserved quantity for the latter of Egs. (3.14) is the
Hamiltonian (3.10d). Furthermore, setting v = 0 we obtain
Benney’s conserved quantities. Correspondence with the
well-known results in the limit of vanishing dispersion shows
that there are no further conservation laws for this system.
In order to see this let us consider a possible fifth conserva-
tion law. Such a correspondence principle will require that
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this conservation law must be of the form

WPh+uh® 4 f), + Qu'h +3u*h® + 1h° 4+ g), =0,
(3.152)

where f,g may dependonu, 4, h_, h,, h,,,....and vanish in the
limit v —0. Then we find

fi + 8. =v(Wh+h*)hy, (3.15b)

and using Eqs. (2.1) repeatedly this can be cast into the form

Ji+ 8«
=v(h.h,), + viu’hh,, + h, (uh), + h°h,, —1h7),
—vhh h_ + vV’hh,  h,; (3.15¢)

the first two groups of terms on the right-hand side of Eq.
(3.15c) are of the desired form but it is not possible to write
either one of the last two terms as a total divergence. It will
be sufficient to prove this only for one of them, say 4k h_,.
In order to express this term as a divergence we consider all
possible divergences which can result in such an expression.
Thus we write

hhxhXX = a(hhxz)x +B(h thX )x + y(h zhx)xx’
(3.16)

where a, 3, and ¥ are constants which must be chosen so as
to make this an identity. Note that it is unnecessary to in-
clude (4 %), in Eq. (3.16) since it reduces to the last term
above. From the coefficients of all linearly independent func-
tions in Eq. (3.16) we obtain a system of linear equations for
a, B, and y. This system of equations has no solution, which
makes it impossible to express 4k, A, as a total divergence.
Therefore there is no fifth conservation law for Egs. (2.1)
which reduces to Benney’s result in the limit of zero disper-
sion.

IV. THE CANONICAL FORMULATION OF
KUPERSHMIDT’S EQUATIONS

Kupershmidt’s equations, given by Eq. (2.3), may be
derived from a variational principle with the Lagrangian
density,

L=V, +¥,Q, + D2V, + V¥ 2+ IYE,

—3EY, + Y, ¥, +E,9,. (4.1)

Here Y and = have been introduced to avoid terms with
higher-order derivatives. Using the following definitions for
T and = which are obtained as the Euler-Lagrange equa-
tions corresponding to Eq. (4.1),

Y=-¢,6 ==V,

(4.2)

the other two equations of motion reduce to Eq. (2.1). Since
we cannot eliminate velocities in terms of momenta, the con-
straint equations are

Ci=1Il, —-V¥,, CG=I,,

cG=l, -, C,=I..
The only nonzero Poisson bracket between the constraints
turns out to be

{C,(x),C,(x") = =26, (x —x).

(4.3)

(4.4)
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The total Hamiltonian density consists of
Koy =Ma®, + MV, + Y, + 1. E, — L, (4.5a)
" =aC, + PC, + 0Cy+ uC,, (4.5b)

where a, B, 0, and p are Lagrange multipliers. When we
calculate the Poisson bracket of each one of the constraints
with the total Hamiltonian, we find that

{C ’fl}:E)c_\l!xxE a?’
’ X (4.6)
{CoH} = =Y, — @, =y,

cannot be set equal to zero by any choice of multipliers.
Therefore, y, and y, are secondary constraints, whose non-
vanishing Poisson brackets with the primary constraints are

{r. (), ()} = = 8,, (x —x'),
{x. (6),C(x)} =8, (x —x"),

{1 (0,6, (x)} = — 8, (x —x),
{¥s (%),C3(x"N} = — 6, (x —x').

We incorporate these secondary constraints into the Hamil-
tonian through

4.7

K =aC+ BC, +0Cs 4+ uC, + vy, + 7ys, (4.5b)

where v and 7 are again multipliers. Finally we see that with
the following choice for the six multipliers:

a= — 4P +2¥, +71,),
= — (B, +2¥,9,),

7= % (4.8)
ﬂ—ﬁxy

v=¢ +7,

r==-—-VY,

the Poisson bracket of H,. with each one of the constraints
vanishes. Using Eqgs. (4.3), (4.5a), (4.5b), (4.6), and (4.8)
we find the total Hamiltonian density for Kupershmidt’s
equation is

HT = %<px2\px - nd‘) (%(sz + qlx - %q)xx)
- H‘{/ (q)x\yx -+ %\I/xx )’ (4'93-)

where we have eliminated the auxiliary potentials = and Y.
Once again, since the constraints are second class, this
expression can be reduced to one involving only the poten-
tials which through Egs. (4.3) becomes

Hr =1k +h? + uh). (4.9b)

In the framework of the generalized Hamiltonian for-
malism where the Poisson bracket is defined according to
Egs. (3.11) we find that the Hamiltonian is given by Eqgs.
(4.9b). We have also the conserved momentum density

P o= uh, (4.10a)
and Egs. (2.3) admit an infinite family of conserved quanti-
ties P, = f 7, dx with

P, =7 (4.10b)
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satisfying
E,[E,(P)] - hE,[E,(P)]

—MEA[E.(P) ]} + EA[E,(P)].}] =0, (411)
which reduce to Benney’s results in the limit of zero disper-
sion. The existence of these conserved quantities is best un-
derstood in terms of the tri-Hamiltonian structure of Eqs.
(2.3). Kupershmidt®? found that in addition to the Hamilto-

nian operator (3.11b) (which will henceforth be denoted J,)
there exist two further operators such that

JIE(Pk)=J1E(Pk+I—1)’ l=2’3; k=011’29'--’
(4.12)

and repeated applications of the recursion operator D,,
where

D, =JJ! (4.13)
and?®?
2D Du—Dz)
- 4.14
2 (uD+D2 hD + Dh (4.14)

yields infinitely many conserved quantities starting with P,
Here D, ; generates the same conserved quantities in steps of
two. The equations of gas dynamics in 1 + 1 dimensions ex-
hibit a similar symplectic structure."

Kupershmidt’s equation is of Painlevé type II. This can
be established from an analysis of the invariance properties
of Egs. (2.3) which enables us to reduce them to ordinary
differential equations. We shall use the formalism of Laksh-
manan and Kaliappan®? and start by writing Eqgs. (2.3) in
the form

H (whh,,.)=u, +uu, +h, —lu, =0,

(4.15)
H,(u,hh,,.)=h +uh, +hu, + 8, =0,
and furthermore let
u=0(xt), h=Ai(xzt) (4.16)

be a solution of this system. If these equations are invariant
under the infinitesimal transformations
x =x+ e{(x,t,u,h),

t=1t+4 er(x,tuh),

(4.17)
u=u+ en(xtuh),
h=h+eo(xtuh),
where € is an infinitesimal parameter, then
XH |, oo =0, XHy|u_pn =0,
B =A(x,t} h=A{x,8)
where
a J ) a
X=f—+7—-+79— -
o T w0 Y
d a
= - 4.18
+{n,} 91 +{o.} o, (4.18)

with {9,},{0,},... denoting the first-order changes in the de-
rivatives of u,,h,,... . In terms of 6,4,7,7, the explicit expres-
sions for the higher extensions {7,},{c, } can be obtained by
using Eqs. (4.17) and a typical extension is

{0;} =0, +/1:(Uh —7.) + Ht(au "Tult)
— LAy = Endid — 6.0 A, — ThA
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From Eqs. (4.18) we get
{n.} +76, +6{n,} + {0} — {1} =0,

{0.} + 6o} + 08, + A} + 94, + 4o} =0,
(4.19)
into which we must substitute extensions. Equations (4.19)
are algebraic equations for the variables 8,4 and their deriva-
tives. Since these variables are linearly independent we re-
quire that their coefficients which depend on 7,{,7,0 must
vanish separately. This leads to

=at+b, n=a,
where a, b, and c are arbitrary constants. Then from
dx _dt _du _ dh

T=¢, 0=0, (4.20)

: . —77— = ~ (4.21)

we find
cdx = (at + b)dt, (4.22a)
adt=cdu, (4.22b)
a dx = (at + b)du, (4.22¢)
o = const, (4.22d)

which can be integrated readily.
Integrating Eq. (4.22a) we obtain the invariant variable

&

((at + b)/c)* — 2ax/c = const=¢, (4.23)
and from Egs. (4.22b) and (4.22¢) we find

& — const = (u — (at + b)/c)?,
which suggests that we define

g(&y=u— (at+b)/c (4.24)

as an invariant function. Finally we shall take the right-hand
side of Eq. (4.21d) as f(£) and change from the variables
(u,h,x,t) to (f(£), g(£), &). In this way we can write Egs.
(4.15) as a pair of coupled ordinary differential equations
for fand g,

gg +f + (a/e)g" =14,
g +f8 — (a/e)f” =0,
where the prime denotes differentiation with respect to §.

These equations can be decoupled to yield a second-order
equation and letting

g = (@%/2¢) " w,

(4.25)

(4.26)
z= — (2¢¥/a*)'P € + Cy),
we find that it is Painlevé IT*3
w” =w + 2zw + u, (4.27)

where
L= (2(3/(1)1/6.
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APPENDIX: KUPERSHMIDT’S TRANSFORMATION

The transformation Kupershmidt has found to pass
from Eqgs. (2.2) to (2.3) is best understood by an examina-
tion of the Hamiltonian structure of these equations. Equa-
tions (2.2) are Hamilton’s equations (3.12) for the Hamil-
tonian function

=li*h 4+ 1h? — (A1)
with the Poisson bracket defined according to Eqgs. (3.11).
Kupershmidt’s transformation
h=h+yu,
applied to Eq. (A1) yields

= th + 1h* + 3(y* — 0)u,
up to a divergence. The choice

V=08 u=v+y=v+vis=| (A4)

gives the Hamiltonian function of Kupershmidt’s equations.
We note that there is a restriction on &, namely & must be
positive for the Hamiltonian (A3) to be real. This corre-

sponds to a negative definite contribution in the original
Hamiltonian (A1) but the total Hamiltonian is positive.

~ e D ~~ T
Lo, + v, h

i=u, (A2)

T+ P+ p)uh (A3)
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The Dirac wave equation in the presence of an external field

Jinane Abounadi and Teymour Darkhosh

Department of Physics, Bryn Mawr College, Bryn Mawr, Pennsylvania 19010
(Received 31 October 1986; accepted for publication 4 March 1987)

The method of characteristics is applied to the Dirac wave equation in the presence of an
external field. The retarded Green’s function for the minimal coupling to an external
electromagnetic field is calculated explicitly, and a general coupling is discussed.

I. INTRODUCTION

In studying the wave properties of the Dirac equation, it
is customary to convert it to the Klein—-Gordon type of equa-
tion by squaring it." However, we feel that this method does
not reveal the hidden structure of the Dirac equation. There-
fore, in this paper we apply the method of characteristics
directly to the Dirac equation and calculate the retarded
Green’s function. In so doing, we establish an existence
theorem since the necessary and sufficient condition for the
existence of the solution is the existence of the fundamental
solution or the Green’s function.’

We begin by considering the minimal coupling to an
electromagnetic field where we expand the solution in the
neighborhood of the characteristic surface and show that the
terms can be calculated to any order. Finally, we apply the
same method to analyze a general interaction. Our notation
is that of Bjorken and Drell.?

{l. THE MINIMAL COUPLING

Consider the Dirac particle minimally coupled to an ex-
ternal electromagnetic field,

(iB—-m)y=0, (2.1)
where D # is defined as @ # — ie4*, A" is the electromagnet-
ic potential, ¢ is a Dirac spinor, and =y # D, . The spinor
indices are suppressed.

As we mentioned in the Introduction, to study Eq. (2.1)
it is sufficient to analyze the solution of

(B —m)S(x,p) =8 (x—y), (2.2)
which is the equation for the Green’s function. In particular,
we are interested in the retarded solution, i.e.,

S(x—yp)=0 for (x*—)% <0.

For convenience, we choose our origin at y.
IfEq. (2.2) is a hyperbolic partial differential equation,
it has to accept a solution in the following form**:
0

S(x) =

(2.3)

Y 8"(u)E"(x)

n=Nj=1

+ 3 0w) Y =6,
n=0 n!

i=1

(2.4)

u; = 0 are the characteristic surfaces, 8" (u;) is the nth de-
rivative of the Dirac delta function, and 6(u;) is the step
function.

Ubpon substitution of (2.4) into (2.2) and separation of
coeflicients of different singular terms, we find
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innyEN =0,

innyEN-'4+ (ib—m)EN=0,
: : (2.5)

inyG° + (iD —m)E® = 8(r),

inyG' + (i —m)G°=0,

Here 3 # u = n* is defined as the normal vector to the char-
acteristic surface, u = 0.
Consider the first equation in (2.5), i.e,,

inyE¥N =0, (2.6)

where EV is a 4 X 4 matrix and, for it to exist, n*y has to be a
singular matrix for which the necessary condition is

detlin'y| = — (n*)*=0. 2.7
This implies that there is a twofold degenerate characteristic
surface which is the light cone. Unlike higher spin (s>1)
equations, there is no ill effect. The reason, of course, is that
there are no constraints, and the characteristic matrix does
not depend on the external field.®’

The solution to Eq. (2.6) has the following form:

2
E¥= z
s=1
where the 7 are two linearly independent right-hand solu-
tions of the characteristic matrix, ny, and are given by

roe", (2.8)

r'=nye' and r=n-y*. 2.9)
Here &! and &2 are defined as
1 0
0 1

&l = 0 and &> = ol (2.10)
0 0

and the ¢*" are unknown spinors to be determined later.
There are two linearly independent left-hand solution spin-
ors given by

I'=8Tny and 1°=8&*Tn-y. (2.11)
Here T indicates the transpose.
If we multiply the second equation in (2.5) by a left

vector, /*', and use the anticommutation relation

{Pny}=2n3+ (d'n) — 2ied-n, (2.12)
we find

ny(2n-8 4+ 3-n — 2ied-n)o*" =0, (2.13)
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which within a constant, determines o* V. Since we are inter-
ested in the future cone, u =t — r, Eq. (2.13) becomes an
ordinary differential equation along the bicharacteristics.
Therefore, o+~ has the following form:

oV = (1/r)eCV, (2.14)

where 7 is the radius vector measured from the origin, ¢ is
given by

¢=JA'ndr',
0

and the constant C >V is determined from the initial condi-
tion.

Now, substituting Eq. (2.14) into the second equation
in (2.5), and following the same procedure, we find

(2.15)

2 2
EN 1= N poV T —i(iB+m) Y &0V, (2.16)
s=1 s=1
Since Egs. (2.5) are singular, it is not always possible to
determine EV ! as is the case with the Rarita—Schwinger
equation.®

The equation determining EY ~!

is given by

2
inyEN "2 —n-y(ib + m) Z &gV 1

s=1

2
—i(iB—m)(iB+m) ¥ &

s=1

+i[2n-9 + (O'n) _ZieA‘n]Zésa'“N_‘ =0 or&(r).

(2.17)
Contracting Eq. (2.17) with [*" yields
ing(2n-3 + d-n — 2ied-n)o* N !
+il¥(D? + m* — (e/2)o F)Y &
=0 or I98%r). (2.18)
By o'F we mean ¢*'F,,, F,, =d,A, —d,4,, and

o™ = (i/2)[7*,y" ]. To remove the singularity from both
sides of Eq. (2.18), we have to choose C*¥ to be equal to
— (i/4mwny)!* . This completely determines EV, i.e.,
. 2 .
EN: __L 2 rrlseied:: _;n_yeiegb'

2.19
dgr = 47r ¢ )

It also determines N, which is equal to 1, i.e., the expansion
begins with the first derivative of the delta function.

Having obtained E’, we go back to the equation deter-
mining E °, namely,

inyE® + (iB — m)(e“*/4mr)( —in-y) =0. (2.20)
Solving for E°, we get
2 ied
E°= N ro*®— (iB+m)S—. 2.21
s;; 4rr ( )

To determine o*°, we consider the next equation in (2.5),
ie.,

ied

iy G —ny(iB+m) S0 — (1B —m) (B +m) 3
Tr
+i(2n°0+ (Im) —2ied'n] T #0=0.  (222)
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Multiplying it by a left vector /', we obtain
o_.s,O — i ls eie¢ _1_
8mn, r

r ied
xf r'e_i""’(D2+m2~—e—a'F) ¢
o 2

dar' .
(2.23)

/

r

Therefore, E ° is given by
E° = (e“*/r) n-yf°(r) — (iD + m)(e**/4ar) ,

where

(2.24)

0 i - —iep| y2 2 € e,
Pr)y=——| re D4+m*——oF ar .
87 Jo 2 r

Now it is clear that all the terms in expansion (2.4) can be
determined. For example, we can write the nth term as fol-
lows:

G" = (e™/r)n-yg"(r) —i(iB + m)(e**/r)g" ~ ' (r)
(2.25)

and

g(r) = ——l—f r’e‘i€¢(D2+m2—ia-F)
2 Jo 2

eie¢ .

X——g" " (rHar, (2.26)
”

with g” (0) =0.

Thus we have established the existence of the solution
explicitly and shown that the Dirac equation in the presence
of an external electromagnetic field is hyperbolic without
relying on the wave properties of the Klein—-Gordon equa-
tion.

illl. A GENERAL INTERACTION

In this section, we shall use the same method to discuss a
general interaction. The equation we are concerned with is

(i@ + B(x))S(x) =8*(x), (3.1)

where B(x) is a general 4 X 4 matrix that can be written as
follows:

B(x) =a(x) +¥’b(x) + ¥*c,(x)

+Yyrd, (x) + o, (x) .
We assume that the coefficients are smooth functions of x,
and that f*¥ is an antisymmetric tensor.

For Eq. (3.1) to be hyperbolic, it has to admit a solution
in the form of Eq. (2.4). The leading singular term, as in the
previous case, is the coefficient of §"(u ), and we write it as

i 2

E'=%

r 521

ro®', (3.2)

where ¢ is ({c'n dr, the ¥ are right-hand solutions of the
characteristic matrix, n-¥, and r is the position vector.
The next term, E °, is determined from

i 2
inyE°+ (id +BY = ¥ rot' =0,

(3.3)
r s=1
which can be written as
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_ id 2
inyE° —n-y(id — B) eT Y &0
s=1

ip 2
+i[2n°9 + (3'n) — 2in-c] = 3 #o*!

r s=1
e &
+2(nd+y-fn) — Y &' =0.
s=1

Here B(x) is defined as a(x) + ¥°b(x) —yHe, (x)
—yYyrd, (x) +Lo*f,,.

Equations that determine o®' are ordinary differential
equations along bicharacteristic lines, and are given by

3.4)

2
ISL S ol =0, (3.5)

s=1
where L is defined as
24
dr

+2(Pnd+y-fn).
Using Eq. (3.5), we can write (3.4) as

inyE® —n-y| (id + M) 22: &l + i a’o“"] =0,
s=1 s=1 (3.6)
with
M= —B(x) + (2/ny) [nd — (fn)37°],
a'= — (2i/ne) (fn)  ¥°&,
and
a’= ~ 2i/n)(fn)_y'e,
where the ( f*n) . aredefined as ( f*n), +i( fn),.
Factoring the singular matrix, n-y, we can solve for E °,

i 2 2
E°=2Sro®—i(d +M) 3 &0 + 3 a'c*.
r s=1 s=1

3.7)

Continuing to the next term, we find that G ° satisfies

in'yG°+ (id + B) (e*/r) 3 ro*°
—i(id +BYid + M) S &

+ (0 +B) Y a'o* =8(r). (3.8)

1507 J. Math. Phys., Vol. 28, No. 7, July 1987

This equation forces us to assign the following value to o™’ at
r=0:

o' = — (i/4mny)l° .
With the above initial condition and the differential equa-
tion, (3.5), the o' are uniquely determined.

Multiplying Eq. (3.8) by I yields

2
I"L'Y &6°= —1°(d + B)(id + M) ¥ &o*!

s=1

+ (id +B) ¥ a'o™', (3.9)
which determines ¢®° uniquely when the condition,
o*° (0) = 0 is imposed. We choose this initial condition to
avoid any extra delta singularities.

Therefore, in general, we can write

ei¢ 2
G"=—— 2 (rso.s,n+0n,so.s,n—l)

r s=1
and relate ™" to o*" ~! by

(3.10)

2 2
l"L[z @) + 3 (A0~ 1)| =0, (3.11)

s=1 s=1

where 0™ is a known operator and A** is a known matrix.
The above analysis shows that even in the case of a general
interaction, the Dirac equation preserves its hyperbolicity,
and that the Green’s function can be calculated to any order.
The analysis strongly supports the existence theorem for the
Dirac equation in the presence of an external field.
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Extensions of Wigner’s distribution to particles with spin 1
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For particles of spin } a class of distributions closely related to Wigner’s is introduced on
dynamical grounds. It is found that they may be refined to give correct expectation values of
higher powers of spin components, but depart somewhat from a criterion that has been used in
characterizing the Wigner distribution. For a special choice amongst this class, a more subtle
refinement is possible satisfying this criterion exactly. This requires, however, a dubious
distinction at every point between positive spin about a direction and negative spin about the

reverse direction.

1. INTRODUCTION: RELATION OF THIS PAPER TO
PREVIOUS EXTENSIONS

The Wigner! distribution, expressible for a single parti-
cle as

w(x,p) = w[y(x)]

— -3 * _L — ipry, i )
(2m) f ¢ (x : ﬁy)e ¢(x+ iy )y,
(1

is a density that, like a probability density function, inte-
grates to 1 over the whole space on which it is defined, pro-
vided the wave function # is normalized. Through it several
aspects of quantum mechanics—expectations of an impor-
tant class of functions of x and p, also certain dynamical
features'*>—can be expressed in an essentially classical man-
ner, and without recourse to the orthodox operator formal-
ism.

Stratonovich® introduced a distribution over spin direc-
tion that succeeds in treating in a comparable way expecta-
tions of spin components. However, when higher powers are
treated by his formalism essentially nonclassical features ap-
pear which amount to a partial retention of the operator
formalism, discussed in Sec. V. Some more recent formula-
tions*® incorporating spin } into the Wigner distribution ig-
nore his distribution over spin direction but take up his ob-
servation that spin and space aspects can be treated more or
less independently—in his language the kernel of the com-
bined representations is the product of the separate kernels.
These formulations can consequently be described as direct
products of a Wigner treatment of spatial features with an
orthodox operator treatment of spin. While this is useful for
some purposes the present paper is concerned rather with
replacing as completely as possible the operator formalism
by a density one. Of recent work that of Scully® perhaps
comes closest to this aim, but has some unsatisfactory fea-
tures. An amended form of his approach, given in the Ap-
pendix, turns out to be in agreement with the body of this
paper.

This paper also differs from the four others referred to in
the previous paragraph by first considering dynamical
aspects of proposed distributions.
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Il. APROPOSED EXTENSION, AND DYNAMICAL
ASPECTS THEREOF

Given a spinor wave function with components ¢*, ¥~
with respect to Oxyz, and an orthonormal triad with third
member e, denote its spin-up component with respect to the
triad by ¢,. The dependence on the other members of the
triad is omitted; it affects ¢, only by a multiplying constant
of modulus unity, which is unimportant here. At a point
where ¢+ and ¥~ are not both zero, the direction e such that
¥ _ . vanishes will be called the principal spin direction at the

point.
The extension discussed first can be written as
flx.pe) = 2m) " 'w[v. ], (2)

where the constant has been chosen to make the integral of £
over all x, p, ¢, equal to 1.

Dynamical aspects of the density functions w and f'can
be conveniently discussed using language appropriate to a
material substratum underlying the particle. What may be
called Wigner’s dynamical principle’ says that in the evolu-
tion of the distribution for a free particle satisfying Schro-
dinger’s equation every portion of the substratum moves
classically, without interaction with any other portion.
Knowing that Wigner’s principle holds for w, one easily sees
that it holds for falso; for the Schrédinger equation satisfied
by the spinor wave function of a free particle of spin | implies
that, for each e, ¢/, satisfies that for a spinless particle of the
same mass. That f satisfies this dynamical principle, has an
isotropic definition, and seems to be the simplest distribution
over x, p, e with these properties, is what has led the author
to study this distribution further.

A second dynamical principle,? weaker but more widely
applicable, governs the evolution of w: Weaker, because it
does not forbid interaction between portions of the substra-
tum in different regions of phase space provided they are in
the same region of configuration space and conserve materi-
al and momentum; more widely applicable, because it is not
limited to the free particle. For a particle of mass m subject to
a force field F the portion of substratum occupying dx dp is
considered to have mass mw dx dp, momentum pw dx dp,
etc., and to be subject to an external force Fw dx dp, as well
as possibly to actions from portions with different p but in
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the same interval dx of configuration space. In a field deriv-
able from a scalar potential, classical evolution of w is now to
be understood as involving such local interaction that (1)
continues to hold with suitably varying 1; the second dy-
namical principle asserts this evolution to be in accordance
with Schrodinger’s equation.

For forces independent of spin the extension to fof this
second principle is straightforward, so attention focuses on
motion in a magnetic field H of an electrically neutral parti-
cle of spin } and magnetic moment y#/2. [ Neutrality is as-
sumed for convenience here because Lorentz force would
otherwise demand a modification? to formula (1) for w.]
We suppose the spin angular momentum and magnetic mo-
ment of the portion of substratum occupying dx dp de = d{}
to be S7f e d() and ¥t e d(), respectively, where S'is a num-
ber discussed below. The force and moment acting on this
portion are yS#ife-VH dQ0 and yS#fe AH d(). The author
found that with curl H = 0 the classical interactive evolu-
tion of f (now also requiring conservation of spin angular
momentum in local interaction), such that (2) continues to
hold, is indeed in agreement with the spinor Schrodinger
equation in a magnetic field. In the special case of a uniform
magnetic field the motion turns out to be classical also in the
original Wignerian sense, i.e., without interaction between
portions of the substratum.

ill. A REFINEMENT OF 7 TO GIVE CORRECT
EXPECTATIONS

Equating any component of the total spin {Sef d(} to its
expected value as ordinarily calculated from the spinor wave
function requires S =}, a surprise perhaps, but scarcely a
difficulty. More serious is the failure of corresponding equal-
ities for higher powers of spin components. Consider, for
example, a case where ™ = ¢(x), and ¥~ = O everywhere,
i.e., one of positive, and definite, spin about the z direction.

Then ¢, == ¢ cos(6 /2), whence, by (1) and (2), fis
(2m) ! cos*(6 /2) wlv], leading to

ffdxdpzﬁ_c‘lﬂ_
4

Then the natural way to obtain (s,”) from f'is to evaluate

3)

f(Scos 0)"fdQ=J- i" cos™ 8(1 + cos 6)sin 6 d6 d
T
. [S"/(n + 1), n even,
s/ (n+2), nodd

This agrees with the correct result ()" only whenn = Oor 1.
A clue to removing this discrepancy is afforded by the more
general result for (s, "), where s, is the spin component in a
direction making angle @ with the z axis. One finds that for
every a the discrepancy is by just the same factors, viz.,
3"/(n + 1) forneven, 3"/(n 4 2) for n odd, asinthea =0
case above. This suggests that we might replace /by a distri-
bution F over x, p, e, and spin intensity s, of the specially
simple form f(x, p, e)g(s). In that case f(scos®)"”
XFdxdpds, with ds=s"sin@dsdfdp, factorizes as
fcos™ @F dQfs” +2g(s)ds. Now equating this product to
(s,") in the above ¢~ = 0 case gives
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n+1, n even
2n 4+ 2 d ={ 4 y
JS g(s)ds n+2, n odd

The intended range for s here was {0, o0 )—but then (4) has
no solution. Over ( — o, ), however, one can apply the
two-sided Laplace transform to find g, thus arriving, provi-
sionally, at

F(x,pes) = —7 'w[¢, ]

X8 (s~ 1 +8(6—1) +8(s+ Pl
To limit 5 to (0,0 ) We can treat spin — 1 about e as spin }

about — e and so replace the product w[ ¢, ]6(s + 1) occur-
ring above by w{¢_ . ]6(s — 1). This gives

—mF =w[¢.]6'(s—1)
+{wlde] +w[¥_ 138G — ). (3)

This refinement of f to F to include spin intensity as well as
spin direction does not affect essentially the arguments that
the two dynamical principles are satisfied, though the gener-
alized functions make precise formulation of these principles
more difficult.

(4)

IV. THE WIGNER-O’ CONNELL PROBLEM FOR fand F,
AND THE STRATONOVICH DISTRIBUTION

Though satisfactory dynamically, and in the case of ¥
probabilistically also, fand F may be criticized in relation to
what may be called, on account of its importance in their
joint paper,’ the Wigner-O’Connell property. This property
concerns the integral, over the distribution space, of the
product of distributions corresponding to two states; it as-
serts that this integral is proportional to the transition prob-
ability between the states. But for fand F the integral is in
fact proportional to A + B, where, using (w,) for
Su*(x)v(x)dx and |u,v|* for | (u,0)|?,

A= (7" ") + (¥ ¥ )|2
and
B= ¢ P+ 190 4 P+ 9w P+ s
For the property to apply unmodified, B would have to be
absent. Features of 4 4 B are that it vanishes if and only if
the spinor wave functions are “strongly orthogonal,” i.e.,
each component of the first is spatially orthogonal to each
component of the second; that it attains its maximum 2 ifand
only if the states are not only identical but also have definite
spin; and that it has value 1 for the orthogonal (but not
strongly orthogonal) case when the states have identical
space factors and definite but opposite spins (e.g., ;" =1,
Y =0, ¢;" =0, ¥; =1¢). In the case of F, of course, the
product to be integrated does not strictly exist; however,
using for the & function any of the usual smooth approxima-
tions, and for &' its derivative, makes the terms involving
§{8'(s — 1)}°ds swamp the others, leading in the limit to
proportionality (by an “infinite constant”) to 4 4 B.
Many properties of f(x, p, ) apply just as well, or with
slight changes, to f* = Af+ (1 — A)f, where f is obtained
from fat any x, p by averaging over e. Some examples follow.
(i) The two dynamical principles are satisfied, with
S = 3/(24) in the second.
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(ii) If we integrate f* over p at a given x, we get a simple
distribution over e which is symmetrical about the principal
direction of spin at x and which has the same shape for every
x. In particular, where the principal axis is in the + z direc-
tion, the density of this distribution is proportional to
1+Acosé.

(iii) The Wigner-O’Connell integral is proportional to
a linear combination of 4 and B.

(iv) The right expectations for powers of spin compo-
nents can be obtained by refining f* to F* via f*g* (s)—with
the difference, important in the discussion below, that in the
general case, as opposed to the A = 1 case above, &' (s + 1) as
well as &' (s — 1) appears in g*(s).

The case A = /3 is if special interest. Then f* is the
expression, though not in the formalism Stratonovich® used,
for his distribution. And, as we shall see, f*, though not F*,
then satisfies the Wigner—O’Connell property. It should be
said that in Stratonovich’s approach S ( =+/3/2) was in
effect chosen before A and in no sense represents a kind of
spin intensity differing from 1 as might be said of the value
§ =3 associated earlier with the 4 = 1 case. Here 1/3 ap-
pears in the coefficient of cos @ in the function representing
§, because of certain orthonormality conditions which make
use of the equality of the integrals of (1/3 cos #)2 and of 1
over the sphere. From (ii) above one can see that in the case
of spatially similar states of definite but opposite spin re-
ferred to earlier, and which make 4 =0 and B =1, the
Wigner—O’Connell integral for f has as a factor the integral
of (14+1"3cosf) (1 —+v'3cos8B) over the sphere, and
hence vanishes. This implies that in the linear combination
referred toin (iii) above, B must be absent, so Stratonovich’s
distribution satisfies the Wigner—-O’Connell property.

On the other hand, in F#, obtained from f“g*(s) by re-
casting negative values of s as positive ones associated with
the opposite direction, 5’ (s — 1) multiplies a linear combina-
tion of f*(x, p, ) and f*(x, p, — e), compared with f*(x, p,
e) only in the earlier 4 = 1 case. This complication becomes
important when two such distributions are multiplied, and
prevents the simple Wigner—-O’Connell property for £¥ be-
ing carried over to F . Indeed, if one accepts the grounds
for adopting F* rather than f*, the Wigner—-O’Connell ap-
proach favors Frather than F V3, for, though neither satisfies
the desired property, F leads to a simpler modification of it.

V. INTUITIVE AND OTHER ASPECTS IN
STRATONOVICH’S FORMALISM AND THE PRESENT
TREATMENT

The problem solved earlier through replacing f by F
does not arise in Stratonovich’s formalism which does not
require cos” & to appear in the function associated with s,”.
Though the association of § sin & cos ¢, § sin & sin ¢, 1 cos 8
withs,, s,, s, was suggested by “the direct physical meaning
of the concept ‘spin,” ” he remains free within his formalism
to obtain correct values for expectations by associating with
s," the expressions (4)” cos 8 or (4)" when n is odd or even,
which comes close to direct use of the operator equality
8,2 = 1. There is precedent of a sort for this in the Wigner
distribution already in the one-dimensional case; when con-
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sidering, say, ((p*+x?)"), only for n =0, 1 should
(p* 4 x*)" be used in conjunction with the distribution. On
the other hand the distribution was constructed so that for
the basic variables x and p (and indeed for linear combina-
tions of them) a naive connection of this sort held for all
positive integer n. The fact that §," is equal to a scalar multi-
ple of §, or of the identity does not mean that such a naive
program is unsuitable when we include spin—it just means
that the distributions will be such that multiplying them by
(s cos )" and integrating produces the same results as mul-
tiplying by (1)" or by (1)"~ 's cos 6 and integrating.

While Stratonovich’s formalism is not naive in the above
sense, some of his statements are compatible with a naive
view. Thus, “the ‘representation distributions’ of course do
not give an entirely classical interpretation of quantum the-
ory, but they provide a basis for that interpretation of quan-
tum theory which has maximum closeness to classical ideas
and thus has the greatest physical-intuitive meaning.” And,
characterizing the limitations of Moyal’s notions,® insofar as
Moyal had hoped they would apply to variables with no clas-
sical analog, Stratonovich says: “..with a discrete set of
characteristic values of the ‘basis’ operators one must not
restrict the distribution to the discrete values only, but must
include the continuous spectrum in the treatment.”

Using a three-dimensional instead of a two-dimensional
manifold for the spin vector takes these ideas a stage further
than Stratonovich himself did. In the actual form of F, or of
FY3 his restriction of s to } is in a sense vindicated; but the
presence of the 8" function makes a crucial difference from
the sense in which he accepted this restriction.

Vi. POSTSCRIPT: THE DOUBLY SPINNING ELECTRON

In Sec. I1I negative values of s were temporarily allowed
as a device to obtain a solution for g (s). To obtain F, negative
spin about e was understood there as merely another way of
referring to positive spin about — e. Whether this equiv-
alence amounted to a complete identity was of no conse-
quence in the dynamical and probabilistic features then un-
der discussion. But for the Wigner—O’Connell property the
integrand is bilinear in the distribution and it does matter
whether (i) s is limited, as in Secs. III and IV, to [0, ) or
(ii) s ranges, as in this section, over ( — o0, ) while F* is
taken as a product f*(x, p, e)g*(s).

Alternative (ii), which might be called the doubly spin-
ning electron, is capable, in contrast to (i), of satisfying the
Wigner-O’Connell property; this is achieved by taking the
Stratonovich value A = /3. There then appears to be a good
case for adopting this as the definitive extension of the
Wigner distribution to a particle of spin 1.

However, once we grant a mysterious distinction in spin
space between (e, s) and ( — e, — 5), both of which corre-
spond to the same point of (s,, s, 5, ) space, why should the
distinction be allowed only within the distribution? For ex-
ample, why should f*(x, p, — e)g*( — s) not represent a
different state from f*(x, p, €)g*(s) even though they corre-
spond to the same spinor wave function? In that case we
would have two distinct states where we now admit one, and
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for an n electron system 2" states where we now have one. We
should then need a stronger exclusion mechanism than Fer-
mi-Dirac statistics to generate Pauli’s principle. The real
question may be, is the doubly spinning electron merely a
formal devices to save the Wigner—O’Connell property, or
can it offer new insights?
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APPENDIX: THE SCULLY AND SCULLY~-MOYAL
KERNELS

Scully’s paper® contains a recipe for a distribution over
5., 8,, and s,. For ease of comparison with a formulation
containing explicitly as few hidden variables as his purpose
will allow, he concentrates on functions of s, and s,. With
this restriction his recipe leads in the spin-up case to a proba-
bility distribution assigning equal probability to values
( £ 4, 4) for (s,, 5,), and zero probability to other (s,, s, ).
As this gives correct expectations for s,.” and s,”, and for
powers n = 0,1,2 of spin components about other directions
in the xz plane, it may serve a worthwhile purpose in the
context in which Scully introduces it. However, it fails to
give correct expectations for higher powers of spin compo-
nents about oblique directions.

Whens,, 5, and s, are all included, his recipe yields, in
the spin-up case, equal probabilities for ( & 1, 4 1,1) where
the two + signs are independent, and zero probability for
other (s, s,, s, ). This is more obviously unacceptable, as it
treats unequally different directions making the same angle
with the z axis. Furthermore, when taken in conjunction
with spatial variation so as to deal with states with different
principal spin directions at different points, it does not satis-
fy the first dynamical principle (Wigner’s) of Sec. I1, though
it does satisfy the second.

Scully’s procedure involves at a certain stage the kernel

eié’ oxei'r]a’yeig’az

or better, such a product averaged over the different orders
of the factors. Here o, o,, o, are Pauli matrices. In consid-
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ering one-dimensional motion a somewhat similar averaged
product is
%(eiaieiﬁﬁ + eiBﬁeiai) .
Taking the trace of its product with the density matrix and
applying a suitable Fourier transformation from a, 3 tox, p
yields the one-dimensional Wigner distribution.
In this case the averaged product is identical with
oitas+ P

But, owing to the commutation relations between pairs of
0., 0,, 0, being of a different form from that connecting %
and p, the Scully kernel above is not the same as

ei(gax + 1o, + 5o)

This last expression may be called the Scully-Moyal kernel,
being similar in some ways to expressions used in conjunc-
tion with Fourier transformations by Moyal® to yield
Wigner-type distribution functions. We can apply appropri-
ate Fourier transformation, and selection of the 1,1 element
(i.e., taking the trace with density matrix [ ¢ ], for the
spin-up case) to the Scully-Moyal kernel, as Scully did to his
kernel. When this is done one finds, instead of the unsatisfac-
tory distribution mentioned above, a distribution over spin
magnitude s and spin direction e, proportional to

(1+cos )& (s—1) +28(s—1),

where 6 is the angle between e and the z direction. This is
identical with that associated with the distribution denoted
by F in the body of the paper [see Sec. I1I, Eq. (5)]. Thus,
indirectly, Scully’s work can be said to lend support to the
kind of distribution considered in this paper; and in particu-
lar to the choice of A = 1 rather than A = v/3 in F4, suggest-
ed at the end of Sec. IV.
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A new method is presented to study supersymmetric quantum mechanics. Using relative
scattering techniques, basic relations are derived between Krein’s spectral shift function, the
Witten index, and the anomaly. The topological invariance of the spectral shift function is
discussed. The power of this method is illustrated by treating various models and calculating
explicitly the spectral shift function, the Witten index, and the anomaly. In particular, a
complete treatment of the two-dimensional magnetic field problem is given, without assuming

that the magnetic flux is quantized.

I. INTRODUCTION

Since the first observation of fractionally charged states
in certain field theoretic soliton models,’ various techniques
to obtain a more detailed understanding of that phenomenon
have been developed.” Furthermore, the possible phenome-
nological realization of these states in one-dimensional poly-
mers such as polyacetylene strongly stimulated this develop-
ment.>®

Among the different existing approaches’ the treatment
of external field problems offers the simplest possibility to
study fractional charge quantum numbers. In this context,
one starts from a Dirac operator with some external poten-
tial with nontrivial asymptotics. For example, in one dimen-
sion this can be realized in the easiest way by considering the
following operator, acting on two-component wave func-
tions:

m A* d

e _(A —m)’ 4= dx +4
where ¢(x) and m(x) are space-dependent “mass” terms.
Nontrivial (solitonlike) asymptotics is then expressed by
lim, , , _ #(x) =¢,,in comparison with the trivial case
lim,_ , . #(x) = ¢,. Since, in a field theoretic context, the
transition from one case to the other corresponds to the pas-
sage from one representation of the canonical anticommuta-
tion relations to an inequivalent one, the relative charge is
usually defined through a regularization procedure. It turns
out that under suitable conditions on the Dirac Hamilto-
nian, the charge is given by half of the associated 7, invar-
iant, %712

(L1)

# On leave of absence from Institut fiir Theoretische Physik, Universitit
Graz, A-8010 Graz, Austria.
¥ Laboratoire associé au CNRS.
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The method described above (for m = 0) is closely con-
nected with supersymmetry, a subject of current interest in
different fields of physics.'*!* Indeed, the Hamiltonian de-
fined as

A*4 0 )
(1.2)

—02=
H=0"= ( 0 AA4*
represents two Schrodinger operators, 4 *4 and A4 *, which
are non-negative and which have the same spectrum, except
perhaps for zero modes. The investigation of such supersym-
metric quantum mechanical models is important. They
serve as a laboratory to test and to understand supersym-
metry breakdown in realistic field theories.>'*'® Further-
more, they provide a simple recipe for generating partner
potentials, which can be used successfully in many physical
problems. See Ref. 13 and references therein.

To study supersymmetric systems, Witten'® introduced
a quantity A, counting the difference in the number of bo-
sonic and fermionic zero-energy modes of the Hamiltonian.
This quantity, called the Witten index, has to be regularized
if the threshold of the continuous spectrum of 4 *4 (44 *)
extends down to zero (see, e.g., Refs. 2 and 16—-19). Here we
will use the resolvent regularization, viz., Ref. 17,

A=limA(z), (1.3)

A(Z) = —zTr[(A*4 —2) "' — (4A* —2)"'].

When A4 is Fredholm (i.e., if and only if the infimum of

the essential spectrum of 4 *A4 is strictly positive), this index
A equals the Fredholm index i(4)=[dim Ker(4)
— dim Ker(4 *)]. When 4 is not Fredholm, this equality is,

in general, destroyed and A can become noninteger; in fact, it
can be any arbitrary real number,?° due to threshold effects.

®© 1987 American institute of Physics 1512



Fractionization of A has been seen explicitly in a number of
examples,>820-25

In this paper, we develop a new method to study super-
symmetric quantum mechanics without assuming the Fred-
holm property for the operator 4. This method, based on
relative scattering techniques (Levinson theorem-type argu-
ments, etc.), has the advantage of being simple and math-
ematically rigorous at the same time. In particular, we derive
a relationship between Krein’s spectral shift function®s-2#
and the Witten index A. Furthermore, we show how the
topological invariance of the (resolvent) regularized Witten
index leads to the corresponding invariance of the spectral
shift function itself. These new results offer a useful tool for
explicit model calculations. To illustrate this, we discuss sev-
eral examples in detail. A short account of this work has
appeared in Ref. 20.

The rest of this paper is organized as follows: In Sec. II,
we recall the basic properties of Krein’s spectral shift func-
tion, £(4), A the energy, and its connection with (modified)
Fredholm determinants.?®! In Sec. I11, we consider super-
symmetric quantum mechanical systems. We prove that un-
der certain conditions on the Hamiltonian, the Witten index
A is given as (minus) the jump of the spectral shift function
£(A) at A = 0 and that the axial anomaly & (Refs. 17 and
32) is equal to the limit of £(4) as A —» . Furthermore, we
use the topological invariance of the resolvent regularized
Witten index under “sufficiently small” perturbations to de-
rive the corresponding invariance of Krein’s spectral shift
function itself. Finally, we discuss the spectral asymmetry
7., associated with @Q,, in terms of £(4). Section IV illus-
trates the power of our method in explicit calculations by
treating a number of models. Using the connection between
Fredholm determinants and Wronskians®? or exploiting the
topological invariance discussed in Sec. 111, we calculate in a
straightforward way Krein’s spectral shift function, the Wit-
ten index, and the anomaly for various examples on the line
and on the half-line. Furthermore, we analyze the supersym-
metric system describing a particle in a two-dimensional
magnetic field without assuming the magnetic flux to be
quantized. In this case, our method is the first rigorous and
nonperturbative one that shows that the spectral shift func-
tion is piecewise constant, and thus that both the anomaly &/
and minus the index A are equal to the flux. Also, the spec-
tral asymmetry for the corresponding two-dimensional Q,,,
model is calculated.

We end this introduction with the remark that Secs. III
and IV are completely self-contained, so that they may be
read independently of Sec. II, which offers a full account of
the more technical results needed in the paper.

1. FREDHOLM DETERMINANTS AND KREIN'S
SPECTRAL SHIFT FUNCTION

In this section, we present a full account of those basic,
more technical results on Krein’s spectral shift function and
its connection with Fredholm determinants that we need in
the rest of the paper. We start by introducing the following
hypotheses. For any result, only some of the hypotheses will
be assumed.
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Hypothesis (i): Let 7 be some (complex, separable)
Hilbert space, let H;, j = 1,2, be two self-adjoint operators
in & such that (H, —z,) ™' — (H, — z,) " '€ % (7)) for
some z,ep (H,) Np(H,).

[Here % ,(5°), pell,0) denote the usual trace
ideals®' and p(-) denotes the resolvent set. ]

Hypothesis (ii): In addition to Hypothesis (i), assume
that H;, j= 1,2, are bounded from below. Suppose that
H, = H,+V,, (here + denotes the form sum), where V',
can be split into two parts, V,, =v,,u,, such that
u,(H, — z) " 'v,, is analytic with respect to zep(H,) in the
% (%) topology and such that wu,,(H,—zy) },
(Hy — z) " '0,,€% ,(#°) for some zyep(H,).

Clearly, Hypothesis (ii) resembles the Rollnik trick of
splitting a self-adjoint multiplication operator V(x) into
V(x) = |V(x)|"?|V(x)]""? sgn V(x).>* Next, we introduce
a “high-energy”’ assumption of the following type.

Hypothesis (iii): Assume Hypothesis (ii) and

lim det[1+ ulz(Hz—Z)_lvn] =1.
|z] =

Imz#0

Finally, we introduce two assumptions which will allow
generalizations in the sense that the Fredholm determinant
used later on can be replaced by a modified one. This gener-
alization is critical in higher-dimensional systems where Hy-
pothesis (iii) is known to fail (cf,, e.g., Refs. 35 and 36).

Hypothesis (iv): Suppose Hypothesis (ii) is satisfied ex-
cept that u,,(H, —z) ~'v,, is now assumed to be analytic
with respect to zep (H,) in the % ,(#°) norm.

Hypothesis (v): Assume Hypothesis (iv) and

lim det,[1 4 u,(H,—2z)"'v,]=1.

Imz#0
We first recall the following.

Lemma 2.1: Assume Hypothesis (i). Then there existsa
real-valued measurable function £,, on R (Krein’s spectral
shift function?~2®) unique a.e. up to a constant with

(@) (1+ 1) 7'¢el '(R) ;
(b) Tr[(H, —2) ™' — (Hy—2) ']

2.1y

= —J‘d/{glz(i)(i‘z)_zy ZGP(Hl)mP(H2);
R
(2.2)

(¢) if §, (1) denotes the on-shell scattering operator for the
pair (H,H,), then

det §), (1) = ¢~ 2™t
[0. (-) denotes the absolutely continuous spectrum].

For a proof, see, e.g., Refs. 37 and 38. For an appropri-

ate class of C'(R) functions ® with &(H,)
— ®(H,)e% (), one gets similarly

for a.e. Aeo, (H;) (2.3)

Te[®(H,) — D(H))] =J A EL MR (24)
R

(cf. Refs. 37-39). Finally, the invariance principle for wave
operators can be used to relate £, associated with (H,,H;)
and £ §, corresponding to (P (H,),P(H,)) by*’

£1p(A) =ET(P(A))sgn(P" (1)) - (2.5)
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If H;,j = 1,2, are bounded from below, we define £,,(41) =0
to the left of the spectra of H, and H, in order to guarantee
uniqueness for £,,. For connections between Levinson’s
theorem and £,, see, e.g., Refs. 28, 40, and 41.

Example 2.2: Let H, denote the Friedrichs extension of
(—d?/dx* + a/x")| cg oy INL*(R), @> —} and

d- (2.6)
H=_-2_ . )
2 dxz H*(R)
Then the on-shell scattering operator S;,(4) in C* reads*
S12(/1) =((1) (l))e—iﬂ[(a+l/4)"2+l/2]’ /1>0 (27)
Thus
0 A <0,
=1 2.8).
£ ={(, e dso. 2.8
and, e.g.,
Tr((H,—z)"' — (H,—2z)" "]
=(a+1H"%2"", zeC\[0, ). (2.9)

By a Laplace transform, Eq. (2.9) is equivalent to a result of
Ref. 43. If H, equals the Neumann instead of Friedrich’s
extension of ( — d%/dx? + a/x*) ]C;(R\{O}), a> —1, one

obtains*?

0, A<0,
512(/1)={~(a+£)1/2’ A0,

Next, we recall*®?® the following.

Lemma 2.3: (a) Let U,GCC be open, Ae % , (#°) for
some pe[ 1,0 ), and 0(4) CUCG, where dUis compact and
consists of a finite number of closed rectifiable Jordan curves
(cf., e.g., Ref. 44) oriented in the positive sense. [Here o( )
denotes the spectrum and dU denotes theboundary of the set
U] Let £ G-C be analytic with f(0)=0. Then

fA)eB, ().

(b) LetA4: [a,b} — # ,(F°) be continuously differentia-
ble in the % ,(#°) norm. Let U,,,, ,0(4(¢))CG, where
G CCis open. Let f: G—C be analytic with f(0) = 0. Then

4@ | eapy
dt

(2.10)

%Tr[f(A(t))] =Tr | f1(A(2)

(c¢) Let GCC be open, and 4: G- Z ,(F7°) be analytic
in the % ,(5°) norm. Then det[1 + 4(z)] is analytic with
respect to zeG and

iln det[1 +A4(z)]
dz

=Tr[[1+A<z)]—1%], — leold (),
dz
zeGG . (2.11)

Lemma 2.3 immediately implies the following.
Lemma 2.4: Assume Hypothesis (ii). Then
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Tr[(H, —z)7' = (H,—2)""]
= ——d—ln det[1 + u,,(H, —2) " v,,],
dz

26p(H,) Np(H,) . (2.12)

Proof: By Lemma 2.3, cyclicity of the trace, and the re-
solvent equation one gets

iln det[1 + u,,(H, —Z)—lvlzl
dz

=Tr{[1 + uy,(H, —2) ‘v, 7wy (H, — 2) 700}

=Tr{(H, — z) "', [1 + u,(H, —z) " 'v;,] 7}
Xu,(H, —z) 7'}

= —-Tr[(H, -2)""'—(H,—2)""],
zep(H)Np(H,) . O

In order to connect Krein’s spectral shift function with
Fredholm determinants, we formulate the following.

Lemma 2.5: Assume Hypothesis (iii) and assume that
(1+|-])7'€,,eL '(R). Then

J dAEp(A)(A—2)"!
R

=Indet[1+ u,(H,—2) " 'v,], zep(H)Np(Hy) .
(2.13)

If, in addition, &,, is bounded and piecewise continuous on
R, then

[£2(A1) +8(A)]1/2

det[1+ u,,(H, — A —i€) "'y,

det[1 4 u,(H, — A +ie) " 'v,,]
(2.14)

= L lim In
271 €0,

AeR.
Proof: By Lemma 2.4, we have

- iln det[1 + u, (H, — 2) " 'vp0]
dz

=Tr[(H,—z)"'— (H,—2)""]

_ _ifdiglz(i)(i~z)_‘, 260(H,) Np(H,) .
dz Jr

Thus Eq. (2.13) holds up to a constant. By Hypothesis (iii),
this constant equals zero. Equation (2.14) results from stan-
dard properties of the Poisson kernel (cf,, e.g., Ref. 45). O

Without the piecewise continuity of £,,, Eq. (2.14)
holds a.e. in A€R. Hypothesis (iii) is, in general, valid for
one-dimensional systems (cf. Sec. IV) but breaks down in
higher dimensions. Thus we formulate the following.

Lemma 2.6: Let GCC be open, and 4: G— % ,(H°) be
analytic in % ,(5°) topology. Then the modified Fredholm
determinant det,[1 + A(z)] is analytic with respect to zeG
and

iln det,[1 + A(z2)]
dz

=Tr{([1 +A(2)]7' — 1)5—‘&1]
dz
- —Tr[[1+A(z)]“‘A<z> ﬂz—’—},
dz
— 140(4(2)), 26 . (2.15)
Bollé et al, 1514



Proof: Obviously Eq. (2.15) holds for A(z)e% ,(5%),
zeG. The general case follows by a limiting argument. O
Lemma 2.7: Assume Hypothesis (iv). Then

Te[(H, —2z) ' — (H,—2)"!
+ (Hy,—2) "'V, (Hy —2) ']

= ——-‘iln det2[1 + ulz(Hz__z)_lUlZ] ’
dz

zep(H ) Np(H,) .
Proof: By Lemma 2.6 one gets

(2.16)

4 Indet,[1 + u,,(H, — 2) " 'vy5]
dz

=Tr{({1 + u,(H, —2) " 'v,,] 7' = 1)
Xty (Hy —2) 70,5}
= —Tr{(H,—2)"'— (H,—2)"!
+ (H,—2)" Vi, (H,—2)7 '},
2ep(H,) Np(H,) . 0

For related work, see also Ref. 46,
Next, we assume the existence of some 7,,: [Ag,0) =R
such that

Tr[(Hz —Z)_lVlz(Hz “Z)_I]

=J dAn(AA —2)72, zep(H,), (2.17)
l()
and we define
pa §12(A) —n(4), A>4,,
A) = [ 2.18
0= e, bty

Lemma 2.8: Assume Hypothesis (v) and assume that
(1+]-])7"€26L (A, 0). Then

fdiflz(i)(l—z)_‘
R
=Indet,[1 4+ u, ,(H, —z) " w,,],

zep(H ) Np(H,) . (2.19)

If, in adddition, &, is piecewise continuous and bounded on
R, then

[E(A) +E(A)]/2

Proof: Similar to that of Lemma 2.5. 0O

Example 2.9: Let |V,,|'**eL\(R?), (1+ |-V,
€L '(R?) forsomes > 0, respectively, ¥,,€L '(R*) "R (R the
Rollnik class,* i.e.,

f d3x d| V) ||[VO) | 1x — |2 < )
"

and define in L*R"): H,= —A+V,, and H,
= — A|22gmy» # = 2,3. Then
Tr((H, —z) "'V, (H, —z) "]
N d"x Vi, (x) (2.21)
47 Jgn
—1
z 3 n=2,
X zeC\ [0,
[(2‘/—2)—‘, n=3, [0,c0)
and hence A, = 0 and (cf, e.g., Refs. 35 and 36)
712(4)
0, A<0,
== 1 1’ n=2
_—1 d™xV x[ T A>0.
47TJ|;:" 12(x) \/7/77, n=3,
(2.22)

Finally, assume Hypothesis (i) and define, for some MeR,
Ay(@)=—-C-MTr{H,—2)"' = (H,—2)""],

zep(H ) Np(H,) . (2.23)
Furthermore, define

Ay = lim Ay (2) (2.24)
z—M

|Rez — M |<Cp|Im z|

and, if in addition H;, j = 1,2, are bounded from below,

o= — lim

Z— o

{Rez|<C,|Im z|
(C,,C, positive constants). Then one has the following.
Lemma 2. 10: Assume Hypothesis (i).
(a) Let MeR and suppose that £, is bounded on R and
piecewise continuous in (M — 25,M + 28) for some §> 0.
Then

Ay =EL(M_)—£,(M,). (2.26)

(b) If H;, j= 1,2, are bounded from below and if £,, is
bounded and lim;_ _ &,(1) = £,,( ) exists, then

Dy (2) (2.25)

1 .. det,[1 4+ u, (H, — A —ie) " vy,]
—_—— 1 1 2 12 2 12 . _
2t e—lgi " det, {1 4+ u,(H, — A +i€) 'vy,] & =E1(w) . (2.27)
(2.20) Proof} Choose € > 0 sufficiently small,
1]
M+ €
Ay(z)=(z—-M) dAEL(A)A—2)"2 40z~ M)
M€
M+ €
=8(M_) —5L(M,) + (Z—M)f dA [£12(A) — £ (M) (A —2)~2
M
M
+(z—-M) dA [£12(A) —§L(M_)](A—2)"2 4+ 0(z— M) .
M—¢€
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Now

M+ €
f A [En(A) — Ea(M )]z — MY (A — 2)~2

M

M+ €
:J- dA [£1,(A) —ELM )IH{(Rez— M)[(A —Rez)®> — (Imz)?] — 2(4 — Rez)(Im z)?}
M

M+ €

X [(A —Rez)? + (Imz)21—2+ff

M

+2(1 —Rez)(Rez — M)Im z}[ (A — Rez)? + (Imz)?] 2.

For example, the real part in Eq. (2.28) yields

dA [£12(A) — &, (M) H{(Im2) [(A — Re z)* — (Imz)?]

(2.28)

R

|Im z| |Im z|

X [€1{(p|Imz| + |Rez— M|)sgn(Rez — M) + M) —&,(M )y (1) —0

IMz)=]—~|Rez—M|/|Imz|,

asz—M and [Rez — M |<C,y|Im z|,

f[esgn(Rez — M) — |Rez — M |]/|Im z|]

by dominated convergence. (Here y, denotes the characteristic function of the interval /CR.) The same analysis applies for
the imaginary part in Eq. (2.28), proving Eq. (2.26). Similarly one proves Eq. (2.27). a

. SUPERSYMMETRY AND KREIN’S SPECTRAL SHIFT
FUNCTION

In this section we consider general supersymmetric
quantum mechanical systems and we establish a basic rela-
tionship betwen Krein’s spectral shift function §,,(4) and
the Witten index, and between &,,(A) and the axial anoma-
ly. Furthermore, we discuss the topological invariance of the
(regularized) Witten index and the spectral shift function.
Finally, the spectral asymmetry for Q,, -type models [cf. Eq.
(1.1)] is related to &,,(A).

Let A4 be a closed, densely defined operator in & and
define the “bosonic,” respectively, “fermionic”” Hamilto-
nian H, and H,, by

H =A*4, H,=AA*. (3.1)

The corresponding supercharge Q and the supersymmetric
Hamiltonian H in 7% @ 7 are, respectively,

0 A* H, 0
QZ(A o)’ H=Q2=(o1 Hz)'
Assuming Hypothesis (i) throughout this section, Witten’s
(resolvent) regularized index A(z) is defined by’
Az)= —zTr [(H,—2) "' = (H,—2)7'],
2eC\ [0, ), (3.3)
and Witten’s index A (Ref. 16) is given by (cf. Sec. II)

(3.2)

A= lim
z-0
|Re z| < Cy/Im 2|

(for some C,>0) whenever the limit exists. Instead of the
regularization (3.3 ), one could as well consider a (heat ker-
nel) regularization A(s) of the type

A(z2) (3.4)

A(s) =Trle " —e ] | 530, (3.5)
and define Witten’s index by
A = lim A(s) . (3.6)

S o0
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In order to avoid technicalities, we restrict ourselves to Cal-
lias’s regularization (3.3).

As a first result, we try to relate A and the Fredholm
index [(4) of A: We recall an operator is Fredholm*’ iff 4 is a
closed operator with a closed range such that dim Ker(A4)
and dim Ker(4 *) are finite. The Fredholm index i(4) is
then given by

i(A) = dim Ker(A4) — dim Ker(4 *) . 3.7)

We remark that A is Fredholm iff 4 * (or 4 *4) is.*” In addi-
tion

dim Ker(4) = dim Ker(A4 *4) (3.8)
implying that
i(4) = dim Ker(H,) — dim Ker(H,) . (3.9)

Thus i(A4) describes precisely the difference of bosonic and
fermionic zero-energy states (counting multiplicities).

We emphasize that we shall also use definition (3.7) for
i(A) in case A is not Fredholm. Of course, in this case i(4)
might lose some of the typical properties of an index.

We state the following.

Theorem 3.1: Assume Hypothesis (i) and suppose 4 is
Fredholm. Then

A=1i(4). (3.10)
Proof: We only sketch the major step. The fact that H;,
Jj = 1,2, are Fredholm guarantees an expansion of the type

—z[(H, o (Hz“z)ﬁl]
=P —P,—z S 2[T7+ = T7*) (3.11)
n=20

valid in the % ,(#°) norm. Here P; denotes the projection
onto the eigenvalue zero of H;,j = 1,2, and T, is the reduced
resolvent, viz., Ref. 47,

Ty=n—lim (B, —2)7'[1-F], j=12. (3.12)
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Taking the trace in Eq. (3.11) and observing that
Tr{P-P,] =i(A) (3.13)

completes the proof. O

What happens if 4 is not a Fredholm operator? Before
trying to answer this question, let us consider an equivalent
definition of the Fredholm property of 4. Since 4 *4>0 and
A is Fredholm iff 4 *A is, we get the criterion that 4 is Fred-
holm iff info (4 *4) >0 [0., () denotes the essential
spectrum]. The examples of the next section show that, in
general, equality (3.10) is violated if 4 is not Fredholm. In
fact, A may take on half-interger values in the first four ex-
amples of Sec. IV, whereas in the fifth example it can even
take on arbitrary real values (see also Ref. 20).

To study also these non-Fredholm cases we now intro-
duce Krein’s spectral shift function £,, associated with
(H,,H,) as discussed in Sec. II. We always assume Hypothe-
sis (vi). Assume that £,, (or £,,) is bounded and piecewise
continuous on R and £,,(4) = 0for A4 <O0.

As can be seen from Lemma 2.5 (Lemma 2.8), this es-
sentially requires continuity of the trace-norm (Hilbert—
Schmidt norm) limits #,,(H, — A Fi0) ~'v,, with respect
to A<R. This can be checked explicitly in concrete examples
(cf, e.g., Sec. IV).

Let us denote the threshold of H; by

S =info., (H,) = (inf o (H)) . (3.14)

We observe that H, and H, are essentially isospectral*® (cf.
also Ref. 50), i.e.,

o(H)\{0} = o(H,)\{0}
and
H,f=Ef, E#0
implies H,(Af) = E(Af), fcZ(H)),
Hg=E'g, E'#0
implies H,(4*g) =E'(A*g), geZ(H,), (3.15)

with multiplicities preserved. Under the additional assump-
tion that

Y =info, (H;) [ =info, (H,)] (3.16)

and that, e.g., u,,(H, — A — i€) " 'v5, A>3, has & ,(F)-
valued limits as € »0__ and that the exceptional set

§={I>3|3 7, f£0

with u,(H, —A —i0) "', f= —f} (3.17)
is discrete (cf., e.g., Refs. 31 and 51), we get
0, A<0,
£12(A) =4£1,(0,), 0<A<Z, (3.18)

— (2mi) 'Indet S;,(4), A>Z.

The simple structure in Eq. (3.18) follows from the fact that
the effects of all nonzero bound states of H, and H, cancel
since they occur with the same multiplicity in both H, and
H,.*® Under suitable conditions on ¥,,,3"*! the on-shell S
matrix S,,(A) is continuous in trace norm in A >3 [with
det §,,(A) 0], implying continuity of £,, for A > =. [If
3 =0, then the second line of the rhs of Eq. (3.18) should be
omitted. }
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If we define the axial anomaly & by (cf. Refs. 17 and
32)

A = — lim

Z—

|Re z| <C\{Im z|
(forsome C, > 0) we obtain from Lemma 2.10 the following,
Theorem 3.2: Assume Hypotheses (i) and (vi). Then

A(z) (3.19)

A= —£,(0,). (3.20)
If, in addition, lim,_  &,,(A)=¢£,,( ) exists, then
o =E&,(0) . (3.2

If 250, then — £,,(0, ) describes precisely the difference
of zero-energy bound states of H, and H, (counting multi-
plicity) since £),(4) = 0forAd <0. Thus — £,,(0,) =i(4)
in agreement with Theorem 3.1. If £ =0, then £,,(0,)
might be fractional due to threshold resonances or bound
states of H, or H, or due to relative long-range interactions
as shown in Sec. IV.

We also recall that by Lemma 2.5, £,, can be recovered
from the Fredholm determinants by

[§12(/{’+) +§12(/1—)]/2
_ 1 lim In det[1 4 u,(H, — A — i€) " 'v,,]
2mi -0, det[1 4+ u,(H, — A + i) " 'v,,]

(3.22)
assuming Hypotheses (iii) and (vi) and (14 |-])7'&),
€L '(R). Under the same assumptions, A(z) is given by [cf.
Eq. (2.13)]

A(z)= —zTr[(H,—z)"'— (H,—2)7']

=ziJ A £V (A —2)~!
dz Jr

=z§—1n det[1 + up,(H, —2z) " 'v;,], zeC\[0,00).
'z

(3.23)

We omit the corresponding generalizations based on Hy-
pothesis (v) in terms of modified Fredholm determinants. If
an expansion of the type

det[1 4+ u,(H, —z) " 'v;,] =2°[1 + O(z)] as z-0
(3.24)

holds, then obviously
A=«a. (3.25)

In the same way, a high-energy expansion determines the
anomaly .

Next, we turn to an important invariance property of
A(z) under sufficiently small perturbations of 4. Let B be
another closed operator in & infinitesimally bounded with
respect to 4, and introduce on & (4),

A; =A+ BB, PBeR. (3.26)
The quantities H, 3, H, g, U155, V12,8 12,5, and A(3,2) then
result after replacing 4 by 4;. We have*® the following.

Theorem 3.3: Fix z,eC\ [0, o0 } and assume that
(i) (Hyp—20) 7' — (Hyp — 20) " '€RB (F)

for all BeR ;
(ii) B*B(H,—z,)"", BB*(H,—2z)) '€Z (F),
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[A*B+ B*41(H, —z,) ",
[A4B* + BA*1(H, —z,) " '€e# () ;
(iii) (H; —z,) " 'B*B(H, —z,) "',
(H, —z,) " 'BB*(H, —z,) '€ (),
(Hy—2)) '[A*B+B*4 |(H, —z,)~",
(H,— 20) "' [AB* + BA*1(H, — 2) '€ ,(¥) ;
(iv) (H,—zy) MB*(H,—2z)) MeRB ()
for some MeN .
[Here # ,(7) and # _, (") denote trace class and com-
pact operators in 7, respectively.] Then

A(B,z) =A(2),

i.e., the regularized Witten index is invariant against small
perturbations B of the above type.

Since a more general result (where 4 acts between dif-
ferent Hilbert spaces 5" and &#”) has been proven in Ref. 48,
we only formally indicate the proof: By conditions (i)~(iii)
one proves that the function

F(B2)=Tr[(Hyp—2)""— (Hyy—2)""],

zeC\[0,0), pBeR, (3.27)

zeC\[0,0) , (3.28)

is differentiable with respect to S with derivative

ad
— F(p,
% (B.2)

= —Tr{(H, 5 —2) " [A%B+B*4;|(H,; —2)""

—(Hy3 —2)"'[AgB*+BA}(H,5 —2)"'}.
(3.29)

Using the commutation formulas*®
(AJA; —2) T "ARCAY(AgAl —2) 7",

(Agd % —2) Ay CAz (A %4, —2)~", zeC\[0,0),
(3.30)

and cyclicity of the trace, the two terms on the rhs of Eq.
(3.29) cancel. Thus

9 _F(Bz) =0,

B
implying the desired result F( £,z) = F(0,z). Conditions
(iii) and (iv) enter in a rigorous derivation of Eq. (3.31).4®

The result (3.27) yields the topological invariance of
the regularized index A(z) in the concrete examples of Sec.
IV (cf. also Ref. 52). Moreover, it proves the topological
invariance of A and .« whenever the limitsz—0and z— « of
A(z) exist. In the case where 4 is Fredholm, the invariance
of the Fredholm index /(4) (and thus of A by Theorem 3.1),
ie.,

i(4+BB) =i(4),

BeR, zeC\[0,x), (3.31)

BeR, (3.32)

under relatively compact perturbations B with respect to A4 is
a standard result.*” Equation (3.27) works without assum-
ing A4 tobe Fredholm, but needs much stronger assumptions
on the “smallness™ of B than just relative compactness.

Another application of Eq. (3.27) concerns the invar-
iance of Krein’s spectral shift function. In fact, we get the
following.

Theorem 3.4: Assume Hypothesis (vi) with 4 replaced
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by dg and (1 + {-[)7'[§ 12,5 — £12)€L '(R) for all BeR. If
conditions (ii)—(iv) of Theorem 3.3 hold, then
[£102,p(A) —E(A D]+ €A ) —£(A )] =0,

(3.33)
for all B, A€R. In particularif £ |, 4, feR, and £, are contin-
uous at a point A€R then

§12,5(/1) =£&,(4), PeR. (3.34)

Proof: Equations (2.2) and (3.27) together with the
Lebesgue dominated convergence theorem imply

0=J A (£ g (D) = Ea(A) ] (4 — 2) 2
R

ZiJ.dA [§l2,/3(/l)'_§lz(/{)](i_z)~l (3.35)
dz Ju

and hence

f QA (£ s (D) — Ex(D](A—2)"" =0
R

by taking |z| —» oo, Im z#0. Thus Eq. (3.33) results from
standard properties of the Poisson kernel (cf., e.g., Ref.
45). O

In the first four examples of the next section, £, 4 (4)
coincides with a multiple of the relative phase shift between
H, and H, and the Fredholm determinants in Eq. (3.22) are
expressed in terms of Wronski determinants. In these cases
the topological invariance property of A(z) and £,,(A4) can
be established by simple and explicit calculations.

Finally, we note that the following family of operators in
Ko

o.=(3 2.

H, + m? 0
H =02 =( 1 ), 0},
m=0Qm 0 H, +m? meR\{0}
(3.36)

can be treated analogously. In order to illustrate a simple
application of the above results, we briefly discuss the invar-
iance of the spectral asymmetry n,, (Refs. 7 and 9) under
“small” perturbations. Under suitable conditions on H,,
[cf., e.g., Eq. (3.17) ], the (regularized) and spectral asym-
metry can be defined by

N, = lim 7, (), (3.37)

=0,

N (1) =Tr[ Q. H ;e """], meR\{0}. (3.38)

(This definition resembles the ones available in the litera-
ture, e.g., in Refs. 2, 8, 12, 53, and 54.) Since

Tr[Q,, (H,, +2)'e” "]
=mTr [(H, + m?+z%) " le"Hi+m)
— (Hy+m? 4 2%) e O]
we can rewrite Eq. (3.38) in the form
N (8) = m Tr[(H, + m?) ~"/%e " Hitm
— (Hy + m?) ~ Y21t m ]

and, using Eq. (2.4),

>0, (3.39)

(3.40)
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N (2) = mJ dA £,,(4) ——d— [(4 —|—m2)"1/2e—t(/1+m2)] )
0 dA
(3.41)
This implies

= _%fo g +m) . (342)

Obviously, Egs. (3.41) and (3.42) imply the invariance of
7.. With respect to the substitution 4 —Ag =A+ BB asa
consequence of Theorem 3.4.

IV. SPECIFIC MODELS

We present a series of examples of explicit model calcu-
lations which illustrate the practical use of the abstract re-
sults of the foregoing section.

Example 4.1: Let 7 = L*(R) and

d

A=(—+¢) H>'(R) » (4‘1)
dx
where ¢ fulfills the following requirements:
&,¢'eL> (R) are real valued
lim ¢(x) =4, R, ¢~ <¢* ,
X— + oo
fdx(l 4 x)F ) | < o0 s (4.2)
R
+ o
j—_J‘ dx(1+ |x|)|p(x) — ¢, | <.
0
In this case, H, and H, explicitly read
d? . ,
B= (=L 48+ (18 =12,
(4.3)
Then
A(Z) — [¢+(¢2+ _Z)—1/2_¢_(¢2_ __Z)—IIZ]/Z ,
zeC\[0,0) , (4.4)
and hence
A=[sgn(¢,) —sgn(¢_)}/2, & =0, (4.5)

TABLE L. Zero-energy properties of H, and H, in example 4.1.

£(A) =77 HO(A — ¢% ) arctan [ (4 — ¢%, )"/%/¢, ]
—60(4 — ¢ ) arctan[ (4 — ¢* )"*/4_]}
+0(A4)[sgn (¢_) —sgn(4,)1/2,
¢_7#0, ¢.+#0,
£12(A) =77'0(4 — ¢% Harctan[ (4 — ¢2, )'%/6 . ]
— 6(4) [sgn(4.,)]/2,
¢_=0, ¢,#0; AeR.
[Here (x) =1 for x>0 and 6(x) =0 for x<0 and
sgn(x) = + 1 for x20 and sgn(0) = 0.] Equations (4.4)—
(4.6) clearly demonstrate the topological invariance of these
quantities as discussed in Sec. I since they only depend on

the asymptotic values ¢ . of ¢(x) and not on its local prop-
erties. In fact, replace ¢ (x) by ¢(x) + By(x), BeR, where

(4.6)

Y'el *(R) are real valued,
P(x), ¥ (x) =0(|x| 7>~ °)

for some €>0 as |x|— 0 .
4.7)

Then the perturbation B [cf. Eq. (3.26)] given by multipli-
cation with ¢ leaves the regularized index invariant since the
hypotheses of Theorem 3.3 are satisfied.

Concerning zero-energy properties of H;, j = 1,2, see
Table I.

These zero-energy results easily follow from the fact
that the equations

Af=0, A*=0 (4.8)
have the solutions
Sx) =f(0)exp( - f dt¢(t))
0
=0(e ’*") as x- + w0, (4.9)

8(x) =g(0>exp(f dt¢(t)) =0(**") as x> + o0 .
(o]

In order to derive Eq. (4.4), we introduce Jost solutions
S+ (z,x) associated with H,j=1.,

Zero-energy resonance

Zero-energy bound state

of H, of H, a, (H,)N{0} o, (H,)N{0} A i(4)
é_<0<d, no no @ 1 1
¢, <0<¢_ no no {0} -1 ~1
$..6_>0
or no no ¢ 0 0
$.6_<0
é_=0,¢4,5%0 yes no # %Sgn(¢+)
¢_=¢,=0 yes yes [ 0 0
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ik
fiy (@x) =e*"2"

4+ o
—J dx' k D'sin[k_, (x—x")]

X[ (x) = + (= 1V ()] S, (2X),
zeC, j=12, (4.10)
where
k, 2)=—-¢* )", Imk,_>0. (4.11)
The corresponding Fredholm integral equation reads

fiy 2x) = (T (2)]17 fi, (2.x)

— fn dx' g,(z.x,x')[ — 26" (X)) i . (2Xx),

zeC\o, (Hy), z44 , (4.12)
where
&(zxx) = — [W(f,_(2), /o (D)) 7!
{/“(z,x)fz_(z,x') , x>x,
o (z.x) o (zx"), x<x', (4.13)

zeC\o,(H,), z#¢> ,
&(2)=(H,—2)"", zep(H,),

and T,,(z) denotes
T,(z) = W(fo (@), o @V W(fi-(2), [1.(D)),
zeC\o,(H,), z#¢> . (4.14)
Here
W(F.G), = F(x)G'(x) — F'(x)G(x) (4.15)

denotes the Wronskian of Fand G. { For more details on one-
dimensional systems with nontrivial spatial asymptotics, cf.
Ref. 23.) As can be seen, e.g., from Eq. (4.12), the relative
interaction ¥, reads
Via(x) = —24'(x) . (4.16)
Our first main step to derive Eq. (4.4) now consists of
the observation that

W(f1~(z)’ﬁ+(z))
W(fa_(2), oy (D)
=det[1—2|¢'|'* sgn(¢")g,(2)|#'|'"*] ,

zep (Hy), z#4 , (4.17)
such that (cf. Lemma 2.4)
Te{(H,—2)" '~ (H,~2z)7"]
~ 2, PN/ @) 00,00
dZ W(fz—-(Z),f2+(Z))
(4.18)

Equality (4.17) can be proved along the lines of Ref. 33
using Egs. (4.10) and (4.12) (cf. Ref. 23).

Next, we note that Eq. (3.15) also holds for distribu-
tional-type (e.g., Jost) solutions of H, and H,. In fact, as-
sume that f,(z,x}, z+#0, is normalized according to Eq.
(4.10), i.e.,

fir @)= 4o(1) as x— + oo,
then (4f, , ) (z,x) asymptotically fulfills
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Af ) zx)=(xik, +¢,)e" " 10o(1)
as X— + o0 .

Thus

{f;i (zx)

Lr@x)=(xik, +¢ ) ASf, )(zx), z#0,
(4.19)

are correctly normalized Jost solutions for H, and H,. Equa-
tion (4.17) thus becomes
det[1—2]¢'|"* sgn(8")g,(2)[¢'|'"*]
=(—ik_+¢_ )k, +S IW(fi_(2),f,.(2)
X [W((Af,2)(2),(4f1,.)(2)] 7", 2eC\[0,0) .

(4.20)
Finally, a straightforward computation yields
W((Af)(z) ,(4g)(2)) =zW (f(2).g(2)), zeC,
4.21)

where f,g are distributional solutions of

(A *4AyY(2))(x) = —¢P"(z,x) + [¢°(x) — &' (x) ¥ (z,x)

=zip(z,x), zeC. (4.22)
Consequently, Eq. (4.20) becomes
det[1—2|¢'|'"* sgn(4')g,(2) [¢']'"*]
=(—itk_+¢_ )k, +é,)/z, zeC\[0,0)
(4.23)

and Eq. (4.4) follows from Egs. (3.23) and (4.23).

The result (4.4) was first derived by Callias,'” and since
then by numerous authors,>?%11:18.21.22.25.55 While our deri-
vation is close to that in Ref. 22, it seems to be the shortest
one since the trick based on Eq. (4.21) explicitly exploits
supersymmetry and avoids the use of an additional compari-
son Hamiltonian in the approach of Ref. 22.

Next, we discuss an example on the half-line (0,0 ).

Example 4.2: Let 77 = L (0,0 ) and

d -
4= (~— + r))
dr #
where ¢~5 fulfills the following requirements:
é,4'cL =(0,0) are real valued,

(4.24)

HE'(0,00) ?

lim ¢(r) =d,eR, Lim @(r) = PR,

r— o0 r—04

- i (4.25)
J drr(l+nr)jd'(MNl <o,
(4}

f drr(l+r)|<;5(r)—-—¢z+{<oo.
o

In this case, H, and H, read
H —(—d—2+<32—(ﬁ’)
' dar P

where F denotes the Friedrichs extension of the correspond-
ing operator restricted to C § (0,00 ) and

(4.26)
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2
H=-°"_+1+#4+4,
P dr2+¢ +¢

D (H,) ={geL’(0,c0)|g.8'€4C,,. (0,0 ) ; (4.27)
g(0,) —g(0,)=0; g'eL?(0,:0)},

With AC . (a,b) the set of locally absolutely continuous

functions on (a,b). Then |

_ [0 — ) arctan[ (A — 8%, )1/8, ] + ()0~ $,), ., %0,
£1n(d) = #

0(A)/2, é,=0; AeR.

Again, Eqgs. (4.28)—(4.30) exhibit the topological invar-
iance of all these quantities since only ¢, enters. [ The argu-
ments in connection with Eq. (4.7) can easily be extended to
the present situation.] Concerning zero-energy properties,
see Table I1.

Inorder toderive Eq. (4.28), we introduce the Jost solu-
tions

iy (2r)
=eiik+’—f dr'k 3 'sinlk, (r—r")]

X[$(F) =% + (=1 ()] f. (zr),
2C, j=1.2, (4.31)
where

ko(z) =(z— ¢ )"?, Imk, >0,

and the regular solutions

(4.32)

U(zr) =k !sin k+r+f ar'k sin[k_ (r —7)]
(o]

X [62(F) — % — ¢ ()] ¢i(2r),

U, (z,r) =cosk,r+ dok Tlsink,r
+J dr k 7'sinlk, (r—7r")]
0

X [¢~§2(r’) — $2+ +¢~5'(r')] ,(zr), zeC.
(4.33)
Using again Eq. (3.15), we assume that f, 4 (27, z#01s
normalized according to Eq. (4.31), i.e.,

+ik _r

fio (zr) =e="*" 4+ 0o(1)
Then (Af, , ) (z,r) fulfills

as r— oo .

TABLE I1. Zero-energy properties of H; and H, in example 4.2.

Zero-energy
resonance Zero-energy bound state
of H of H, o,(H)N{0} o, (H,)N{0} A i(4)

$.>0 no  no & & 0 0
b, <0 no no ¢ {0} -1 -1
b, = no  yes ® ¢ -4 0
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A(z) = (z/2)(8, —z)72 g, + (A —z)'2] -,

zeC\[0,0) , (4.28)
and hence
—[1—sgn($. )12, ¢,+0,
A:[_%’ 55+=0» o =1,
(4.29)
(4.30)

[
Af, )@@ = (tik, +¢,)et™  +0o(1) as r— oo
such that the Jost functions

{flt (z,r),

for @GN =(xik, + )7 Af . )(zr), z:£0,
(4.34)

are correctly normalized. Similarly, we assume that i, (z,7),
z#0 fulfills

Yi(zr) =r+o(r)
Then

(A, (z,7) = 1 4 o7 + 0(r)
and thus

{1/’1 (Z)r) )

1/12(er) = (Awl)(z;r) s Z#O,

are correctly normalized regular solutions of H, and H,. The
rest is now identical to the treatment of example 4.1. First of
all, one derives, as in Eq. (4.18) (cf,, e.g., Ref. 30)
Tr{(H, —2z)"'— (H,—2z)""]

iln W('pz(z),f2+(2))
dz W(¢1(2),ﬁ+(2))
Then one calculates, as in Eq. (4.21), that

W((A4¥,)(2) ,(4f1.)(2) ) =zW(¥,(2), f,.(2)), zeC.
4.37)

We now consider a generalization of this example which
allows us to discuss n-dimensional spherically symmetric
systems (cf,, e.g., Refs. 2 and 13).

Example 4.3: Let 77 = L%(0, ) and

d
1= (5+9)
where ¢ fulfills the following requirements:
$(r) =@r ™' +(r), Go<—1,
$.$'eL= (0,c0) are real valued,

as r-0, .

as r-0_

(4.35)

, zeC\[0,00).

(4.36)

(4.38)

C&0,00) ?

r>0,

lim gZ(r) = ¢~S+eR R

r— o

F dr W, (N(|¢'(N] +r7Y¢(r) — )<, (439)
0

f drW, (n|¢(r) —d.|<w,
(o]

and the weight function W, is defined by
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r(t+r) if go< —14,
W, (n=|r(1+|lnr?, 0<r<i if go= —4,
r(1+r), r>i.

(4.40)
Now H, and H, are given by
H, =(—d—2+¢2+ (— 1)/‘¢’) , j=12. (441
dr F

Explicitly, we have
J

A) = .
() [—9(,1)/2, $.=0; AeR.

The topological invariance in Egs. (4.43)-(4.45) is obvious.
(See Table I11.) If ¢ = 0, the result A = Jis not due to a
zero-energy (threshold) resonance, but due to the long-
range nature of the relative interaction ¥,(r) =2¢r~>
+0(r72) as r— . Since Eq. (4.43) is independent of ¢,
this result holds in any dimension >2 and for any value of the
angular momentum.

In order to derive Eq. (4.43), one could follow the strat-
egy of example 4.2 step by step since formula (4.36) remains
valid in the present case for suitably normalized Jost and
regular solutions (although we are dealing with a long-range
problem!). To shorten the presentation, we will use instead a
different approach based on the topological invariance prop-
erty of A(z) and £,(A) (this approach obviously also works
in example 4.2). Indeed, because of Theorem 3.3, it suffices
to choose ¢(r) = ¢, >0 in example 4.3. Then

H; =(—11—2+ [45 — (—1Ygo]r?
! a7

+2¢0d r 7+ B )F , j=12 (4.46)

[cf. Eq. (4.42)] and hence®®
FR ' 4271 — 1Y — ¢y + i(¢0%+/k+))
rQ~'+271(=1Y — ¢ — i(gop . /K ))

Xeiﬁ[z_“(_l)jz-‘+¢()]’ A>(Z2+ R j= 1,2
(4.47)

S;(A) =

[k, (A) defined in Eq. (4.32)] implying

TABLE II1. Zero-energy properties of #, and H, in example 4.3.

704 — @2, ) arctan[ (1 — 8%, )V/$, ] — 6(1)6(4,), .70,

G(r) T ¢ (r) = (82 + do)r 2+ 2pop 7!
+ 84 + () — ¢, Fo (1

+28,[6(r) — g 1r", r>0. (4.42)
Then
A(2) = (z/2)(F, —2)"" [, — ($4 —2)'?] 7",
2eC\[0,00) (4.43)
and hence
_ [ +sgn(6)1/2, ¢.#0,
A_[%s &+=O’ /=4
(4.44)
(4.45)
—
S12(A) =8;(A)S,(A) !
= (b, —ik )/ ($, +ik,), A>¢ .
(4.48)

Equation (4.48) proves Eq. (4.45). Now Eq. (4.43) follows
by explicit integration (Ref. 57, p. 556) in Eq. (3.23).

The result (4.43), in the special case &(r) =0, has been
discussed in Ref. 21 by different methods.

Next, we briefly discuss nonlocal interactions.

Example 4.4: Let 5 = L*(0,0 ) and

d

A :;17 HE(0.0) + B, (4.49)
where
B, A*BAB*<# {L*(0,0)) . (4.50)

In this case the assumptions of Theorem 3.3 are trivially
fulfilled, and hence Egs. (4.28)—-(4.30), in the special case

&é(r) =0, hold. In particular
A(z)=A= —}, zeC\[O,0), & =}. (451)

In order to illustrate the possible complexity of zero-energy
properties of H, and H, in spite of the simplicity of Eq.
(4.51), it suffices to treat the following rank 2 example:

B =a(f)f+B(&)g, aBeR,
f8eCi(0,0), f>0,8>0, fi#g. (4.52)
By straightforward calculations, one obtains the informa-

tion contained in Table IV. Here the following case distinc-
tion has been used:

TABLE IV. Zero-energy properties of 4, and H, in example 4.4.

Zero-energy

Zero-energy

resonance Zero-energy bound state resonance Zero-energy bound state
of H, of H, o,(H)N{0} 0,(H)N{0} A i(4) of H ofH, o,(H)N{0} o,(H)H)N{0} A i(4)
$,>0 no no {0} & 1 Casel no yes ¢ é —14 0
é, <0 no no ¢ ¢ 0 Case Il yes no ¢ {0} -1 —1
b, = no  no ® r) 5 Case Il no  yes {0} {0} -3 0
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case I, Y (a,B)#0;
case II, W¥(a,B) =0,

a#2G( 0 ){F()[(£G) — (g,F)1}7Y
case III, W(a,B) =0,

@ =2G(0){F(0)(£,G) — (&)}
where

F(x) =f ax' fix'y, G(x) =J dx'g(x"),
0 0

Y(a,B) = [1+a(fR)][1 +B(gG)] — aB(£,G)(gF) .
(4.53)

Finally, we consider in detail the following two-dimensional
magnetic field problem.
Example 4.5: Let % = L*(R?) and

A= [(—1id,—a,)+i(id,+ aZ)”c;(m ,  (4.54)
where
0= (04—, d="", j=12, (4.55)
Ox;
and ¢ fulfills the following requirements:
#cC?(R?) is real valued,
$(x)= —Fln|x| + C+O(|x]) " *,
(Vo) (x) = —F|x|7>x+O(|]x] ="', (4.56)

C,FeR,
(A®)' 2, (14 ||°)(Ad)eL '(R?)

€>0 as |x|>«,

for some 6>0.

Then
H=[(—-V-—a)?—=(—=1VYbllgug,, j=12,
(4.57)
where
b(x) = (d1a, — d,a))(x) = — (Ad)(x) . (4.58)
Introducing the magnetic flux F by
F=0Q2m '] d*b(x) (4.59)
-
we obtain
Azy=A= —F, zC\[0,0), & =F, (4.60)
£,(1) =FO(1), AeR. (4.61)
Moreover, we have
i(4)sgn(F)
= 0( — F)dim Ker(4) — 6(F)dim Ker(4 *)
—Nif |[F|=N+e€, 0O<e<l,
B [ ~ (N—ll)| if tFT:N, <N:N. (4.62)

Since Eq. (4.62) has been derived in Ref. 58 (cf. also Refs. 8,
24, and 59-62), we concentrate on Eqgs. (4.60) and (4.61).
For this purpose we first study a special example (treated in
Ref. 63). Let

— (Fr*/2R*), r<R,

¢(R,r)={_ (F/2)[1 +1In (/R %],

r>R, R>0,
(4.63)
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and denote the corresponding Hamiltonian in (4.57) by
H;(R), j=1,2. Next, define U,, €>0, to be the unitary
group of dilations in L *(R?), viz.,

(U.g)(x) =€ 'g(x/€), €>0, geL?*(R?).
Then a simple calculation yields

UHR)U;'=€¢H (eR), ¢R>0, j=12.
(4.65)

If we denote by S,,(R), the scattering operator in L *(R?)
associated with the pair (H,(R),H,(R)), then S,,(R) is de-
composable with respect to the spectral representation of
H,(R)P,.(H,(R)) [P,. () is the projection onto the abso-
lutely continuous spectral subspace]. Let S,,(4,R) in
L2(S") denote the fibers of S;, (R ), then Eq. (4.65) implies

S1,(AR) =S8,(€4,R /€) ,
§12(A’R)=§12(62}‘,R/€), A>0.

Applying now Theorem 3.4, we infer that £,,(4) cannot
depend on R > O as long as Fis kept fixed in Eq. (4.63). Thus
Eq. (4.63) implies £,,(1) = £,,(€°1), A >0, which in turn
implies that £, is energy independent.

We will give two methods of computing this constant
value of &,,, the first using heat kernels, the second, resol-
vents.

Method 1: By Eq. (2.4)

(4.64)

(4.66)

Trie H — e~ ) = —tf e "¢, (A)dA
0

= —£,,. (4.67)
Let Hy= — Ay, . We will prove that
lim [Tr(e=* — e~ )] = ~IF. (4.68)
110
This, with the analogous calculation for H,, yields
E=F. (4.69)

—tH,

To prove (4.68), we expand e perturbatively (Du Ha-

mel expansion) and obtain

Tr(e H —e Wy =g + 8, (4.70)
a= —tTr(e ™ Hob),
¢ 4.71)
B= J s Tr(e ~sHope — ¢~ 9 by ds |
0
Since (e ~ ) (x,x) = (4mt) ™, we have
a= —z(47rt)“f b(x)dx = —\F (4.72)
Rz
so we need only show that
IimB=0. (4.73)
t10
By the Schwarz inequality
Tr(e = *Hobe — ' ~9Hip)y < y'/28'/2 (4.74)

y="Tr(e *%pb?) = (87rs)_lf b%dix,
RZ
5= Tr(e~2(t—s)H.b 2)<e2(:—s)|lbnm Tr(e—Z(t—s)Hob 2)

:e2(t—s)||b||,;(8ﬂ,(t_s))—lf b2d2x, (475)
R’
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where we have used the diamagnetic inequalities (see Ref. 59
and references therein). Thus

ﬁ<( b2d2x)e+21|yb|lm(877_)~1fSl/z(t__s)——llzds
Rr? (]
(4.76)

goes to zero as 0.

Method 2: This is essentially the Laplace transform of
method 1. Since A(z) = A is independent of z, we can calcu-
late it in the z— oo limit. To do this, we infer from the proof
of Lemma 2.7 that
A(z) =zTr [(H, —2) " "W,(H, —2z)~ "]

—zTre{[1 4+ up,(Hy, —2) " '0,] 'upp(Hy, —2) !
XUlzulz(Hz“Z)”zvlz}, zeC\[0,0) . (4.77)
Next, we employ the resolvent equation giving
(Hy—2) "W, (H, —2) ' = (Hy—2) "W, (Hy—2)""
—(H, —2) "W, (Hy—2z) "WV (Hy —2) 7}
—(Hy—2) WV (Hy—2) " Wy(H, —2) !
+(Hy—z) W, (Hy—2)""!
KV (Hy—2) " Wo(H, —2)7", 2zeC\[0,00),

(4.78)
where
Hy= — Alpzegey, , Vin(x) =2b(x),
V,=2iaV +i(Va) +a’>—b. 4.79)
Then estimates of the type*”
lw(Hy —2) T <Clwll3 21",
Imz'/?*>0, weL?*(R?), (4.80)
and, e.g.,
|(Hy —2) "'V (Hy — 2) "V (Hy — 2) 7Y,
<||(H; _Z)_I/ZH | (H, “Z)_l/zVZH
XN (Ho —2) ™ up|l; Jo12(Hy — 2) 7,
<Clz| YImz[~"%, |Rez|<C,|Imz] (4.81)

imply {cf. Eq. (2.21)] that

lim  zTr[(H, —2) "W, (H, —2)""]
|z| = o

[Re z|<C,|Im 2|

= lim zTr[(Hy—2z)" "V, (Hy—2)""]

12) = o0

|Re z|<C,|Im z|

= — (27)-1f2d2x b(x)= —F. (4.82)
Similarly, we get )
M+ upn(Hy—2) v,] " uy (Hy, —2) 7!
XU (Hi, —2) 720,
<Clluy(Hy —2) 7oyl | (Ho — 2) (Hy, —2) )P
XMur2(Ho —2) Y|, | (Hy — 2) "',
<C'lz| " Yuo(Hy — 2) " 'og,|| = 0(|2] ")
|Rez|<Cy[Im 2| .

as |z|~ o0 (4.83)

Inequality (4.83) follows from the fact that
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e
|Re z| <C;|Im z|
which in turn is a consequence of the Hankel function esti-
mate

|H§" (Vzlx —y])|?
<d,+d, (Injx —y))*, Imyz>u>0, (4.85)

and dominated convergence. Relation (4.80) then shows

luyo(Hy — 2) " 'vy5ll, 0, (4.84)

e
IRe z]<C,|Im z|
where we have again used the resolvent equation and Eq.
(4.84). Thus we have shown that A(xw ) = — & = — F,
which completes the derivation of Eq. (4.60).

The result of Aharonov—Casher®® implies that
dim Ker(H,) — dim Ker(H,) differs from A by at most 1.
It would be nice to know why this is true.

We remark that the result (4.60) has been obtained in
Ref. 24 by using certain approximations in a path integral
approach. The above treatment seems to be the first rigorous
and nonperturbative one.

To complete this discussion, we still mention that the
(regularized) spectral asymmetry, 7,, (¢), associated with
this magnetic field example (4.5) after replacing H; by
H; + m*>[Qby Q,,, cf. Eq. (3.36)] can be calculated using
the result (4.61) and Eq. (3.41). One easily gets

meR\{0}, (4.87)

containing in the limit - 0_ the known result for %,, (cf,,
e.g., Ref. 2).

N2 (H, — 2) "o, 0, (4.86)

N, (£) = sgn(m)Fe "™, t>0,
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An SU(8) model for the unification of superconductivity, charge, and

spin density waves
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A model Hamiltonian for a many-electron system which unifies superconductivity, charge
density waves, and spin density waves is analyzed. It is shown that the spectrum generating
algebra for this system is su(8), and all 63 generators of this Lie algebra are identified. The
seven symmetry operators that are broken in transition to the condensed state are identified,
together with 56 order operators, whose expectations give the order parameters of the various
phases present in the model. The discrete symmetry properties of these operators are tabulated.
A chain of subalgebras of submodels with corresponding decoupled phases is constructed.
Finally, how the finite temperature Green’s functions may be obtained and used to solve the
problem of self-consistency of the order parameters in the model is indicated.

I. INTRODUCTION

The pioneering experiments of Sooryakumar and Klein'
on the coexistence of superconductivity and charge density
wave phases, and many subsequent investigations, both
theoretical and experimental,2 have sparked interest in those
systems for which the coexistence of these and other phases,
such as ferro- and antiferromagnetic, are possible. In this
paper we give a purely theoretical description, based on the
approach of Lie algebras, to a system capable of embracing
the phenomena of superconductivity and density waves. The
model we analyze incorporates conventional homogeneous
singlet superconductivity—and, perforce as a consequence
of algebraic consistency, homogeneous triplet superconduc-
tivity. The density wave phenomena are those of charge den-
sity waves and spin density waves (antiferromagnetism)—
within the same algebraic framework it is also possible to
include ferromagnetic effects.

The approach we adopt is that of the spectrum-generat-
ing Lie algebra (SGA). Our model will be described by a
Hamiltonian H given in terms of fermion creation and anni-
hilation operators a},, a,., for electrons constituting the
electron gas in the system. Under suitable approximations,
which we detail, H becomes a sum of bilinears in these opera-
tors; and so the terms of H generate a compact Lie algebra,
the SGA of the model. For a model sufficiently general to
include the physical phenomena noted above, the algebra is
su(8).

The advantages of this algebraic approach are manifold.
First, the various phenomena are synthesized into a single
structure in which their relationships are transparent. The
most striking example of this is the relationship between the
existence of singlet superconductivity and density waves on
the one hand, and triplet superconductivity on the other.’
Another example is the description of the large number of
“order operators”—these are operators whose expectations

* Permanent address: Faculty of Mathematics, Open University, Milton
Keynes, MK7 6AA, United Kingdom.

® Permanent address: Department of Physics, City College of the City Uni-
versity of New York, New York, New York 10031.
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give the order parameters—which it would otherwise be dif-
ficult to classify. Second, although such a complex system
does not lend itself easily to explicit calculation, the exis-
tence of low-dimensional faithful representations (8 X 8 ma-
trices in the case of the full system, smaller matrices in the
case of subsystems) simplifies explicit calculation of such
physical quantities as spectra and phase coexistence boun-
daries, as we have previously illustrated in the simpler super-
conductivity-charge density wave su(4) case,* as well as se-
lection rules’ for various transition processes.

Third, this model may be regarded as unifying a variety
of submodels, obtainable as subalgebras of su(8), which de-
scribe interesting physical systems of one or more phases,
many of which have been previously treated separately in the
literature.® Finally, within the context of mean field theory,
where our model is firmly situated, finite temperature effects
may be treated using the thermal Green’s function method,
and problems of self-consistency may also be tackled in this
manner. We touch upon these questions in the final section
of this paper.

Il. MODEL HAMILTONIAN

Our starting Hamiltonian is a conventional sum of con-
tributions from kinetic energy, superconducting, and den-
sity wave terms, thus

H = Hyg + Hsc + Hpw, (2.1)
where

Hye =Y e(k)aj,a,, (2.2)

H. =Y A¥(k)ay,a_,, +Hec, (2.3)

Hyw =Y 7, (k)af , g0,a, +H.c. (2.4)

In the above, af,, is the fermion creation operator for an
electron in the Bloch state labeled by wave vector k with spin
o and energy €(k). We have the anticommutation rule

{a,,.0] o} = 8418, (2.5)
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with other anticommutators zero. The BCS parameter
A, (k) may be taken complex, as may the density wave cou-
pling constants ¥, (k). Here Q=2k; is the characteristic
wave vector of antiferromagnetic order, where k. is the Fer-
mi level. We have implicitly summed over the spin indices
(understood) in Hyy,, and over the index ¢ = 0,1,2,3; we
include i = 0 corresponding to a ¥, charge-density wave
coupling, while ¢, (i = 1,2,3) is the spin-density wave term.

In principle, the summations in the above terms are over
all k values. However, we now effect a considerable simplifi-
cation, which leads to a decoupling and eventual algebraic
solvability, by assuming that our model is quasi-one-dimen-
sional, with no contributions from terms for which |k | > Q.
The first two terms (2.2) and (2.3) may then be rearranged
by use of the identity

S 1) =3 L) + A — ) + ) + A~ B,
jys) (")

where k=k — Q; and a similar reduction of (2.4) leads to
the model Hamiltonian H = EZF___ oH(k), where

H(k) =e(k)(al,a,, +a" r,a_1,)
+ e(k) (af,az, +a' ga_z,)
+ Afa,a_,, + Ata_,,a,,
+ Ag*ag,a_g, + Aj*a_¢,az, + Hec.

+ ‘}/‘ua};a Uzﬁa;B + YMaT— ka Uzﬁa — kB + H.C.
2.6)

Here, as throughout the paper, we sum over repeated in-
dices. We allow a k dependence of the BCS singlet gap pa-
rameter A,, and so write A, for Ay(k), and A for AO(I?).

Wenotethat [H(k),H(k'")] = Ofor k,k '€[0,kg ] sowe
have decoupled the Hamiltonian into a direct sum. As in
Ref. 7, where we treated Hy,y, in more detail, we now define
the set {B,(k)} (i = 1,2,...,8) by

{Bi (k)} = {ak 1 ’aT_. k139% 1 ,aT— %3k, ,a*_ k19%, ,aT_ k1t }
2.7)

From (2.5) we have {B,,B [} = 8, whence the operators X,
=B B, generate the Lie algebra gl(8) with commutation
relations [X;,X,;] =68, X; —6,X,;. The Hamiltonian
H(k) in (2.6) isalinear sum of Hermitian combinations and
has trace zero since €(k) = €( — k); therefore H(k) may be
considered as an element of su(8). The spectrum-generating
algebra (SGA) of the model Hamiltonian H is thus a subal-
gebra

® 8y © B su(8) i,

with each g, isomorphic to a fixed Lie algebra g (which we
shall call the SGA of our model). We shall determine g later;
we show that the presence of singlet superconductivity and
spin density waves is sufficient to generate the whole su(8)
algebra. This very rich rank-7 algebra possesses, in a Cartan
basis, seven mutually commuting operators, which we inter-
pret as conserved quantitites (above the transition tempera-
tures) that are no longer conserved in the various phases
present in the model below the appropriate transition tem-
peratures; and 56 other basis elements which are putative
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order operators, whose expectations are order parameters
for the corresponding phases.?

The bulk of this paper will be devoted to exploiting the
algebraic consequence of this system of operators. We com-
mence by introducing some notation. Define the Pauli ma-
trices

_(1 0) 01

=01/’ T‘=(1 0)’

T2=( _l) r=(1 0)
i 0 4 3 0 —1 ’

and the 4 X 4 matrices

S;=%T0XT,», T,«=%7',X7‘,-,
Ui =irX7, W, =}71XT7, (2.8)
E =irX7, (i=123).

The set (2.8) provides a “Nambu basis” for su(4) (Ref. 5).
The basis for su(8) that we shall use is given by
{Sxr,,Tx7,, UX7,, WX7,, EXT,, I X7}

(x =0,1,2,3). (2.9)
Here 7 is the 4 X 4 identity matrix. This is effectively a triple
Nambu representation. The algebrasu(8) ,, is generated by
{2, BI(k)M ;B;(k)} (r = 1,...,63), where M }; is one of the
63 Hermitian matrices defined in (2.9).

If we take the standard representation of the gl(8) alge-
bra generated by X,; (k) =B [(k)B, (k),

X (k) =e
where

(e)im =04, (i, jim =1,2,...,8),

then (2.9) is a basis for a representation of su(8) ,,; we §\ha11
consistently denote this representation by a circumflex . In
this representation the number operator N = ZN(k), where

ijs

Nk)= 3 (ala0ra + 0" 1 _ia

a=1,}
+ atqaz, +a a0 _z,) (2.10)
is given by
N (k) =1 X715 wherelisthe 4X4 unit matrix.
The spin operator 2, o(k), where
o(k) = Z (alaoﬂﬁakﬁ +at kao"“’(r_kB
a,B
+ aiaoﬂﬁa;ﬂ +a' ;aO'aBa_;B),
is given by
(61(k),65(Kk),65(k)) = (E; XT3, EyXT3 E3X7,). (2.11)

(The spin matrices o0, are defined as usualby o, =47,.)
Introduce the operator

1
S(k) = 5 z [alatie + 0" 10t o
a=1,}
- (aiaaza + aT— ka9 _ ka ) ]
represented by
S(k) =S, X 75
We may now rewrite the Hamiltonian (2.6) as

(2.12)
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H(k) =1 (e+€)N(k) + (e — €)S(k)
— AoDy(k) + Ay D (k) + Hec.
+ 7., (k) +Hec. (2.13)

In (2.13) we have introduced a scalar, complex supercon-
ducting order operator

Do(k) :aLatkt +atkTaL (2.14)

[o(k), Dy(k)] =0,
x_vith asimilar expression for D { (k) in which & is replaced by
k. We have also introduced a complex charge-spin density
wave order operator I, (k), defined by

T, (k) =al,00az; +a' z,0%%a _ 4. (2.15)
The u = 0 scalar component is the charge density part,
while the 2 = 1,2,3 vector components refer to the spin den-
sity wave. The real and imaginary parts of I',, (k) are two of

a quartet of density wave order operators '\, fully defined
in Sec. III, which satisfy

[o,T§”] =0, [0,T5] = iey,,, T\, (2.16)
where ¢, is the permutation symbol on /m,n = 1,23,
a=12,34.

In the representation with basis (2.9) and number and

spin operators repesented by (2.10) and (2.11), respective-
ly, these order operators are given by

Do = (B, + Wy) X1 (1, + iry),

- (2.17)
D<’):(E3—W3)><% (7 +iry) |
€ — 4, L1(vo+7a) 0
— A* —€ 0 — 1o —73)
Y+ 0 ¢ — 4
o 0 — 4 =D — AF* —€
0 0 Wy +iyy) 0
0 0 0 — 3y + ira)
1k +iv¥) 0 0 0
0 — 30T + %) 0 0

I1l. THE ORDER OPERATORS

We now analyze the Lie algebra su(8) with basis (2.9).
This rank-7 algebra has seven Cartan (diagonal) elements
and 56 off-diagonal elements. If 4 is a Cartan, ¢ is a typical
nondiagonal element satisfying the canonical rules

[he] =de (4 #0),

we see that in an eigenstate | )of 4, (Je|) = 0. The root vec-
tors ¢, and linear combinations of such root vectors, are or-
der operators for eigenstates of 4. Their expectations are the
order parameters which vanish in states for which 4 is a
conserved operator. The eight Cartan elements for the u(8)
algebra generated by the B }‘Bj of (2.7) may simply be writ-
ten BB, (i = 1,...,8); or more physically 7, the number
operator for K,o0 (K= + k&, + k, o =1,1). In terms of the
basis (2.9), the Cartan elements are
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and
{f‘oyfbrz’FS}
= {% (S —i8) X713, § (T + iT,) X735,
1(U, +iU,y) X735, } (W, + iW,) X7} (2.18)

We may now rewrite our starting Hamiltonian (2.6) in the
representation with basis (2.9) as

IA{:IA{KE +ilsc +IA{SDW +flcpw, (2.19)
Bz = €+ €)AIXT3) + (€— )8 XT5,  (220)
ﬁsc = —(a+a')(E;XT)) + (@' —a)(W;XT1))
+ B+ B )E;XT) + (B—B")(W3XT1),
(2.21)

A

Hspw = Rey (T X73) + Re p, (U X 73)
+ Rey3 (W X75) — Im y (T, X73)

—Im 9, (U, X 73) — Im y3( W, X1), (2.22)
ﬁch = Re 7,(S, X73) — Im ¥,(S; X 73). (2.23)

In (2.21) Ay=a +if, Ay =a'+iB’. The expressions
(2.22) and (2.23) give the spin density wave and charge
density wave terms, respectively. The operators in (2.20)-
(2.23) are only part of a full system of order operators for
this model. We define and examine the full system of order
operators in the next section. In the meanwhile we write
down for reference the matrix for the Hamiltonian (2.19) in
the basis (2.9):

0 0 YWy — i) 0

0 0 0 =y~ irs)
Wy —iy®) 0 0 0

0 —irr—i) 0 0

€ A, (Yo —73) 0

A} —€ 0 — 3o+ v3)
JE — D) 0 € A

0 —i(yE +vH AR* —¢€

N=1IXry P=28,%X7S8=8,%X"s,
F=2E,X1, (=253),
E, X713, WyX7y5 W3XT;5

We have already introduced the number operator AV, the dif-
ference of k,k number S =1 (N, — Nz), and the third com-
ponent of spin o3 in Sec. II. (This last plays the role of a
ferromagnetic order parameter F.) The matrix P represents
the momentum operator. [ In the case of u(8) we would have
additionally the unit matrix 7 X 7.]

We now illustrate a useful algebraic method for obtain-
ing the order operators Q, corresponding to a given quantum
observable 4. The operator 4 is assumed to be one of the
operators conserved in the lower symmetry phase; we take it
to be one of the elements of the Cartan subalgebra, and there-
fore diagonal in our representation. From the above re-

3.1)
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marks, the Q are the elements of the Cartan ba51s that donot
commute with A. Defining the centralizer of has

su(8) (h) = {XESU(S): [x,h ]= O},

we see that the set of order operators we seek is precisely the
complement in su(8) of this centralizer, C{,, (h). In addi-
tion, one may readily obtain such centralizers by the follow-
ing method®: Let the matrix M in the defining representation
of the group U(n) be diagonal, with the eigenvalue multi-
plicities m,m,,...,m , wherem, + m, + -+ + mg = n. The
little group of M is U(m,) @ U(m,) ® -+ @ U(my). Trans-
lating this result to the present Lie algebra context, if the
diagonal matrix 4 has eigenvalues with multiplicities
my,m,,...,mg, where m, + m, + -+ + mg = 8, then

Cues (il) =u(m,)du(m,) @ - eu(mg).

For the case of su(8) the corresponding result is

Coucsy (B) =slu(m,) & -+ @ u(m,))

~u(l)esu(m,) e - asu(m,).

As an example, take for our quantum observable /_the num-
ber operator V. This is represented by the matrix N=1 X Ty
[Eq. (2.10) }; we have m, = m, =4, and so
Cuuisy (N) = u(1) ®@su(4) ®su(4).

Taking the complement, we find by this means 32 N-noncon-
serving operators C'(N), which split into 16 superconduct-
ing D opgrators C'(N) NC(P), and 16 anomalous 4 opera-
tors C'(N) NC'(P). There are 16 density-wave I operators
C(J/Y ync’ (P), and /{inally eight ferromagnetic F operators
C(NYNC(PYNC'(F). The first three sets of operators di-
vide naturally into scalar plus vector quartets as follows:

superconducting order operators:

5,&” = (E3sXT1, ~EX71, E; X1}, 1IXT)),
ﬁf) = (E3 X1y, —E;XT1y E X1y LI X7Ty), (3.2)
DY = (= Wixr, UsXt, —TyXr, —8;X7),
DW= (= WyX7y UXty — TyXTs S3X70);
charge-spin density wave operators:
PO = (= 8,xr, TiX7s UyXrs, WX,
f(z) (81X 735, TyX13 Uy XT3 WaXTo), (33)
I‘"’ (Sy X7, TyX7g Uy X719 WyXT3),
I“f[” =(—=8,X71o T1 X715 U X7o WiXT5);
anomalous-order operators:
AD = (Wyxry, —Uxry, TiX7y, $,X73),
AD = (W, X1y, —UpXry TyXts —SX70),
2;3’—(-— W, X1y, — U/ X1y T\ X7y —S8,XT7), G4
2; )= (=W X1y —U,XTy, ThoxX1y, S3X7,);
ferromagnetic order parameters:
{ELE, T3, U} X {70,735} (3.5)

are simply the off-diagonal elements of the ferromagnetic
subalgebra which is their closure, namely
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{E ,EQE, T3, Uy, W3k X {10,73}. (3.6)

This algebra is the su(2) @ su(2) ®su(2) @ su(2) generated
by

{aoa,, a' ,0a_,, dioaz, a'_zoa_z},

four independent spin algebras. Corresponding to four lin-
early independent combinations of these spins, we may de-
fine the operators o from (2.11) and ¢'¥, ¢, ¢® from
(5.10) below.

IV. DISCRETE SYMMETRIES
A. Parity inversion =

This is defined by 7a,, 7" = a _,,, where 7 is a unitary,
linear operator. Acting on the B basis (2.7) we have

7(B,,B,,B;,B,)m" =B} ,B{,B],BY).

We may represent this action as an 8 X 8 matrix
7Bt = ZA,]-BJT,
7

where
A =71 X1yXTy.

The action on a bilinear in B, Z; m;B [B, (withtr m = 0) is
easily calculated to be

7(B'mB)rt = — B1AmAB,
where 77 is the transpose of the 8 X 8 matrix m. Thus in the
8 X 8 representation of Sec. II (2-8 et seq.) parity inversion
corresponds to

m— — AmA.
B. Time inversion 7~

This is defined by 7 a,, 7 =2, (i1,) o @ _ 1y, Where
7 is a unitary, antilinear operator. Acting on the B basis of
(2.7) we have

I (B,BB3,B;Bs,Be,B,,Bg) T 1
= (B!,—B},B},—B};,—B},Bl,—B}.B).

We may represent this action as an 8 X 8 matrix,

=2 T,B],
7
where
T= i7'3><7-0><7'2.

The action on a bilinear 2m ;B |B; (with tr m = 0) is readily
evaluated to give

T (B'mB)7t =B Tm'TB.
In our 8 X 8 representation, time reversal corresponds to
m-Tm'T.

C. Charge conjugation ¢

From the action ¢, (x) = € ¢, (x) €1 = ¢! (x), we de-
fine charge conjugation to act on the electron destruction
operator a,, by €a,,¢"=a'_,,, where € is a unitary,
linear operator. On the B basis, we have € (B,,B,,B3,B,) €1
= (Bg,Bs,B5,B,), whence
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TABLE I Parity, time reversal, and charge conjugation properties.

Scalars
D(()I) D(()Z) Dél) D(()4) ; l"(()l) 1"32) Féj) Fé") ; A ) A (()2) A(()S) A ‘()4) ; N S P
T + + + + ; - + - ; - + - + ; + + -
g+ - + - ; + + - ; - + + - ; + + -
¢ - + - + ; - - + ; + - - + ; - ~ +
Vectors
D(l) D(2) D(S) DM) . l“(l) r(2) l"(3) I"M) A(l) A(Z) A(3) A(4) . o 0'(” 0,(2) 0.13)
T - - = =+ =4 ==+ ==y
T -+ =+ ; - -+ o+ ; -+ 4+ - ; -+ o+ -
t— DY ;7@ [LPT®] — TP
€ B,C —ZA,]B]-, [{PL.°] =i, [L{PLP] =il (5.7)
. . . . . S, P =ir?® S, TP =02,
where 4 is the same matrix as in part (i). The action on a [ST.7] o [STF] i
bilinear in B, is therefore given by [ANAN]=id[>, [INADP]=id?, (5.8)

€ (B'mB)€' =B (AmA)B,;
in our representation the effective action of charge conjuga-
tion corresponds to

m—-AmA.

We append a table of the discrete transformation prop-
erties of the 15 scalars and 48 vectors of this model (see
Table I).

V. COMMUTATORS

In (3.2), (3.3), and (3.4), writing X, =D, 4 (¥, or
r ,‘f’, the zero-component operators are the scalar quantities
satisfying

(o, X,] =0. (5.1)

Thus D §* (a = 1,2,3,4) are the ordinary superconducting
singlet order operators occurring in the (2.22), while the
I'§* are the charge-density order operators, of which the
two even-time-reversal scalars appear in (2.4). The triplet
operators satisfy

[0:,X;] = ie Xy, (5.2)
[X: X ] = iey 0, (5.3)
so that, for example, the I'{* are spin-density order opera-

tors, of which the two odd-time-reversal triplets appear in
(2.23). The operators in (3.2)—(3.4) satisfy
[DEP,T§¥] =id {® (5.4)
and
[D f"",l“j("‘)] = ley A (@, (5.5)

with two similar sets of commutators obtained by cyclic per-
mutation.
The N,P, and S operators (3.1) move one quartet of
order operators to the next, for example,
[1NDP] =D, [1NDP] =D,
(5.6)
[SD»]=iDJ>, [S:DP]=iD".

The analogous commutators for I'\* and 4 (* are
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[1PAR] =i, [\PAL] ~id (P,
The singlet and triplet components of the order operators are
related as follows:

[Dc()a)’D(a)] — l'o.(l)’

[Féa),l‘(a)] = ig®?, (5.9)
[4§,A]) =i (nosum over a).
These pseudospin triplets are represented by
6V = (E, X7y E;XTo E3XT3),
69 = (T3 X1y, UsX1o W3XTs3), (5.10)

&(3) = ( - T3><7—3’ - U3XT3, - W3><7'0).

These triplets have the following commutation relations:

[0{%,0{] = iejow,

[0:,,0!°] = iy 08, (5.11)
(19J9k; a;ﬂsy = 1,2)3)
The o’ connect triplet components with singlet, for exam-
ple:

[0'“),D (()a)] = /D@
and (5.12)

[0.(1),])(01)] —=iD (()a),
with similar relations for I'\* and 4 (.

V1. THE SPECTRUM GENERATING ALGEBRA

We may write our starting Hamiltonian (2.6) and
(2.19)—(2.23) in terms of the order operators (3.2) and
(3.3) as

H=1(e+ e’)l/\\7+ (€ — e’)3‘+ A{,""Bé“’

) B8] — ; aBY 5 (7)
[o{®,0P] = — ey e™ oy

L 4R ar
(with summation over u and o), where
{ASV, A A, AP}
={ — Re(Ay + A)),Im(Ay,A),
Re(A, — Af),Im(A; — Ag)}
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and

y ={Imy,Rev}, 7P ={Rey, —Imy}. (6.2)

From the form of the Hamiltonian given in (6.1), using the
commutation relations of the previous section, it is a
straightforward matter to determine the spectrum generat-
ing algebra g for this system; that is, the algebra generated by
the elements of (6.1). Since these are all elements of su(8),
the SGA must be a subalgebra of su(8). In fact, we now
demonstrate that the algebraic closure g of the operators
occurring in (6.1) is all of su(8). This has the consequence
that all of the 63 operators of the theory will appear in the
time evolution of the order operators already present in the
Hamiltonian (6.1). Whether they give rise to physical
phases will depend on an evaluation of their expectations in
the eigenstates of (6.1) or on a self-consistent analysis.

The generation of all su(8), for example, from (6.1)
may be seen in the following stages.

(i) Since I'\",I'(P’eH and SeH, using (5.7) we have
that all I'(*eg.

(ii) Also [[{",I?] = iey 0y, s0 o€g.

(iii) Evaluating [T'{V,['{*] = ie,, 0(" gives o'Veg.

(iv) From D {*,0"eg, using (5.12) gives all D (“eg.

(v) Using (5.4) and (5.5) we see that D [*,I"\*’ gener-
ated (7.

(vi) As in (iii)) [D{V,DP]=ieyol” and
[4(°.4 (7] =ieyof imply that all 6*“g. The 60 opera-
tors D (¥,T'(® .4 [¥,0',¢ together with the 3 remaining
Cartan operators S, N, and P= (2/i) [TV, I'(?’] exhaust
su(8).

We may note at this point that the commutation relation

G @7 — _ A
[D§.T?] iA

generates an odd-parity odd-time inversion anomalous tri-
plet term from singlet superconductivity (T'= — 1) and a
spin-density term (7= — 1). The production of such an
anomalous term has been previously noted in the litera-
ture.*?

However, even more striking is the generation of con-
ventional (Q = 0) triplet superconductivity from the inter-
action of singlet superconductivity and density waves. A
simplified model’® exhibiting this phenomenon may be ob-
tained from (6.1) by choosing A, = A (real) and y¥ =0
in (6.2). It is also sufficient to choose axes so that only
v? =42, It may be shown that the SGA of this submodel is
s0(4) & so(4). The even-time-reversal triplet superconduc-
tivity order operator D (¥ is generated as a second-order
effect of the interaction between thesinglet supercorductivi-
ty, and the charge and spin density waves; it has nonzero
expectation in the ground state of the Hamiltonian and may
therefore be considered as an observable phase.’

(1)

VIi. SUBALGEBRAS AND SUBMODELS

It is a fairly straightforward matter to obtain the spec-
trum generating algebras corresponding to submodels of the
Hamiltonian (6.1). These algebras are generated by subsets
of the 63 su(8) operators, (3.1)-(3.5). The components of
the algebras generated by the order operator terms may most
easily be calculated by taking centralizers; to these one must
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add the other terms of the Hamiltonian (such as kinetic en-
ergy N,S). We illustrate this method by obtaining the spec-
trum generating algebras of some previously noted submo-
dels.

A. Superconducting models

The order operators for superconducting systems are
defined as those which conserve momentum, but do not con-
serve number. As in Sec. III, we obtain the set {D {*’}, repre-
sented by the matrices (3.2). These may be succinctly writ-
ten as

{E’T37U3»W3»S3,I}X{7'1»7'2} (7.1)
and in this form we see that they generate the subalgebra
{E, T, U, W3} X7, U{S,, I} X7, (7.2)

which is isomorphic to su(4) @su(4). This algebra is the
semisimple component of the centralizer of momentum P in
su(8);

Cousy (P) ~u(l) &su(4) esu(4).

As this su(4) @ su(4) algebra also contains the appropriate
kinetic energy terms N and S, this is the spectrum generating
algebra corresponding to a two-component (k,k) supercon-
ducting fermion system. Each su(4) corresponds to a mixed
triplet-singlet superconductor as previously obtained''—
one for k and the other for k. This may be made explicit as
follows: define

T, =4i(ro+73), 7, =} (79— 73)

Then the two commuting su(4) algebras are

k component: su(4)~{rX7, X Ty, ToXT, X7}, (1.3)
k component: su(4) ~{tX7, X7,, 7oXT, XT}. .
Conventional singlet superconductivity may be obtained as
the centralizer of the spin operator in either of the above
su(4) models, thus

Ciucay (0) = {3 X7, X1, T3 X7, X Ty To X7, XT3}
~s0(3), (7.4)

which is the spectrum-generating algebra of the singlet su-
perconductor. In the notation of the previous section, the
80(3) 4y ©50(3)z, singlet subalgebra has Dbasis
{N,S,D {*}. The spin-1, pure triplet case corresponds to the
$0(5) &, ®s0(5);, subalgebra with basis {N,S.D‘?,
a,0¥}, in the notation of the previous section. Each so(5)
algebra is also the SGA for superfluid He II1,'*!? or a spin-1
superconductor.

B. Density wave models

The order operators for density wave systems are de-
fined as those which conserve number, but do not conserve
momentum. As in Sec. III, we obtain the set {I'{*’}, repre-
sented by the matrices (3.3). We may rewrite this set as

7, X{r,m} x{rers}. (7.5)
As in (1) above, under commutation these generate
TXT# X{TO’TS}UTOXTX{7'097'3}, (7.6)

which is again isomorphic to an su(4) @ su(4) algebra. To
obtain the spectrum generating algebra (SGA) of the den-
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sity wave Hamiltonian containing the I'\*’ order operators
we must adjoin the number operator N, which is not present
in (7.6). Thus the SGA for a mixed spin and charge density
wave model is u(l) @su(4) @su(4), as previously ob-
tained.” This algebra may be most simply obtained as the
centralizer of the number operator N in su(8),

Cousy (M) ~u(l) esu(4) esu(4). (7.7)

The centralizer of spin ¢ in (7.7) gives the CDW algebra
generated by {P,S,N,['{*’} which is u(1) @ so(4); we have
previously obtained this directly from a model charge-den-
sity wave Hamiltonian.'* The spin-1 part of (7.7), the pure
spin density wave algebra, is generated by the nonspin con-
serving elements of (7.5), and has for basis {P,S,N,I'‘®,
o,0'"'}. This is the algebra u(1) @ so(5) ® SO(5), as calcu-
lated previously from a specific density wave Hamiltonian.”

If we consider only the parity-invariant elements of the
above subalgebras, where the parity operator r is as defined
in Sec. IV A, then we obtain subalgebras as follows:

CDW {N:S’FSZ), (()4)}~u(2)9
SDW {N.STYTI® o} ~u(l) @so(5).

These are the spectrum generating algebras for the model
Hamiltonian (6.1) in the absence of superconductivity tak-
ing the coupling constants (6.2) real, and considering pure
scalar and pure vector, respectively.

(7.8)

C. Singlet model

We obtain a spin-0 model by taking the centralizer of the
spin operator ¢ in our su(8) algebra; thus

Coucsy (0) ~su(4)
with basis

{I XT3y SXTO) SX7'3, WXTI’WXT2! ESXTI’ E3X7-2}'
(7.9)

This su(4) is isomorphic to that obtained previously for the
spectrum generating algebra of a model Hamiltonian exhi-
biting the coexistence of superconductivity and charge den-
sity waves.* To see this isomorphism more readily, write the
set (7.9) in the form

ToX T, X {TO:TS}UTJXT/L X {7'1,7'2} (7.10)

[where in (7.10) we have actually considered C,, (@)
~u(4) for simplicity; we can always discard the central ele-
ment 7, X 7, X 7o later]. The set (7.10) is clearly isomorphic
to

{TOXTO7 ToX T3 TaXTy, T3 XTz}XT#,
which in turn is isomorphic to 7, X 7,,. This is the set of 15

generations {E,S,T,U,W} of su(4) (together with the unit
element 7, X 7,) of Ref. 4.

D. Spin models

The eight spin order operators (3.5) generate the alge-
bra with basis {6’} (a = 1,2,3,4, 6’ =0); as remarked in
Sec. III this is equivalent to four independent su(2) algebras.
We may obtain the spectrum generating algebras for spin
model Hamiltonians by adjoining the kinetic energy terms ¥
and S. For example, the even parity spins give an algebra
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{N.S,0,0%"}. This splits up into {7oX7, X 73, 7,X7, XT3,
TaX Ty XT3 T3XT, XTot~u(2), and {ryX7, X7,
TIXT, XT3, Ty XT, XT3, T3XT, XTo} ~u(2); two indepen-
dent u(2) spin models, for the k& and k systems respectively.

We show the descent from su(8) to the subgroups corre-
sponding to models (A)—(D) in Fig. 1.

Vill. GENERAL HAMILTONIAN AND SELF-
CONSISTENCY

We may now write down the most general Hamiltonian
for the coexistence of superconductivity (singlet and triplet)
and density waves (charge and spin) within the context of
our su(8) algebra. This will generate the expression (6.1),
thus

H=§k:H(k),

H(k) =1 (¢ + € )N+ (€ — €)S + pP

+ AP D (superconducting terms)

+ ;/,‘j’)l“,(f’ (density waves)

+a°4% (anomalous terms)

+HY)«o” (magnetic field terms). (8.1)

We sum over repeated indices in (8.1): £ =0,1,2,3 and
p = 1,2,3,4. We have written ¢¥=¢ for conciseness; and
have included a momentum term pP, where P = 25; X 7, in
order to attain the full complement of 63 operators. The
magnetic field terms in (8.1) enable calculations of suscepti-
bilities, as has been carried out for the SDW subalgebra of
su(8) (Ref. 7).

The expression (8.1) has the virtue of explicitness; how-
ever, a more concise, if less transparent, form of the mean-
field Hamiltonian H is given by

H=Zm[j(k)Xij(k) (8.2)
k

(summation over repeated indices 7, j) in terms of the opera-

tors X, (k) =B [ (k)B; (k) introduced in Sec. II. These satis-

fy the commutation relations

[X, (k) X, (k") ] = 816, X, (K) — 8,X,(K)).  (8.3)

We may consider the mean-field Hamiltonian (8.2) to
have arisen from a pairing Hamiltonian H ™ in the following
way. We require that H ™ conserve number N, momentum
P, etc., in fact, all seven Cartan operators that are broken in
the passage to the lower symmetry, mean-field system.
These operators have the form 3,4,(k)X, (k)
(i =1,2,...,8) (adding in the identity) and it is straightfor-
ward to verify that the Hamiltonian

1

Hred _ 2 gq(k’k')XU(k)Xu(k,)f

ik’
conserves these quantities. Thus (8.4) is a suitable choice of
pairing Hamiltonian. If we choose
8; (kk) =2¢.(k)d; (8.5)
and note that [X, (k)]> =X, (k), then the kinetic energy
terms are also included in (8.4). With this choice the cou-
pling constants satisfy

(8.4)
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sU(8)

C(P)

Center C(N)

SU(4) x SU(4) Clo) U(l) x SU(4) x SU(4)
(Supe§fluid) {Density Waves)
C (o) Clo)
SuU (4)
(CDW-SC) /

C(P)
Cetjiy/ \Qij:\////

SO (5) x 80(5) S0(3) x SO (3) U(l) x SO(4)

{2 x SSC) (Complex CDW)
it
S0 (5) S0 (3) U(2)
(TSC) (ssC) (CDW)
Notation: SSC = Singlet Superconductor
TSC = Triplet Superconductor
CDW = Charge Density Waves
SDW = Spin Density Waves

g,,(k,k') =g_,,(k',k) (86)
In addition, from the Hermiticity of H "¢ we have
gr(kk')y =g; (k" k). (8.7)
Now define
m,-,(k)=<<zg,-,-(k,k'>X,§(k')>> GA)  (88)
£

(no summation over ij), where {{)) refers to a thermal
average with respect to the pairing Hamiltonian (8.4),

(@) =tr{exp( — BH™*)Q}/tr exp( — BH™).
(8.9)

We now apply a Hartree-Fock linearization to H ™, and
obtain as an approximation the mean-field form (8.2), using
relations (8.6) and (8.7). We now introduce the thermal
Green’s functions,'>' and

G; (k) = — ((T,(B;(k,7)B](k,0)))), (8.10)

where, at the level of mean-field theory, the thermal average
is with respect to the mean-field Hamiltonian H of (8.2), as
is the Heisenberg 7 evolution

B;(k,r) = exp(Hr)B,; (k)exp( — Hr).
Here 7, is the r-ordering operator, so that

G; (k07) = ({X](k))). (8.11)
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FIG. 1. Subgroup descent from SU(8).

(Complex SDW)

U(1l) x SO(5)
(SDW)

Writing the conventional @ transform of the Green’s func-
tion, and replacing =, . in (8.8) by the integral, we obtain the
self-consistent equation
1 dk’
m; (k) =— —— g (kk "G, (k'\w,).
In mean-field approximation the Green’s function is expli-

citly known'®'’; in matrix form

Glkw,) = (io, I — H(K))™",
where I?(k) is the 8 X8 representation of (8.2), fl(k),-j
Ema(k). Thus Eq. (8.12) becomes

1 J' d3k’
m; (k) =— —— g (kk)r[e;Glkw, )],
)0 =23 | S8, (bkOtr[eGke,)]

(8.14)
where e is the same matrix as was introduced in Sec. II. A
slightly more conventional form of (8.14) is obtained by
using the Hamiltonian (8.1) in the triple-Nambu represen-
tation (2.9), thus—for simplicity—taking g, (k,k') = —g
(i#)) independent of k,k’

tr[ (7, X7, X7.)G(kw,) ],

d>k
Mape = _~§§-2;.f
(8.15)

(2m)?
where we have written H = ZM . Ty X7, XT,. Thus, for ex-
ample, using (2.8) and (3.2) to determine the coefficient

(8.12)

(8.13)
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AV of DV in (8.1), and taking A = A, = A} real in (6.2)

we have ,
—g d’k

o1 = _Az_ﬁ_;f(zﬁf

Xtr[ (13X 1o X7)G ko, ) ],

a self-consistent equation for the singlet superconducting
gap in this formalism.

IX. CONCLUSIONS

Starting with the simple model Hamiltonian (2.1) of
Sec. I1, we are led by algebraic closure of the operators there-
in, to the general Hamiltonian of (8.1). This new system
includes many new phenomena not present in the original
system, involving as it does 63 parameters against the origi-
nal 14. Two questions concerning the algebraically genera-
ted operators arise naturally: (i) Is it really necessary to
include them in the theory?; and (ii) Do they give rise to
physically observable phenomena? The answer to (i) is that
even if the new operators are not present in the original
Hamiltonian, they will be generated by the time evolution of
the dynamics acting on the operators already present; and so
they must be included for completeness. The physical detec-
tion of the corresponding order parameters will depend on
their not vanishing in the ground state of the system; this
requires diagonalization of the Hamiltonian. This calcula-
tion has been carried out for a simplified so(4) ® so(4) ver-
sion® of the complete su(8) model, where it was found that a
new operator (triplet Q = O superconductor) not present in
the original Hamiltonian.'® These questions may also be ex-
amined by conventional self-consistent methods; and we
sketched this approach in Sec. VIIL
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Separability of the Killing-Maxwell system underlying the generalized
angular momentum constant in the Kerr-Newman black hole metrics
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The concept of a Killing-Maxwell system may be defined by the relation 4 Lusolip

= (47/3)j,8, - In such a system the one-form A4,, is interpretable as the four-potential of an
electromagnetic field F,,, whose source current j# is an ordinary Killing vector. Such a system
determines a canonically associated duality class of source-free electromagnetic fields, its own
dual being a Killing—Yano tensor, such as was found by Penrose [Ann. N.Y. Acad. Sci. 224,
125 (1973)] (with Floyd) to underlie the generalized angular momentum conservation law in
the Kerr black hole metrics, the existence of the Killing—Yano tensor being also a sufficient
condition for that of the Killing-Maxwell system. In the Kerr pure vacuum metric and more
generally in the Kerr—Newman metrics for which a member of the associated family of source-
free fields is coupled in gravitationally, it is shown that the gauge of the Killing—Maxwell one-
form may be chosen so that it is expressible (in the standard Boyer-Lindquist coordinates) by
1(a? cos ? 8 — r*)dt + la(r* — a*)sin” 8 dg, the corresponding source current being just (47/

3)(d/8¢). It is found that this one-form (like that of the standard four-potential for the
associated source-free field) satisfies the special requirement for separability of the
corresponding coupled charged (scalar or Dirac spinor) wave equations.

I. INTRODUCTION

Although it is well known that the charged black hole
uniqueness and no hair theorems'~” allow only two electro-
magnetic degrees of freedom (or just one if a magnetic mon-
opole moment is deemed to be physically unrealistic) for
regular electromagnetic perturbations that are source-free
and asymptotically vanishing, the dropping of these latter
restrictions permits one to envisage many other possibilities.
Among these, one particular example is specially singled out
(if not for any obvious astrophysical relevance, at least for its
remarkable mathematical properties), namely what we shall
refer to as the Killing—-Maxwell field. It is demonstrated in
this paper that if this field is taken seriously, in the sense of
being considered to act in the usual way on charged scalar or
spinor fields and discrete classical particles on the black hole
background, then the resulting coupled systems have the
same kind of very special separability properties as have al-
ready been found, respectively, *'° when such charged fields
and particles are coupled to the familiar source-free electro-
magnetic perturbations allowed by the no hair theorems.

The existence of a Killing-Maxwell system in the sense
to be defined below is an equivalent (necessary and suffi-
cient) condition to the existence—in four dimensions—of a
second degree Killing-Yano tensor,

f;lll =ff/7+t]’ f;l(/-t;p) =0 (L.1)
(using a semicolon for covariant differentiation, with square
and round brackets for symmetrization and antisymmetriza-
tion of tensor indices). It was the culmination of a systematic
attempt (using two-spinor methods) by several co-
workers!!™'* to obtain (from the Weyl tensor degeneracy
property that was the basis of Kerr’s original discovery of his
metric'’) a simple underlying reason for the remarkable in-
tegrability properties of so many kinds of systems in the Kerr
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(and Kerr—Newman'®) black hole metrics®'®!7-2! that the
existence of such a tensor in these metrics was first brought
to light by Penrose?? (with Floyd). Much further work (in-
cluding the use of a Debever-type bivector formalism**for
transcription of earlier two-spinor results into equivalent but
more widely readable tensorial form) has explored the gen-
eral properties of such systems, essentially confirming that
the remarkable properties just referred to can indeed be con-
sidered as automatic consequences of (1.1). A recent sum-
mary and guide to many relevant references, of which only a
sample can be mentioned here,*° has been given by Kam-
ran and Marck.?! This body of work together with earlier
results® soon made it clear that the existence of a (nonzero)
solution of (1.1) is by itself sufficient to characterize the
Kerr (or Kerr-Newman) solution uniquely among asymp-
totically flat pure vacuum Einstein (or source-free Einstein—
Maxwell) solutions (and likewise for the author’s asymp-
totically de Sitter black hole solutions >***—though it re-
mains a teasing mystery why the solutions of the (global)
black hole problem should turn out to belong to this (local-
ly) privileged class.

We start by collecting some essential conclusions that
can be drawn directly from (1.1) (without recourse to Ein-
stein or any other equations) by straightforward tensor anal-
ysis. Among the most basic of these results is the existence of
an ordinary (symmetric) Killing tensor (whose presence in
the case of the Kerr solutions was directly implied by the
original discovery'® of a quadratic generalized angular mo-
mentum constant of the motion)

@y =il four @iapy =05 (1.2)
together with the existence of what we shall refer to as the
primary and the secondary killing vector (giving rise to linear
constants of motion, interpretable as linear combinations of
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energy and axial angular momentum), the first defined (us-
ing the alternating tensor) as the dual of the (necessarily
antisymmetric) covariant derivative of the Killing-Yano
tensor,

K = (1/3!)6'{#pafﬂp;a’ k(/l;u) =0, (1.3)
and the second given in terms of the first by
W =a*k,, heg, =0. (1.4)

Furthermore, as well as having the Killing vector property
of generating symmetries of the metric, g, , these two vector
fields also generate symmetries of the Killing—Yano tensor
itself (and hence of the system as a whole, which entails in
particular that they must commute) in the sense that the Lie
derivatives of the Killing—Yano tensor (and hence of any-
thing constructed directly from it) with respect to each of
these vectors must vanish. (The primary Killing vector has
the additional special property that the corresponding co-
variant derivatives along it must also vanish.)

. THE CONCEPT OF A KILLING-MAXWELL SYSTEM

The basic defining equation of what we refer to hence-
forth as a Killing-Maxwell system may be taken to be

2[#;11];,0 = (47r/3)}[ugv]p’ (21)

where 2 L isa four;potential one-form, associated with a
four-current vector j#, and g, is the metric of the back-
ground space-time (and where we have introduced a cir-
cumflex to distinguish quantities pertaining to the Killing-
Maxwell field from the analogous quantities pertaining to
the closely related source-free Maxwell field to be mentioned
below). Such a system evidently satisfies the (much less
highly restrictive) ordinary Maxwell equations for the cor-
responding electromagnetic field tensor

Fpp =240, (2.2)
since the contraction of (2.1) leads directly to the source
equation

Foe | =agje. (2.3)
By straightforward tensor algebra and the use of the Max-
well-Faraday integrability condition for (2.2),

Flyu;p} =0, (24)

it can easily be checked that the systems (1.1) and (2.1) are
equivalent (modulo gauge transformations in the latter)
since one can be constructed from the other and vice versa by
the simple duality relation

*/\ P
—_ =1
f;w - F,uv ——jsluvpangy

(2.5)

which evidently entails that the current is to be identified,
modulo a rationalization factor, with the primary Killing
vector:

Kt = (4m/3))*. (2.6)

For many purposes it is convenient to work with the
corresponding complex self-dual Killing-Maxwell Yano
tensor

+F/1y =FA/1;1 +if;l;t (27)

Using the fact that by (2.1) its contraction with the primary
Killing vector is a pure gradient,
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kP*F, = —§(*E, *F7),, (2.8)
it is straightforward to check that one can construct a new
(complex) proportionally related self-dual field of the form

+F,1# :CS_3 +/f\‘/1.u’ (2.9)

which will satisfy the full set of source-free Maxwell equa-
tions, whose complex form is

+rFHP o = 0’
for an arbitrary value of the complex (charge) constant C,

provided that s is taken to be the scalar field given in terms of
the scalar invariants of the Killing-Maxwell field by

45 = *F,, *F. (2.10)

The fact, mentioned above, that the Killing—Yano ten-
sor and hence also the Killing-Maxwell system (not to men-
tion the associated source-free field that has just been con-
structed) will be invariant under the action generated by the
primary Killing vector can at this stage be seen directly by
combining the gradient property (2.8) with the condition
[obtained by contracting the Killing vector with the dual of
its defining relation (1.3)], which leads to a pair of equa-
tions

’F\’A#;pkp 20, zﬁp['{k

7 =0 (2.11)
which add up to the condition that the Lie derivative with
respect to k“ vanishes. For the secondary Killing vector 2,
we do not have analogs of the separate equations (2.11) but
we can nevertheless obtain the combination expressing the

corresponding invariance condition,
Fou b0 +2F,, b e =0, (2.12)

from (2.4), using the fact that the imaginary (magnetic)
part of (2.8) implies a corresponding real (electric but not
magnetic) gradient property for the effective electric (but
not the magnetic) field as defined with respect to the second-
ary Killing vector:

WE, = — 3 {Euf7),.

We can use (2.12) together with (1.3) to see that the Killing
bivector 2k * ! has a dual two-form given by

(2.13)

el‘upakpha = 2f;[/‘l h# );P, (2.14)
which enables us to derive the equations
h{l;ykphg]:'o’ k[lwkphgl=0, (2.15)

of which the first is an obvious consequence directly of
(2.15), while the second can be obtained from (2.11), which
evidently entails a formally identical pair of equations with
/3. inplaceof F,,, . The same considerations also, respective-
ly, imply

Khof,, =0, keheFf,, =0. (2.16)
It can be seen that (2.15) and (2.16) are the same circularity
conditions as those deduced from the generalized Papape-
trou theorem in the black hole problem??? from quite a dif-
ferent starting point (involving Einstein curvature equations
and global boundary conditions) instead of the very simple
equations (1.1) or equivalently (2.1), which is all that we
have assumed here. In particular (2.15) is interpretable as
the Frobenius integrability condition for the two-surface ele-
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ments orthogonal to the Killing bivector to be themselves
two-surface forming.

iI. THE KILLING-MAXWELL ONE-FORM

We have so far mainly been collecting results that (al-
though rather dispersed about the literature quoted above,
and derived by perhaps more devious routes and in more
specialized notation than the ordinary tensor calculus used
here) are nevertheless for the most part, in principle, “well,”
albeit not “widely,” known by now. However, we shall now
concentrate our attention on what is in a sense the most
fundamental element of all in the foregoing tree of relation-
ships, which does not yet seem to have had the attention it
deserves (or even to have been considered explicitly at all),
namely what we have dubbed as the Killing-Maxwell one-
form, A,,. Once it has been specified (assuming that the
metric tensor is also known) all the other quantities can be
constructed by successive differentiations (the Killing~
Yano tensor at first order, the ordinary Killing vectors at
second order, and so on.) One reason for the neglect of the
zero-order element at the base of the tree may be that to
make it explicit one must, of course, make some specific
choice of the gauge. In practice, however, there is no real
ambiguity because there turns out to be a canonical gauge
that imposes itself naturally (just as I found long ago®'° to be
the case for what can now be interpreted as the canonically
associated source-free fields).

To pin down the gauge we start by requiring that the
four-potential one-form 4,, should have the same properties
of inyariance under the action of the Killing vectors as the
field F;,, itself, properties which are simultaneously compa-
tible in consequence of the commutation relation

A kf —k* h? =0 (3.1)
that follows from the fact that the secondary Killing vector is
constructed from quantities known [by (2.11)] to be invar-
iant under the action of the primary Killing vector. We can
thus obtain

A,k +4,k?, =0, (3.2)

and
A 0 +A,h%, =0. (3.3)
Using the real (electric) part of (2.8) we see from (3.2) that

it is possible by a further minor adjustment to arrange to
have

gpkp = _%ﬁvpaﬁap7 (34)

while similarly, by (2.13) [again bearing in mind the com-
patibility property (3.1) ], we see from (3.3) that it is possi-
ble also to arrange to have

A = — §(F, 7). (3.5)

Finally, leaving aside the possibility of degenerate limit cases
in which the primary and secondary Killing vectors might
not be independent, it can be seen that (as in the analogous
stage in the black hole problem?) the orthogonal transitivity
and field circularity properties, (2.15) and (2.16), allow us
to impose the gauge circularity condition

A k,h,, =0, (3.6)
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which now ties down the gauge completely. Although there
is now no longer any freedom to impose further gauge re-
strictions, itis apparent that (3.2), (3.3), and (3.6) together
are sufficient to ensure automatically that the standard Lor-
entz gauge condition

4,7 =0

is also satisfied.

(3.7

IV. ALGEBRAICALLY PREFERRED COORDINATES
AND SEPARABILITY

Up to this stage we have kept to fully covariant termin-
ology, but it is now useful (at the price of leaving aside de-
generate limit cases in which the two Maxwellian scalar in-
variants do not vary independently) to bring in algebraically
preferred coordinates of the kind introduced by the present
author® and commonly used in studies of the general
cases’®?*3° (as opposed to the more particular physical
black hole case, for which the slightly different geometrical-
ly preferred coordinates of the type introduced by Boyer and
Lindquist®* are usually chosen). Within the present ap-
proach the algebraically preferred system may be specified
to consist of two nonignorable coordinates, r and g say, given
in terms of the Killing-Maxwell invariants by

P — g ={F, F*, 2rg=\F,f, (4.1)
together with two ignorable coordinates, f and ¢ say, taken
to be constant on the orthogonal hypersurfaces whose exis-
tence is established by (2.15) and such that the primary and
secondary Killing vectors, £ and #*, can be identified, re-
spectively, with the operators @ /3 and 8 /3. It can be seen
that the specification (4.1) is satisfied simply by taking r and
q as the real and imaginary parts of the scalar field defined by
(2.9), i.e., we have

s=r+iq. 4.2)

In this system the gauge conditions imposed at the end of the
previous section lead unambiguously to the explicit expres-
sion

4, dx =}(g* — A)di — g db. (4.3)

Nothing in the preceding line of reasoning makes it ob-
vious in advance that this field should share the already
known property of the associated source-free Maxwell field
of satisfying the author’s condition®® for separability of the
Klein—-Gordon wave equation (and hence a fortiori the cor-
responding classical charged orbit equations) for a charged
scalar field coupled to an electromagnetic field. In the pres-
ent terminology this very restrictive condition is expressible
as the requirement that the four-potential one-form should
have the form

X, (") (dt + ¢%dd) — X_(q)(di — r* d})
rP+q ’

4, dx =
(4.4)

where X . (r) isafunction of 7 only, and X_ (q) is a function
of g only. It transpires nevertheless that in the gauge (4.3)
the Killing-Maxwell one-form does indeed satisfy this con-
dition, the two single variable functions having the simplest
form imaginable on dimensional grounds, namely
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X, (=1 X_(q)=14" (4.5)

For comparison, it may be recalled that the analogous
functions for the family (2.9) of source-free associated fields
(including those coupled gravitationally in the Kerr—-New-
man'® solutions) are correspondingly expressible>®'? in
terms of the real (electric charge) part Q and the imaginary
(magnetic monopole) part P of the complex charge param-

eter C appearing in (2.8) by

X, (n=0r X_(9)=Pg (P+iQ=C). (46)

The significance of the property of being expressible in
the form (4.4) is strengthened by the recent work of Kam-
ran and McLenaghan,?® which shows that the condition
(4.4) is sufficient to ensure (undecoupled Chandrasekhar-
type'®) separability in the case where the charged scalar is
replaced by a charged Dirac spinor. Although such separa-
bility properties can be studied more easily in the algebrai-
cally preferred coordinates used here, they are, of course,
preserved by the transformation to the standard geometri-
cally preferred Boyer-Lindquist®* coordinates according to
the prescription

r—r, g—acos 6, d—a"'p, -t — ad. (4.7)

(I would insist, by the way, that contrary to a widespread
myth that has been implicitly perpetuated by a recent major
treatise on the subject® the transformation to Boyer—Lind-
quist coordinates does not imply any need to transform to a
noncanonical—e.g. Kinnersley-type®*® —tetrad in place of
the maximally symmetric one.®?37%%) It is also to be re-
marked that the separability condition (4.4) is preserved by
the trivial gauge changes corresponding to addition of
constant multiples of dr and dg. The Boyer-Lindquist form
of the Killing-Maxwell potential quoted in the abstract does
in fact differ from (4.3) by such a separability-preserving
adjustment.

Despite the fact that the corresponding constants of the
motion could have been constructed in advance as eigen-
functions of corresponding operators in both the scalar*'
and Dirac spinor® cases, the fact that these constants are
associated with full separability still seems somewhat mirac-
ulous. In the simplest case, that of a classical particle with
charge to mass ratio ¢/m on an orbit whose unit tangent
vector u* evolves according to

ut ,uf = (e/m)yFru®, (4.8)

our original postulate (1.1) implies that the generalized
(specific) angular momentum vector and scalar, defined by

(4.9)

will satisfy corresponding precessing translation and conser-
vation laws,

Hou? = (e/m)F* 17, (1°],),,u° =0, (4.10)
for any field F,, given by an expression of the form (2.9)
whatever the field s may be. Now although any field satisfy-
ing the separability condition (4.4) will have the form (2.9)
for some scalar field s, the converse requirement is highly
restrictive.' It is therefore remarkable that such a require-
ment (which in this case is manifestly not necessary for the

* =ftup, 171, =a,,u’u’,
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conservation law to apply) should turn out to hold both for
the source-free solutions [with s given by (2.10) or (4.3)]
and for the Killing-Maxwell field (with s uniform so that
Cs~? =1). Indeed even in the Minkowski space limit, for
which the Killing-Maxwell field is interpretable as that
within a uniform spherical charge distribution, the spherical
symmetry of which is broken by the superposition of a uni-
form magnetic field, the (scalar and Dirac) separability that
has been revealed was hardly obvious in advance.
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A new self-similar solution of the Einstein field equations is presented. In the new space-time,
the density is zero at time zero and follows an inverse square law for large ¢. The new solution
may have interesting astrophysical applications since it has the same reference lengths as that

of the Friedmann universe.

I. INTRODUCTION

Recently, Wesson' proposed a dimensional cosmologi-
cal principle and a dimensional perfect cosmological princi-
ple that can lead to both Friedmann and non-Friedmann
models. These dimensional principles require that the phys-
ical properties of the universe such as density, pressure, and
mass appear only in combination with the gravitational con-
stant G, the speed of light ¢, and the coordinates r and ¢ as
dimensionless functions that solely depend on the epoch.
These principles were later modified by Chi* who showed
that the coordinate 7(R,?) can be replaced by the comoving
coordinate R. Chi also pointed out that the self-similar
space-times found by Henriksen and Wesson® can be derived
from these modified principles by using R /c as the reference
time instead of a constant reference time. Self-similarity has
wide applications in hydrodynamics.* In recent years, self-
similarity found many astrophysical applications.>® In this
paper, we apply the modified dimensional cosmological
principle to Einstein’s field equations to find a new self-simi-
lar space-time.

Il. THEORY
We assume a spherically symmetric metric of the form

ds’ =c*e°dt? — e dR? — P(d0* + sin* 6 d¢*), (1)

where R is a comoving radial coordinate, and r = r(R,t) is
not comoving. The functions ¢(R,?) and w(R,t) are dimen-
sionless. Let m (R,t) be the total mass inside the radius R,
p(R,t) the total pressure, and p (R,t)c? the total energy den-
sity. Then the Einstein field equations become’

2Gm/(cr) =1+ e~ P/c® — e~ “r?, (2a)
m = 4w Prii/c?, (2b)
m' = + 4npr’r, (2)
o'= —2P'/(P+pc?), (2d)
@ = —2pc*/ (P + pc*) — 4k/r, (2e)

where adot means d /9t and a prime means d /dR. Following
the modified cosmological principle, we require that the
properties of the universe be made dimensionless as follows:

87Glop/c? = N(§), 8mGILP/c* = Q(£),
26m/ (L) = M(E), r=RS(E), E=ct/R,

where /,, I, and /,, are all functions of R and ct. The refer-
encetimein Eq. (3) ischosen tobe R /¢, since we are looking
for self-similar solutions of Eq. (2). The self-similar space-
times developed by Henriksen and Wesson were obtained

(3)
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from Egs. (2) and (3) by choosing /, =/, =I,, = R. Here
we choose

1, =R3/(ct?). (4)

It was shown in Ref. 2 that the choice of reference lengths
(4) gives rise to the Friedmann universes. We are therefore
interested to know what kind of self-similar space-times can
have the same reference lengths (4).

With the choice of Egs. (3) and (4), Egs. (2) become

l, =1, =ct,

M=£2S[14+e 982 —e“(S—£S")?], (5a)
3M —EM' = NS*(S—E£S'), (5b)
M'—2M /&= —QS*S', (5¢)
o'= —2(N'"=2N/E)(Q+ N) —45'/S, (5d)
o' =20"7/(Q+N), (Se)

where a prime means d /d£. For simplicity, we look for the
dust solutions of Egs. (5). Assume Q = 0. Then Eq. (5¢)
gives M = M £ %, where M, is a constant. And Eq. (5e) can
be integrated to give e~ = 1. Equation (5d) implies that
e~ “= N2§*%/&% provided the integration constant is prop-
erly chosen. Substituting M = M, 2 into Eq. (5b), we find
that

M£?=NS*(S—£S"),

and consequently Egs. (5a) becomes
M,=8[1-S?-M;].

In short, the dimensionless dust solutions of Egs. (5) are

given by
Q=0, M=M;E? e =1, e “=N2S%E4,
SS?+S(1—M3)—-M,=0, (6)
M£? = NS?*(S —&S).

The above solution differs from that found by Henriksen and

Wesson in that the dimensionless density M = M,£ ? is not

constant.
Consider the case M, = 1. Then we find from Eq. (6)
that

S = [3(& + £)/21*3, @)
and that N satisfies
£7=NS*(S—£S"). (8)

Eliminating S'in Egs. (7) and (8), we find that
E2=9N(&+ &) (& +£/3)/4.
Consequently,
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c? (ct/R)?
187GR €2 [1+ (et /REHNI1 +ct /(BRE,) ]

The solution (6), more specifically the expression (9), has
some interesting behavior. For small |ct /R |, p~&*/t? and
p equals zero at t = 0. For large |ct /R |, p~ (£ /t)? and p
has the behavior of an inverse square law. Along the lines
|ct /R | = const, thedensity isinversely proportional to? *for
large ¢.

p= (9

l1l. CONCLUSION

In conclusion, we demonstrate the usefulness of the new
dimensional cosmological principle by using it to find a new
self-similar space-time. Since the Friedmann universes are
solutions of the Einstein’s field equations with the length
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scales (4), we expect the self-similar solutions having the
same length scales to have interesting astrophysical applica-
tions.
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The Tolman—-Oppenheimer—Volkov equation is studied in the case of the ultrarelativistic
equation of state. The original system of two first-order differential equations is turned into one
first-order equation that is independent of the central density, plus an integral. It is shown how
the physical solutions are related to the analytically known infinite central density solution.
The results are further generalized into the arbitrary y-law equation of state, p(y — 1)p.
Finally, the case of a nonzero bag constant is briefly discussed.

I. INTRODUCTION

The properties of neutron stars have been studied exten-
sively since the pioneering works by Landau’' and Oppenhei-
mer and Volkov.? At the turn of the 1950°s the accepted
knowledge on the behavior of matter at such high densities
was established in the Harrison-Wakano-Wheeler (HWW)
equation of state.® Since then, the neutron star calculations
based on that equation of state have been refined along with
the growing understanding of phenomena in particle phys-
ics.*

In higher densities the y-law equations of state

p~n’, p=(y—Dp (n
(where 1<y<2 is the physically meaningful range) have
been used as a suitable approximation. If it is inserted in the
Tolman—-Oppenheimer—Volkov (TOV) equation,’

P = = (p+p)pr*+m/Am)/r(r—m/2m) , (2)
where

m=47rf prhyr?dr. (3)
0

It is known in this case that the TOV equation has an analyt-
ic solution®

p=2y =1/ (Y +4y -~
=3/147, fory=4%. (4)

Although the matter in any star cannot obey the equa-
tions of state of the type given by Eq. (1) without any r
dependence in ¥, the solution (4) can still be used as a high
density limit of the star core. The procedure is then as fol-
lows: the equilibrium configuration given by Eq. (4) is
smoothly matched with some low energy configuration (for
example, the one obtained by the HWW equation of state) at
some transition regime. In this way both the y-law equation
of state and the infinite central density solution (4) have
their importance. In this paper we shall consider the physical
solutions obeying the y-law equations of state (especially,
when ¥ =$). By “physical” we mean solutions that have
finite central density. We shall examine their behavior and
show how they are related to the infinite central density solu-
tion (4).
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1l. REFORMULATION OF THE TOV EQUATION

Let us start with the special (but the most interesting)
case, ¥ = $, which corresponds to ideal gas of ultrarelativis-
tic particles. We insert the appropriate equation of state,
p = p/3, to the TOV equation, which then reads

p'(ry= —4p(pr + 3m/4m)/3r(r — m/2m) . (5)

If we differentiate Eq. (5) with respect to  and use Eq. (3)
to eliminate m from the differentiated equation, we obtain

2 f + 3)Pf" — 2f + NP — 8f(4f — rf”

+ 8f2(14f — 3) =0, (6)
where
f=p(n)r. 7
Now we make the substitutions
t=Inr, x(t)y=f(r), (8)

which transforms Eq. (6) to a form having no explicit r
dependence

2x(2x 4 3)x" — (2x + 9)x'? — 18x(2x — 1)x’

+ 8x*(14x —3) =0. (9)
If we then define
x'(8) = y(x), (10)

we get an equation for y(x),
2x(2x + 3)py' — (2x + 9)y* — 18x(2x — 1)y
+ 8x%(14x — 3) =0. (11

The appropriate initial value for this equation can be ob-
tained by

yx=0)=x"(]eo=r"(N],=0=0. (12)
Suppose the function y = y(x) is solved from Eq. (11). Then
the solution of the TOV equation (5) is expressed in the form

2
r P07 dx
In—=

€ Jowe p(x)’
where the limit € -0 is understood.
By the above manipulation we have turned the original
TOV equation, which is essentially a system of two first-
order differential equations [Eqgs. (5) and (3)], into one

(13)
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FIG. 1. The numerical solution of the function y = y(x).

first-order equation (11) plus an integral (13). Note that the
initial value that fixes the solution of the TOV equation,
namely the central density, p(0), does not exist in Eq. (11)
nor in its boundary value, Eq. (12), but enters only in the
integral (13). Thus, the function y(x) is independent of
p(0) and can be used in Eq. (13), once obtained, for every
central density.

It should be noted here that the possibility of expressing
in this case the solution of the TOV equation in form (13) is
equivalent to the notion that by the substitution (8) the
TOYV equation can be reduced to a plane autonomous sys-
tem.’

We note from Eq. (11) that it has a trivial solution
x = £, which corresponds to the Misner—Zapolsky (MZ)
solution (4) for ¥ = . However, if we consider the physical
solutions with finite central density, we should use the initial
value y(0) = O obtained by Eq. (12). The numerical solu-
tion appropriate for this initial value is shown in Fig. 1. Start-
ing from the origin the curve rapidly spirals to the point
x =3, y = 0. For the energy density this means that it ap-
proaches the MZ energy density oscillating with decreasing
amplitude around it, when r—0. The behavior of corre-

FIG. 2. Schematically drawn behavior of the energy density configuration
as a function of the radius. The Misner—Zapolsky solution and the outer-
most envelope curve are also shown.
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sponding energy density is shown schematically in Fig. 2,
from which we obtain that the energy density configuration
continues to infinity. This was expected, since it is compati-
ble with the known fact that gravitation can never produce
hydrostatic equilibrium in a finite fluid, if the pressure is
proportional to the energy density.?

From Eq. (11) we find that near the origin y ~2x. This
means that also the right-hand side of Eq. (13) behaves like
~ — In € at small €, which guarantees that the limit €0 is
well defined. An interesting fact can be extracted from Fig.
1. The largest value of x is obtained from the point where the
curve crosses the x axis for the first time after the origin. The
explicit value is x = @ = 0.342. Because x<a everywhere,
this means p<a/r’ and the mass inside radius r is
m(r) <4mar. The curvep = a/r*is drawn also in Fig. 2. The
physical solution touches this curve at one point. As a matter
of fact, this curve is the envelope of the family of the physical
solutions parametrized by the central density. It is worth
noting that also all the other points where the curve y(x)
intersects the x axis define an envelope. Hence, the family of
solutions given by Eq. (13) have an infinite number of enve-
lopes of type ~a, r~?, the constant of proportionality
given by the point where the curve y(x) intersects the x axis
for the nth time after the origin (@, = a above).

lil. GENERALIZATION TO OTHER EQUATIONS OF
STATE

We can generalize our procedure into the case, where
the equation of state is of the arbitrary y-law type (1). (This
1s because our manipulation above is not based on the ultra-
relativistic equation of state but on the proportionality of the
pressure and energy density.) For an arbitrary y law, Eq.
(6) becomes

vy — D1 +2(r — D) fFf"
— (¥ = DBy =2+ 4y — D¥)Pf?
+ Gy - —DE2+ (y =0 ) fif
~ Sy =H2r—-1D - +4y—f)f*=0.
(14)

Moreover, if we use the same substitutions (8) and defini-
tion (10) as before, Eq. (11) changes to

vy — D1 +2(y — Dxjxpy’
—(y—=DEBy—2+4@—D*xp?
+ (r = DOy — 8 + (37> — 22y + 16)x)xp

— By =HRy—1 — (P +4y — 4z’ =0.
(15)

From this equation the general MZ solution,
x=2(y — 1)/(¥* + 4y —4), can be found immediately.
The solutions y, (x) with the initial value y,, (0) = 0, which
give the physical solutions of the TOV equation by the inte-
gral (13), are qualitatively similar to the ¥ = { case, starting
from the origin with y ~2x and spiraling to the focal point
that is given by the MZ equation. Consider the outermost
envelope defined by the first intersection of function y, (x)
with the x axis. We find that this point a{” = a, increases
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with increasing ¥ up to @, = 0.352 (which is only slightly
larger than a, ;).

As a final note, let us also consider the case of a nonzero
bag constant. Unfortunately the MZ solution cannot be gen-
eralized to that case. There is, however, one exception. That
is, if the Zel’dovich equation of state, p = p with a bag con-
stant B, is accepted, we find that the TOV equation has in
that case an exact solution

p=1/4r*+B, p=1/4°—B. (16)

The energy density is infinite in the center of the star and falls
to 2B at the surface, where p = 0. The radius of such a star is

R=1/2JB 17
and the mass
m =27/3/B . (18)

If BY* = 135 MeV (in the usual units), the radius and the
mass become

R=19km, m=4.2M . (19)

The nontrivial components of the metric of this star are
given by

g, = —(1—m/2ar) '=2(1 —A/3R*)™, (20)
g.=r/3R?, 21)

which match the metric components of the Schwartzschild
exterior solution at the surface. The red shift of a photon
emitted from the surface of such a star is then

1543 J. Math. Phys., Vol. 28, No. 7, July 1887

z=+3-1=0.732. 22)

Equation (16) represents an extreme solution of the TOV
equation, as the equation of state of quarks inside the bag is
the “hardest” possible, p = p (corresponding to the sound
velocity that equals the velocity of light) and the energy
density has an infinite limit at the center.
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The relations establishing the equivalence of an ordinary perfect fluid stress-energy tensor and
a spin fluid stress-energy tensor are derived for stationary axis-symmetric space-times in
general relativity. Spin fluid sources for the Godel cosmology and the van Stockum metric are

given.

I. INTRODUCTION

The search for new and significant solutions to the field
equations has long been an important aspect of general rela-
tivity. With the realization that the stress-energy content of a
given geometry is not unique, this aspect of general relativity
has grown to include the search for new and significant
sources to known geometries.

The relation between a viscous-heat conducting fluid
and a perfect fluid was derived by King and Ellis' in their
paper on tilted space-times. The equivalence of electromag-
netic fields and some viscous fluids has been discussed by
Tupper? and Raychaudhuri and Saha.” Tupper* has also de-
rived the equivalence relations for perfect fluid space-times
and space-times with viscous-magnetohydrodynamical mat-
ter content. Carot and Ibanez® have shown that the interior
of a Schwarzschild sphere could contain a viscous heat con-
ducting fluid as well as a simple perfect fluid.

In this paper we extend the possible alternatives to sim-
ple perfect fluid sources by considering the stress-energy ten-
sor for a perfect fluid with spin in a stationary axis-symmet-
ric space-time. The metric we treat is

ds? = —fdt* —2kdg dt +1d¢* + e*(dr +dz*). (1)

We do not assume that / is harmonic. This will allow us to
discuss the Gédel cosmology. In this space-time a simple
perfect fluid has a stress-energy tensor

T,, =&U,U, +P(g,, + U,U,), (2)
where € is the energy density, Pis the pressure, and U, is the
fluid velocity. We work in the comoving frame, where U, is
the timelike component of the tetrad af;, that diagonalizes
the metric:

b =af. {3)

The tetrad is

as = (1/{ £,000), a = F00k/F),
at = (0,e°72,00), a, = (0,"00),
a4 = (0,0e~%%0), a’ = (0,0,0),

@ =(—k/DYF00Jf/D), @ =(000D/f),

(4

where D? = f] + k *. Thetetrad indices are in parentheses or
are numerical indices. We use coordinate labels, i.e.,
(t,x,y,z) for the space-time indices. Tetrad indices are raised
and lowered by 7; = (— 1,4+ 1,+ 1, + 1).

The general stress-energy tensor for a spin fluid was giv-
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en by Ray and Smalley®’ and has two parts:

T, =Tw(ﬁuid) + T,, (spin). (5)
The fluid portion of Eq. (5) is the spin-fluid counterpart of
Eq. (1):

T, (fluid) =€eU,U, +P(g,, +U,U,). 6)
The spin contribution to the stress-energy tensor is

T, (spin) = U,S,, .U+ [U,S, )

+ @4aSua + U,S,, U, (N
where U, = U, U” is the acceleration of the fluid and w,,,
is the angular velocity tensor associated with the spin. This

angular velocity is defined in terms of the tetrad given in Eq.
(4):

@, :%[d:f’a(a)v —ai®ag,, ] (8)
The spin density obeys the Weyssenhoff condition
u*s,, =0. %

In Sec. II we derive the equations that establish the equiv-
alence between the sources described by Egs. (1) and (5).
Some metric applications are given in Sec. III.

il. EQUIVALENCE RELATIONS

Equating the stress-energy tensors in Egs. (1) and (5),
we find

eu, U, +P(g,, +U,U,)
=eU,U, +P(g,, +UU,) + (US, +US,)U’
+ WU W, +UW,) +14(8,°U,, +8,°U,.)

+ (S, %0, + 5,%0,, ), (10)
where W* is the spin divergence,
Wh= (N —g)N —8gS*),,. 11

The equations to be satisfied are generated from (10) by
running through the possible index combinations. We will
eventually want some of the equivalence relations with tet-
rad indices, but several useful equations result from consid-
ering coordinate indices first.

The equivalence expressed by Eq. (10) assumes the
same fluid velocity in the perfect fluid as in the spin fluid. We
could have used different velocities as, for example, Tupper?
did in adding fluid viscosity and shear. This would introduce
more parameters into the equivalence description. Since the
spin-fluid stress-energy tensor is lengthy, we choose the sim-
plest workable equivalence.
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For the space-time described by Eq. (1), we find the
kinematic parameters of the spin fluid are

@y =—f/Nf, w,=k/Nf, U =£/2,
we = ~f /0, w,=k/N]f, U =f.r2

where f, = d, f, etc. The spin divergences are calculated to
be

W, = (&/D*)S, (fk, —kf,)
+ (@°/D?)S,, (fk, —kf ),

W, =2[3,8; + 3,8, + (S,,/2D*)(f, — f1,)
+ (S,./2D*) (If, — f1,),

W, = (1/D)4,(¢"’DS,,),

W, = (1/D)d,(e°DS,,).

The tr, tz, ré, and z¢ components of the stress-energy tensor
are

T, = (—f/2D)(@DS,.),. — /W )f&S,,
T, =(—f/2D)(eDS.,),, — (3/4/ F)f.&S,,,
T,, = — (k/2D\ f)(&Ds,,),,

— (&S, /ALY (K f, + 2/%,),
T,, = (—k/2D\ f)(&DS,,),,

— (S, /42 (K f, + 2 /%,).

These stress-energy components are zero and Egs. (14) de-
termine S,, and set the condition for a consistent solution to
exist. We find

S,, =e’4/D [, (15)

with 4 #0if fis proportional to k and 4 = 0 otherwise. We
will find this is a very restrictive condition which eliminated
the §,, spin component in all of the examples we found. The
rz component of the stress-energy tensor establishes another
strong condition on the spins:

(12)

(13)

(14)

T,.= (172D f)[S,(fk. —kf)

+ 8,4 (fR, — k)], (16)
which is also zero. Many useful and symmetric solutions
depend only on one coordinate. In this case Eq. (16) causesa
second spin component to be zero. The stress-energy compo-
nents that are left are used to determine the remaining spin
density and matter content of the spin fluid:

— b =b
Ty—ek—2s, ¢t 3 2F

VT 8T
VW _k_y,
2 2\/7 v
Tn =f€_\/?‘n,n (17)

T, =P+ (kJf/D?)S,, — (kf,/DYF)S,,,
T, =P,e® + (k,\ f/D?S,, — (kf,/DN F)S,,,
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k> P, D> kW, S,@

T,, = + — (kf, +2fk,.),
R Y Ve
S, e
—-2;—3,2(kf;+2sz).

We have allowed for anisotropic pressures in the spin fluid.

Equations (15) and (16) are useful as they stand. The
remaining stress-energy components are more convenient to
use with tetrad indices. Using Eq. (4) we find the tetrad
indexed stress-energy components are

Too=€—W/F, (18)
T,=P +S,@ /D) Sk, —kf), (19)
T22:Pz +Sz¢(éb/pzﬁ)(sz-k-f;)’ (20)
Tyy =P, + (S, /DY f)(kf, —fk,)
+ (S,.@/D* f)(kf, —fk.), (21)
— W, 3 8,8f 35,8,
TO3 :O: —— —————
2 4 pJyf 4 DJf
(22)
b
W, = € [(S¢'f),r+(—~—s¢2f),z] (23)
JF LU D D

The procedure is simply to check Eqgs. (15) and (16) for a
possible zero and then to use Eqs. (18)~(23) to generate the
description of the spin fluid source.

ill. APPLICATIONS
A. The Godel cosmology
We have

ds’ = — (dt + ™ dy)* + dx* + 1*** dy* + dz*, (24)
with (t,7,4,z) - (t,x,p,2). This space-time has € =p = la”.
For this space-time we have f=1, k =™, /| = — 1’
b =0, D? = e Clearly fis not proportional to k, so

S, =0. (25)
From Eq. (16),
s, =0. (26)

The only nonzero spin is S, a spin along the z axis of rota-

tion. Equation (22) determines the functional form of the
spin as

S, = Ae™. (27)
Using this spin and Eqgs. (18)-(21) we find the energy den-
sity and pressure to be

la* =€—2a4, la*=P, —2a4d,
la*=P,, la°=P,—2ad.

z

(28)

There is a rotational correction to the usual isotropic Godel
pressures. There is no pressure change along the rotational
axis. This spin fluid has a timelike divergence. The diver-
gence along the spatial tetrad components is zero.
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B. The Van Stockum soiution®

We have
ds’* = — (dt — ap? dg)? + p* dp* + e~ “P'(dp® + d2?),
f=1 k= —ap’ I=p*~a’p’ (29)
b= —a%? D?=p
This space-time has a zero pressure and & = 4a%"*".° We

have identified ¢ and o in €.
As in the previous example, we find

S, =S,, =0.

pz

(30)

The nonzero spin component is determined by the vanishing
of T3

S,.s = Ap. (31)
The pressures and energy densities are
€= €+ 2ade™", P, = 2ade””, (32)

P, =0, P,=2ade"".

The nonzero pressures can again be interpreted as the rota-
tional action of the spin about the axis of rotation. The Van
Stockum spin source has only a timelike tetrad divergence,
as in the G6del cosmology.

Both of the examples considered thus far have only a
timelike divergence component. The last example, whichisa
dust metric due to Hoenselaers and Vishveshwara,'® devel-
ops a spatial component to the spin divergence.

C. An example with spatial divergence

The rotating dust solution of Hoenselaers and Vishvesh-
wara'? has a metric

dS2 — e2(cx+d)(dx2 + dyZ) + _L(azxz . _1_) de
N4 2
+ 2[%(—-21— — azxz) -+ ax]dz dt

2 2
W dr? (1—““") _o)
2 2

(33)

2 2
f:g__..[l_...agx_} \Il’ [:.}_(azxz.__k),
v ¥ v 2
k= ﬂ(azxz - -}—) — ax,
¥
b=2(cx+d), (trz.e)-(txy.2),

where 1, W, ¢, and d are constants determined by boundary
matching. This metric, like the previous examples, has only a
single nonzero-spin component:

1546 J. Math. Phys., Vol. 28, No. 7, July 1987

S, =0, S,=0. (34)

The nonzero component .S,, is functionally determined by
the T,; component of the stress-energy tensor:

Ty = — W/2 + 3(S,, /4] fD) =0, (35)
S, =AD /2 (36)

This spin fluid is the first example to have a spatial diver-
gence component. The divergence is

W, = (S,.2%a/D*W)[Q*/2 + (¥ — alx)?],
W= —3S,.ef/fD).

The energy density is related to the perfect fluid energy den-
sity by

(37)

e=e+WNTF. (38)
The pressures are
Px:Pz, Py=03 (39)

P, = + 5, (/N f¥)[Q*+2(¥ — Qxa)?].

In summary, we have given the relations establishing spin
fluid sources for axis-symmetric stationary space-times. The
space-times used for illustration seem quite different, with
some, for example, having fluid accelerations and some not;
however, there are similarities between the spin fluid
sources. All of the source examples are polarized, have some
nonzero component of the spin divergence, and exhibit an-
isotropic pressure. All of the pressures are, however, sym-
metric about the axis of rotation. The spin density is in gen-
eral required to Fermi-Walker transport. For the three
space-times considered, this is equivalent to

§,. =0

The spin is constant along the flow lines. These examples
provide another alternative to simple perfect fluids or fluids
with viscosity and heat conduction.
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A general theorem concerning any Gédel-type solution of higher-derivative gravity field
equations, which may be produced by any reasonable physical source with a constant energy-
momentum tensor, is analyzed. The resulting class of metrics depends on two parameters, one
of which is related to the vorticity. A general class of solutions of Gédel-type space-time-
homogeneous universes in the context of the higher-derivative theory is exhibited. This is the
most general higher-derivative solution of such type of metric and includes all known solutions
of Einstein’s equations related to these geometries as a special case. A number of completely
causal rotating models is also obtained. Some of them present the interesting feature of having

no analogs in the framework of general relativity.

I. INTRODUCTION

General relativity with higher-derivative terms has been
considered'™ as a very attractive candidate for a theory of
quantum gravity. The theory is defined by the action

I=Jd4x\i ”g[a&_A‘F'QRZ“*‘ﬂRmRW"FLm ,
i X

(LD

where a and 3 are dimensionless coupling constants (in nat-

ural units), » and A are the Einstein and cosmological con-

stants, respectively, and L, is the matter Lagrangian den-
sity. The corresponding field equations are given by
H,=-T,,
H,, = (/%)(R,, —1Rg,.) + (A/x)g,,

+a( —R 2gm +4RR,, —4g,,00R +- 4V V,_R)

+B(—20R,, —R,6R"%g,,

(1.2)

+4RﬂpevRP9—~gMDR +2V,V,R), (1.3)
with trace
T=R/x+4A/% + 4(3a + B)TIR. (1.4)

For the quantum field theorist this higher-derivative
theory has the great advantage of being renormalizable by
power counting,’ whereas, as it is well known, classical gen-
eral relativity is clearly perturbatively nonrenormalizable by
power counting in four dimensions.”® In the pure classical
framework, the aforementioned theory may be considered as
a possible generalization of Einstein’s general relativity, in
the sense that it respects the geometrical nature of gravity as
well as its gauge symmetry (invariance under general coor-
dinate transformations). Recent work has shown*"~!? that
the presence of a ghost responsible for a pseudononunitarity
of the theory, which was considered its Achilles’s heel, is no
more a vulnerable point of it. The reason is that the ghost is
unstable. In spite of the previously mentioned virtues, com-
paratively little is known about fourth-order gravity theory.
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Of course a better understanding of its behavior is of vital
interest to those working on quantum gravity, and in partic-
ular, quantum cosmology. Consequently, the investigation
of cosmological models in the framework of higher-deriva-
tive gravity is well suited.

Here we wish to focalize the so-called Gédel-type uni-
verses.'? These models are defined by the line element

ds* = [é’tz + H(x)dy)* — D*(x)dy* — dx* — dz*,
{(1.5)

and are such that in case

H=¢™, D=e™/\2, (1.6)

we recover Godel’s universe,'* which is a solution of Ein-
stein’s equations with an energy-momentum tensor given by

T,.,=pyvuv, V=56%,

m’ = —2A =xp =207 (LN
where g is the constant density of matter, v“ is the fluid four-
velocity, and (1 is the rate of rigid rotation of matter. Qur
choice for Godel-type models is dictated, first of all, by their
simplicity, which will allow us to accomplish the formidable
task of finding exact solutions of higher-derivative gravity
field equations, in the case of models that are homogeneous
in space and time (ST homogeneous}. And second, because
this analysis will give us the opportunity of answering a very
interesting question, i.e., what happens to the causal patho-
logies of these universes when quantum corrections are in-
troduced in the standard general relativity theory?

We organize the paper in the following way. In Sec. II,
we present a general theorem concerning any Gdédel-type
solution of fourth-order gravity field equations with con-
stant energy-momentum tensor. The resulting class of me-
trics is characterized by two parameters, one of which is
related to the rotation of the matter relative to the compass
of inertia. Of course, any reasonable physical source will put
restrictions on these parameters through the higher-deriva-
tive equations. Taking into account the last consideration,

®© 1987 American Institute of Physics 1547



we show in Sec. III that a geometry having as its source a
perfect fluid plus a massless scalar field and an electromag-
netic field can fit the parameters of the ST homogeneous
Godel-type universes. This is the most general higher-deriv-
ative solution concerning this type of metric and includes all
known solutions of Einstein’s equations related to such geo-
metries as a special case. On the other hand, contrary to what
generally happens in Einstein’s theory, the restrictions on
the parameters of the ST-homogeneous Gddel-type models,
imposed by the sources through the higher-derivative equa-
tions, will provide us with a number of solutions which con-
tain no closed timelike lines, i.e., that are completely causal.
We will look into this subject in a comprehensive way in the
last section.

il. A GENERAL THEOREM

In order to facilitate our calculations, we shall use a
class of locally stationary observers represented by the vec-
tors e'? , defined by O = e’ | dx*, wherein the one-
forms ©* are given by

0% =dr + H(x)dy, ©'=dx,
= D(x)dy, ©°=dz

(Capital letters are tetrad indices and vary from O to 3 and
Greek indices are tensor indices.) As a consequence, the vec-
tors e, assume the form

2.1n

and the geometry (1.5) may be written as
ds* = 17,,6"6°%,
where 5, = diag( +,—, —, — ).

On the other hand, taking into account that dx“
=%, 07, we immediately get

(2.3)

o _ 1 .3 _

€ =€ =e€u =1,

O — 2 o —1
e, =—H/D, &, =D"",

We shall also need the Ricci coefficients of rotation defined
by

Vac= —e® (2.5)

[We use the comma for partial derivative, the semicolon for
covariant derivative, and the bar for tetrad components of
covariant derivatives. For instance, R p c = R p.€%
=R, p.€" (c,.]1 From (2.2) and (2.4) together with (2.5)
we get the following nonvanishing components concerning
these coefficients:

24

X
w55 € c)-

Pr=Y0u=7»=—7"au
= “?’2x0= — ¥’ =H'/2D,
Yie= —v'2=D"/D,
where the prime denotes differentiation with respect to x,

In the local inertial frame defined by 6" = e, dx®
the higher-derivative gravity field equations, Eqgs. (1.2) and

(2.6)

% =V = =1, % =H, ?,=D, (22) (1.3), take the form
}

Hyp = — Ty, (2.7)
H,p = (1/x)(R4p — %RWAB )+ A{A/3%) 14

+a[ —R?p,5 +4RR 5 — 477AB"1CD(R;QD - VMCDR;M) + 4Ry 5 — ?’MABRIM )]

T BU—RPRep4p + 4R 4cosR P = 1,5mPRicip — PeoRis) +2(R 415 — e Rpe)

— 25 [Rugicip — (VMACRMBID + VMBCRAMm

+ 7MAC§DRMB + YMBCIDRA“W) - yMAD (RMBIC - ;VNMCRNB - yNBCRMN)

- VMBD (RAMyC - VNACRNM - VNMCRAN) - VMCD (R 45 M VNAMRNB - VNBMRAN ) ] } (2.8)

We are ready now to demonstrate the following general result.

Theorem: Any Gddel-type solution of higher-derivative gravity field equations H,; = — T, having as the source of

the geometry any field with 7', independent of the points of the space-time, is space-time-homogeneous up to a local Lorentz

transformation.

Proof: The only surviving components of H,z [Eq. (2.7)] related to Gédel-type metrics [Eq. (1.5)] are

o - 3) ]2 e w5

x D D

ey
S
ol 34y -
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2

[( ')']2_31) p\D

DY

5o 8] oo —a(2)
2 %

4 7 N, ’ L ANY] 2 ' AN ” N2 ny\2
_D_..H_(ﬁ_) +4D_(_D_) +_1__[(i)] _!i_(i) +4_1?_({1_) _2(2_)],
D D\D D\D 2I\D D\D D\D D

4D'R’ 15(H
4R " -2 (=
5ok | el =)

4

4 # ”N2 #\ + LAWS

(5] 5] 5) -1 55)) e
D D D D\D

_4D'R’ ]

(2.10)
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N2 ” N2
Hn:_l-[__l_(g_.) +P_+£}_£+a[_R2_4R”..R(__)}
X

2\D D 2

+o-4(5) -3l T+4F) A5

D' 3(H'
H =-—--—+a[R2—4R"—4-——R']+ {—-(-—
3 D A 4\ D

*N12 ” 1\2 ’ I\ ”
(.ff_) ] 2D (_H_) ..Zf_(i) +2(!?_
D D\ D D\D D

1 (H'Y H'Y 2H'R’
)| {252

where
1\2 ”
R= L(_f!_) _,D"
2\D D
The assumption of T, constant, however, implies that
H ,p is constant, too. On the other hand, it is not difficult to

see from the above equations that H , is constant in case we
have

(2.14)

H'/D=const=2Q, D"/D=const=m’>.  (2.15)

These are precisely the necessary and sufficient condi-
tions for a Gdédel-type metric to be space-time homogen-
eous.'>'¢ QE.D.

Thus the whole class of solutions with 7,5 constant is
characterized by the two independent parameters m and .
It is not difficult to show that the last parameter is related to
the vorticity. In fact, in the local frame considered, the rota-
tion may be written as

Dyp = %[(VOBA —7°48) + (428% — 7’08060,4)]»

(2.16)
for a velocity field given by
vi=eW, =6, (2.17)
As a consequence, the vorticity assumes the form
@12-“'— —%(H’/D)- (2.18)

It follows then that the vorticity vector o* = {e**Pwzcvp,
is given by

o* = (0,0,0,0),

where 2 = H'/D. (2.19)
Iil. A CLASS OF HIGHER-DERIVATIVE GODEL-TYPE
SOLUTIONS

It is reasonable to question, ab initio, what material con-
tent we may consider as source of our geometry, in order to
obtain the most general higher-derivative Gidel-type solu-
tion, i.e., a solution that includes all known solutions of Ein-
stein’s equations related to such geometries. The answer is
straightforward if we appeal to a recent work of Rebougas
and Tiomno.'® There, they exhibit a remarkable class of ex-
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2 ' I AV 4 N 1\2 ”
) _E_D_(!‘L) _55{_(5_) +4(§.) D—.}, 2.11)
D D\D D\ D p) D
4 Y2
) +(%)
D

y LY, DDy
D D\D D\D

(2.12)

% D
Hl " H' 2 H' ’ H' ;DII HI Dn ’ HI ’ D: 2 D; H; ”
<o\ =(5) A5 (5 G 555+ (5) &) - 55}
d D D D D D+ D\D t D D D\D

(2.13)

-
act solutions of Einstein-Maxwell-scalar field equation
which is the most general solution of a Gédel-type ST-homo-
geneous metric. So we consider a rotating universe (Q5#0)
for which the material content is a perfect fluid of density p
and pressure p plus a source-free electromagnetic field F 5
and a massless scalar field S. Consequently, the energy-mo-
mentum tensor in the tetrad frame becomes

T,p =pvyvg —p(Nup —V,4U5) + TS+ TE,
(3.1)

where
TLEI;M) = %FCDFCD??AB — FauFy M,
qu? = S[AS[B - zﬂAssiMSwﬂMNs
and v is given by Eq. (2.17).

The Maxwell equations concerning the source-free elec-
tromagnetic field are given by

F22 5 4+ v pp FM2 + Vs F ™M =0,

F{AB|C 1+ ZFM{C VMAB 1= 0,
whereas the zero-mass scalar field equation is as follows:

758,015 — Y™ a8 = 0. 3.4)

The brackets denote total antisymmetrization.

On the other hand, the fact we are requiring space-time
homogeneity of the Godel-type models implies that T, is
constant (cf. the theorem in the last section). We remark
also that we have a preferred direction in our universe deter-
mined by the rotation. Taking into account the above consid-
erations we can seek solutions of (3.3) and (3.4), respective-
ly, related to our model. Let us first consider the
electromagnetic field. Since it is not a pure test field but also
acts as source of curvature, it must then be compatible with
the space-time symmetries. As a consequence, we are led to
take both E and B along the direction of rotation. Thus the
only nonvanishing components of F, are

F,y= — Fy, = E(z), F,= —F, =B(z). (3.5)
Using (2.6) and (3.5), Eqgs. (3.3) reduce, respectively, to
E,+(H'/D)B=0, B, — (H'/D)E=0. (3.6)

But, since H'/D = 2Q (ST homogeneity), the general solu-
tion of Egs. (3.6) can be written as

(3.2)

(3.3)
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E=FEgcos{20(z —z,)],
B=E,sin[2Q(z —z,)],

where E, and z, are constants. In the case of the massless
scalar field it is trivial to show that if we take

S=az+ b,

(3.7)

(3.8)

where a and b are constants, we can satisfy Eq. (3.4) as well
as the space-time symmetries.

Now, the non-null components of H , for the ST homo-
geneous Godel-type metric are

Hy = (1/x)[ — 30% + m?] + (A/x)
+ af —20Q% — 4m* + 240°m?]
+ B[ — 60Q% + 24m*Q* — 2m*],
Hy =Hy = (1/x)[ — Q] — (A/%)
+af — 120% — 4m* + 160%m?]
+B1 — 360% + 16m202 — 2m?],
Hyy= (1/5)[Q° —m?] — (A/x)
+ al4Q* + 4m* — 8Q0%m?]
+ B [120* + 2m* — 8m*Q?]. (3.11)

As a result, the higher-derivative gravity field equations
reduce to the following set of three equations:

(3.9)

(3.10)

E2
p=2 32 A omtaip
2 2 x
+40Ma + 38) + Q%/x, (3.12)
E} & A 4
p=——+—+=+2m*'Q2a+h)
2 2 x
+ 120%(a + 38) — 160%m* (a + B) + Q%/x,
(3.13)

m%/x = 16Q%a + 36) + 4m* Qa + B)

— 24m* Q% (a + B + 2(Q%/ %) — E} + a°
(3.14)

The positivity of energy and pressure is guaranteed if the
cosmological constant satisfies the relation

—120%a + 38) — 2m*Qa + B) + 16m*Q*(a + B)
Ef Q@ & A
*

—— ——<—<40’ 3B) —2m*(2a
) 5 5 (a+3B) —2m"(2a + B)
ES 3, @
+ =,
2 2 %
(3.15)
which implies that
80 (a + 3B8) + Q*[1/x — 8m*(a + B) ] — a*/2>0,
(3.16)
the equality having as its consequence
E} 2
A_E0 20 00t +38)
x 2 %
+24m*Q*(a + B) — 2m* 2a + B). (3.17)
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Equations (3.12) and (3.13) imply in an equation of
statep = yp for the cosmic fluid, wherein y is a constant. The
Lichnerowicz condition, 0<y<1, will be ensured if

A/}cgEé/Z —a? - 2m* 2 + B) — da*(a + 38)
+ 8Q0%m*(a + B), (3.18)

which is consistent with (3.15) and (3.16).

In the integration of Egs. (3.12)-(3.14) three cases
arise, according as m” is >, <, or = 0. In order to make
easier the comparison of our results with those of the litera-
ture, we express our solutions in cylindrical coordinates. Of
course, the Godel-type metric in cylindrical coordinates, i.e.,

ds* = [dt + H(r)d®]* — D?(r)d®* — dr* — d7*,

(3.19)
is precisely of the form (1.5). The Go&del universe corre-
sponds to

H(r) = (242/m)sinh®(mr/2),
D(r) =sinh(mr)/m,

where & is an angular coordinate. We also call attention to
the fact that the theorem of Sec. I is valid mutatis mutandis.
In case I

[16Q%(a + 38) +4m*(2a + B) — 24m’Q*(a + )
+20%x —E} +a*=m’>0],

we obtain

(3.20)

2
ds* = [dr + 22 sinhz(ﬂ’—)a@]
m 2

——Lzsinhz(mr)akb2 —dr* — dz%. (3.21)
m

Here & is to be regarded as an angular coordinate. In fact,
Egs. (3.21) satisfy Maitra’s conditions for regularity near
the origin,"” i.e.,
H=rXconst, D=r.
We also have that the relation
O /x>E}/4 —80%a + 3B8)
+ 10Q°m* (@ + B) — m*2a + B)

holds.
Case I1

[16Q%(a +38) +4n*2a + )
+24n°Q0%(a + B) +20%/x — E% +a*
= —n<0, m’=-—n*<0]

(3.22)

corresponds to the following metric:
2
ds* = [dt + hill sinz(ﬂ)a@]
n? 2

sin? nr

nZ

do* —dr* —dz2*. (3.23)

The relation
El 2+ 8n*Q%a +B) +4n*Qa + B) (3.24)

holds. Equation (3.23) is an analytical extension of Eq.
(3.21) with m — in. We remark that our coordinates are true
cylindrical coordinates, i.e., they satisfy Maitra’s conditions.
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The remaining case, m? = 0, may be considered as a
limit of the first (m?®—0) and the second (n?—0) cases, re-
spectively. The metric is given by

ds’ = [dt + QP d®P)? — P dd* —dr* —dz*.  (3.25)
In this case the following relation holds:

40%/x + 320 (a + B)
>EX =20%x + a* + 16Q*(a + 38) >24° (3.26)

We have thus succeeded in deriving the most general
higher-derivative solution concerning ST-homogeneous G6-
del-type universes. As we have anticipated, our solutions are
such that we can recover from them all known solutions of
Einstein’s equations concerning such geometries. Indeed, as
a,B—0, we obtain the Rebougas and Tiomno solution,'®
which includes all known solutions of Einstein’s equations
related to these geometries. (For instance, when
a,B,E.a—0, we get the Godel solution'* with m? = 2Q2 [cf.
Eq. (3.20)]. If 2,8,a,m — 0 we recover the Som~Raychaud-
huri metric.'® The Banerjee—Banerji'® as well as Rebougas®
solutions are obtained when «,f5,a -0, noting that the first
one concerns a charged fluid and thus the electromagnetic
field is different from that of the second one, but both have
the same 75", and so on.?'~2*) We also remark that Rie-
mannian Godel-type ST-homogeneous metrics with the
same value of m? and () are isometric.'®

We have analyzed so far the fourth-order gravity solu-
tions from a classical point of view. In this sense, the param-
eters @ and 3 are quite arbitrary. However, in the framework
of quantum field theory, the situation is rather different. In
fact, the higher-derivative theory contains two mass
scales,'21*25 agsociated with the spin-0 and spin-2 particles
present in the linearized theory. They are given, respectively,
by

m: = 1/4x(3a + B), (3.27)

and
ms = — 1/2xf. (3.28)

The spin-0 particle has significance even in the nonlinear
sector.?®

Thus nontachyionic spin-0 and spin-2 particles require
(3a + B) to be positive and # to be negative, respectively.
Consequently, these restrictions on the parameters « and 8
must be included in our solutions.

IV. ROTATING GODEL-TYPE UNIVERSE WITHOUT
VIOLATION OF CAUSALITY IN HIGHER-DERIVATIVE
GRAVITY

It is interesting to consider the question of closed time-
like lines in our solutions. To accomplish this we write Eq.
(2.38) in the form

ds’ =dt? + 2Hd® dt — L d®? — d* — dz?, 4.0
where
L(r) =D?*_H?2 (4.2)

Clearly, if L(r) becomes negative at 7, <r <7, then the
curve defined by r,¢,z = const is a closed timelike trajectory.
The existence of such curves poses a difficult problem related
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to the possibility of violation of the well-established causality
principle.
In our case, when m?> 0, Eq. (3.21) leads to

2
Lir)y= 4 sinhz(ﬂ){ 1— (49 — l)sinhz(—m—r)].
m? 2 m? 2

(4.3)
Consequently, unless
m?>407, (4.4)
L(r) will become negative for
sinhz(ﬂ)>(4“2 _ 1)* ' (4.5)
2 m?

Thus the limiting case in which the noncausal region
will disappear corresponds to m? = 402 On the other hand,
a straightforward calculation gives the following relation in
the case of our solutions with m? > 0:

4Q%/x>m* /% — 3204 + 3B)
+40m* 0N a+ By —4m*(Qa + B).  (4.6)

Undoubtedly, the solution m? = 4% is compatible with
the preceding inequality. It follows then from (3.14) and
(3.16) that

20%/x = 16(3a + B)Q* — Ef + d°, (4.7)

—16(3a + B)O* + 207/ — a*>0. (4.8)
Consequently,

E?=0, 20%x=a*+ 16(3a + B)Q" 4.9)
Now, from Eq. (3.17) we get

A/x=4Ca + YA —20%/x, (4.10)
and from Eqgs. (3.12) and (3.13)

p=p=0. (4.11)

Admitting that 16x°a*(3a + B) < 1 and taking into ac-
count that (3¢ + 3) must be positive in order to avoid the
tachyonic spin-0 particle, we obtain from Eq. (4.9) the fol-
lowing values concerning Q%

02, = [1—J1—16x’aGa + B) 1/16(3a + B)x,
(4.12)

@, = [1+J1=16x%Ga + B) 1/16(3a +3(21x1.3)

When (3a + ) -0, 7., —a’x/2, and we recover the Re-
bougas and Tiomno solution,'® which is the only known ex-
act Godel-type solution of Einstein’s equations describing a
completely causal space-time homogeneous rotating uni-
verse.

We have thus succeeded in finding two completely caus-
al rotating solutions. We should like to mention that the
solution concerning Q%Q) has no classical analogs, and it is,
as far as we know, the first known exact solution of higher-
derivative gravity field equations with this characteristic.
“Classical” here means “from the point of view of general
relativity.” On the other hand, it is not difficult to show that
in case m<0 we cannot have completely causal solutions.

Last but not least, it is interesting to question if the caus-
al pathologies of these universes can be avoided in the ab-
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sence of the scalar field. The answer is yes. Indeed, our pre-
vious results provide us with the completely causal rotating
solution, in case @® = 0 and m?> 0:

01 _m A
8(3a + Bix 4

= -.—-—;-Qz, p:p:o,
(4.14)

We point out that the above solution has no similar onein
the framework of general relativity.
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The symmetric tensor spherical harmonics (STSH’s) on the N-sphere (S ), which are defined
as the totally symmetric, traceless, and divergence-free tensor eigenfunctions of the Laplace~
Beltrami (LB) operator on SV, are studied. Specifically, their construction is shown
recursively starting from the lower-dimensional ones. The symmetric traceless tensors induced
by STSH’s are introduced. These play a crucial role in the recursive construction of STSH’s.
The normalization factors for STSH’s are determined by using their transformation properties
under SO(N + 1). Then the symmetric, traceless, and divergence-free tensor eigenfunctions of
the LB operator in the N-dimensional de Sitter space-time which are obtained by the analytic
continuation of the STSH’s on SV are studied. Specifically, the allowed eigenvalues of the LB
operator under the restriction of unitarity are determined. Our analysis gives a group-
theoretical explanation of the forbidden mass range observed earlier for the spin-2 field theory

Symmetric tensor spherical harmonics on the N-sphere and their application
to the de Sitter group SO(N,1)

in de Sitter space-time.

I. INTRODUCTION

A renewed interest in field theories in de Sitter space-
time' has been aroused among particle physicists and cos-
mologists since inflationary cosmologies were proposed.>™
Since bosons of definite spin are described by totally sym-
metric, traceless, and divergence-free tensors in Minkowski
space-time we are led to study such tensors also in de Sitter
space-time. (Note, however, that particles with arbitrary
spin can be studied by using Weinberg-type fields.>") It is
particularly interesting to find the conditions for such ten-
sors to form unitary representations of SO(4,1), which is the
isometry group of de Sitter space-time.® (Recall that unitar-
ity is necessary to avoid negative probabilities.) The author
has observed before that certain values of (mass)? are for-
bidden for the spin-2 field theory because of the appearance
of negative-norm states.® This implies that the representa-
tions of SO(4,1) corresponding to those values of (mass)?
are nonunitary. (The mass gap discussed in Ref. 9 is differ-
ent in nature from the well-known mass discontinuity in
Minkowski space-time,'®'! which rules out the possibility of
the graviton being the massless limit of a massive spin-2 par-
ticle.)

The N-dimensional de Sitter space-time is the maximal-
ly symmetric solution of the Einstein equation with a posi-
tive cosmological constant A,

R, —1g.R+Ag, =0 (LD
The metric can be written as
ds*= —dt* +cosh’tdsy |, (1.2)

where ds% _, is the line element of S ~'. We have adopted
the unit in which

A/ (IN=-1D)(N—-2) =1L (L.3)

* Present address.
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The metric (1.2) is related to that of S%,

ds* =dy* +sin’ y dsy_,, (1.4)
by
y=n/2—it (1.5)

Consequently, the totally symmetric, traceless, and diver-
gence-free tensor eigenfunctions of the Laplace-Beltrami
(LB) operator V, V< in de Sitter space-time can be obtained
by the analytic continuation of the symmetric tensor spheri-
cal harmonics (STSH’s) on S'¥, which are defined here as
the symmetric tensor eigenfunctions 4,,,,...; of the LB oper-
ator on S " satisfying

Ve = 8hupe.n =0, (1.6)

where g*” is the inverse of the metric g,,, of § N (It must be
kept in mind that the symmetric tensors are not enough to
obtain all the possible bosonic representations for N > 4.)

With this observation in mind we first study the STSH’s
on.S ¥, The STSH’s of rank 7<2 have been studied by Chodos
and Myers'? and those of arbitrary rank by Rubin and
Ordéiiez' by using polynomials of the Cartesian coordi-
nates in (N + 1)-dimensional Euclidean space. (Weleave N
arbitrary because no difficulty arises by doing so.) Here we
show how to construct them in terms of associated Legendre
functions. This construction is more suitable for obtaining
the symmetric, traceless, and divergence-free tensor eigen-
functions of the LB operator in N-dimensional de Sitter
space-time (N>3) by analytic continuation. Now these ei-
genfunctions form a representation of SO(N,1). But it must
be unitary if they are to describe particles in de Sitter space-
time. So we introduce an inner product among these eigen-
functions and determine the allowed eigenvalues for the LB
operator V, V* under the restriction of unitarity.

The rest of the paper is organized as follows. In Sec. II
we construct scalar spherical harmonics on $¥. In Sec. 111
we discuss the STSH’s on S 2. In Sec. IV we rewrite the equa-
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tions satisfied by STSH’s in such a way that they are ade-
quate for the recursive construction of the STSH’s on SV
from the lower-dimensional ones. In Sec. V the symmetric
traceless tensors induced by STSH’s are defined and some of
their properties are derived. These tensors play an important
role in the construction of STSH’s. Then in Sec. VI the equa-
tions derived in Sec. I'V are examined and the STSH’son S~
are given in terms of those on $*~! for N>3. Since the
STSH’s on S ? are constructed in Sec. IT1, this enables one to
construct the STSH’s on S ¥ with arbitrary N. In Sec. VII we
analyze the transformation properties of a certain class of
STSH’s under SO(N + 1) and use them to determine the
normalization factors of STSH’s in Sec. VIIIL. Then we go on
from §” to N-dimensional de Sitter space-time. In Sec. IX
we study the symmetric, traceless, and divergence-free ten-
sor eigenfunctions of the LB operator in N-dimensional de
Sitter space-time (V»3), which are obtained by the analytic
continuation of the STSH’s on S V. There we define an inner
product among those tensor eigenfunctions and find the al-
lowed eigenvalues of the LB operator by requiring unitarity,
i.e., the positive-definiteness of the norm. We encounter
zero-norm eigenfunctions, which are identified with zero in
the unitary representations, for certain values of the LB op-
erator. We show in Sec. X that these eigenfunctions are ob-
tained by the analytic continuation of symmetric traceless
tensors induced by STSH’s. In Sec. XI we summarize the
results obtained in this paper.

Il. SCALAR SPHERICAL HARMONICS

Scalar spherical harmonics on S ¥ have been studied by
many authors.'>* Here we write them down in terms of
associated Legendre functions.

Let us parametrize the line element ds3, of S %Y as follows:

dst =dé?i, ez.n

ds* =do* +sin*0,ds2_, (n=2,..N). 2.2)
Let [, be the LB operator on S"

0, = (I/Jg,(n))aj (\/g(n)g(n)ﬁaj)’ (2.3)

where { and j run from 6, to 8, and g is the inverse of the
metric tensor g{”’ on S ” and

‘/g(") :sin""lﬂnsin"—zﬁn_u, ---sin 92- (2-4)

Then the scalar (Oth-rank tensor) eigenfunctions of the LB
operator [0, on S%, i.e., the scalar spherical harmonics on
S, are given by

N
- 1
Yy s, (Onssy) = [ JPr-ue, )} ——eht (2.5)
nI=12 i \{!E
where /,,/,,...,ly are integers that satisfy
In2ly_ 12 2Lzl (2.6)

Here , P! (8) is defined by
ZPL(O) = ¢l (sin@) - =D2p lr D 2(c0s G),
2.7)

where P~ #(x) is the associated Legendre function of the
first kind defined by’
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Pro(x) = — (1 _x)m
F(l+u) \14x

(2.8)

XF(—v,v+l;1+,u; 1—2—x).

Here F(a,B;y;2) is the hypergeometric function and , ¢} isa
normalization constant determined by requiring

fdel'-'dan\/gww,n‘_.,‘Y;*,.,_”=5,,,-~-5,l,;, (2.9)

as

. 9yt 112
_[2L+n L@t len =2 o

i
e 2 (L=
The following formula proved in Appendix A has been used
to find the above equation:

1
f P H#(x)P 7 #(x)dx
—1

_ 2sin (v — ) '(l—pu+v) L@
(V= +v+Dr T +pu+v)
One has
[38022 + (N — l)cotB%—W ~PL(6)
= —L(L+N—1),PL(8). (2.12)
This implies
0%, . =—LU +n—=1Y,.,. (2.13)

In particular, the eigenvalues of the LB operator on §*
for scalar spherical harmonics are —L{L+N-—1)
(L=01..).

lil. STSH’S ON S$2

In this section we study the STSH’s on S °. The metric of
S?is

ds* = dO? + sin? 6 d¢>. (3.1)

The scalar spherical harmonics are well known and have
been given in the previous section. The vector spherical har-
monics (the STSH’s of rank 1) ¥ (" (6,4) are given by'®

Y/(Alm)(g’(b) = [1/W+ 1) ]eltv avaIm (6’¢) (l>1)’

(3.2)

where the totally antisymmetric tensor €, is defined by

€09 = €44 =0, (3.3a)

€y = — €49 = Sin 6. (3.3b)
It is covariantly constant, i.e.,

V, €, =0 (3.4)
The vector spherical harmonic Y (™ (6,4) satisfies
VeV Y (0,8) = — I+ 1) + 11Y ™ (6,4) (3.5)

and

fdﬂz grY IO Y (60,8) =6y 8,  (3.6)

where d(1, is the volume element of S2.
Itis well known that the STSH’s of rank >>2 do not exist
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on 52 (see Refs, 13 and 16) as we will show below. Suppose
that 4, ..., is a symmetric, traceless, and divergence-free

tensor of rank r>2. Define
V[#hvlll;“‘ﬂ,‘l =€fzvfu,~-p,_‘; (3.7)

where [---] indicates antisymmetrization. The trace of the
left-hand side (lhs) with respect to v and u, is zero because

h,,. ..., is both traceless and divergence-free. Thus we have

S, =0 (3.8)
Therefore

Vb, =0 (3.9)
By multiplying this equation by V* we find

VeV, =Ty, - (3.10)

Since V,V? is a negative-definite operator on a compact
manifold, this equation implies that 4, ..., =0.

IV. EQUATIONS FOR STSH’S

Let#4, .., beanSTSH of rank r on.S ™. Then it satisfies
by definition

gaﬁhaﬂﬂl"’ﬂr—z = 0, (4'1)
V. =0, (4.2)
Oh,. . =VVh, ,={—LIL+N—-1)+rlk, .,

(4.3)

where g*# is the inverse of the metric g,; of §”. Here L is
known to be an integer larger than or equal to 7.'> We write
the metric of §* here as follows:

ds* = dy’ +sin’ y 7, 46, d6,, (4.4)

where 77, is the metric tensor of § N-1 We denote the covar-
iant derivative on S¥~! by V,. Below we rewrite Egs.
(4.1)~(4.3) as tensor equations on.S ¥ ~ ! with y dependence
written explicitly. This is the first step toward the construc-
tion of the STSH’s on S ¥ from those on S¥ 1.

It is convenient to rescale 4, ..., as follows:
Py, = (IR )" (4.5)

where iy,...,i,, run from 8, to @5 _ ;. Then Eqgs. (4.1)-(4.3)
can be written, after a tedious calculation, as follows:

nj]yjki,~-~im = - [1/(Sinzl’)]fi,-»im’ (4.6)
Vo = — [i + (N+m— 2)cot)(]f,»‘,,_,-m, (4.7)
ax
32 3  O- m]
2 4 (N—1)cot y—
[8,1/2 o yeo Xc?)( + sin®y §7 "
+ 2m[(cot x/(sin®> )1V, froi )
+m(m — D[ (cot? )/ (sie® ) 19 [y
= —LL+N-1f,. ., (4.8)

where 0 = VV,. Notice that these equations do not depend
onr.
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V. SYMMETRIC TRACELESS TENSORS INDUCED BY
STSH'S

Letf,.., beanSTSHofrank monSV~' (N>3).Itis
known that'?

O, =[—IU+N=2)+m)f,... , (5.1)
where / (>m) is an integer. We define the nth symmetric
traceless tensor T'[”,; ~ induced by f; .. as follows:
T ,ﬁ',‘.’.im ., isalinear combination of symmetric tensors of the
form

Wiy ™" My, _ |"2kvizk+1 a .Vin’/;n+ U imn)?

where 77, is the metric tensor of § N=1land \~7,- is the covariant
derivative there. It is traceless and the coefficient of

V(is . -Vinﬂn+ R 7 18 1
For example,

T, =Fi0, (5.22)
T’§|")"im+! 26('} ﬁz"'im—+l)' (S'Zb)
TO,

by g

= 6(:}6:'2};‘3'--4;,,“) +[U—mU+m+N=-2)
X (N +2m— 1" 1n,.f. (5.2¢)

Our analysis here is on § ¥~ ! instead of S ¥ merely for later
convenience. We will find in the next section that the STSH’s
on S " depend on those on S ¥ ~ ' through tensors 7'{., .

We introduce the following shorthand notation for a
totally symmetric tensor T ., :

g ya)”

r,=T,., (5.3a)
ﬂken —*T, = i, Ty ,:'2,46:'%+ L '~i,, by i) ?
(5.3b)
VT, =V, ., (5.3¢c)
Tr T, = 0" Ty i, (5.3d)

Let us first derive some useful equations using the ele-
mentary formula

n
5 [T A i il
[Vj,vk ]A = z R x_’]kA 3 Y
se=1
where R ;, is the Riemann tensor. The Riemann tensor for a
sphere is

5.4)

R iiki :‘5;:77;‘1 "5§7ljk- (5.5)
Then by calculating the commutator [6,»‘ ,El] we have

av,7,.,=V,0r,.., + (N-2)V, T,
+2 3 (VT — qi,ﬁm,.f“,ﬁ), (5.6)

where T} ...,  isatotally symmetric tensor. By symmetriz-
ing this equation we obtain
OV, T.. ., =V.0T, .,
+2n+N-— 4)§(;’, T,

27y

—2(n— D5 V4T, e (5.7)
which becomes, in the abbreviated notation,
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avr,_, =VOT,_, + @n+N-4VT,_,
—2(n—yVT-T,_,.
In a similar manner we have
(n+DHV-(VT,) =[O+ n(N+n— 3T,
—nn—nTe T, + n?ﬁ-Tn.
(5.9)
Since OT' (™, , and V- T'{), , are traceless, they are pro-

portional to 7'\, , itself and T |, respectively. We

mebn

will prove below that

(5.8)

arwy,., =a" T, (5.10a)
VI, =cvrisy (5.10b)
where
a" =n2m+n+N—4) —I(I+N—2) +m+n,
(5.11a)
o= _ " N+2m+4n—4

m+n N+2(m+n) -5
X[m+n—-—(m+n+N-3)-KI+N-2).
(5.11b)
The proof is by induction. It is obvious for n = 0. Suppose

that these formulas are valid for n - 1,...,n — 1. We first note
that

T, =VTGo D —b™WTos P, (5.12)
where b ‘) is a constant, because Tr Tr VT 71 | = 0. By

taking the trace of this equation we find

bW ={(m+n—1)Y/[N+2(m+n)—>5y1}"" V.
(5.13)

Then 7T ¢, , and V- T'{™, , can be evaluated by using (5.8)
and (5.9). We obtain

a™=a"=Y £ 2(m+n)+N—4, (5.14)

¢ =[1/(m+m]a"" " +(m+n—-1)
X(N+m+n—4)
+(m+n—1)c"""—2p"]. (5.15)

By substituting the explicit expressions of "~ 1, ¢~ U,
and bV we obtain (5.11a) and (5.11b).

As long as m + n>/, ¢\ is nonzero. (Notice that
¢? = Ofor m = 0if N = 2. This is why we excluded N = 2.)
We conclude from this that T, , is nonzero for n<l — m.
Ifm+n=I1+1, T , is both traceless and divergence-
free. This implies that 7", , = 0, which can be proved as
follows. Let us define the inner product of two tensors 4, .., _
and B, ., by

(4,B) :me,v_1 A, B" (5.16)
where df),_, is the volume element of ¥~ '. Obviously
(A4,4) is positive definite and (4,4) = Oimplies4,.., =0.
Since T, is traceless,

(T®,7) =fdﬂw I8, Vi e e,
(5.17)
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Form + n =1+ 1 weobtain (7, T%) = 0 by partial in-
tegration because then T'(" , is divergence-free as well.
Thus 7§'7" "V =0.

Now this implies that 6"]‘,,, can be expressed as a linear
combination of tensors of the form 7*7T = °,, (k>0) if
m + n =1+ 1. Then it is clear that V" */f, with any non-
negative integerj can be expressed in a similar manner. Since
one cannot make a traceless tensor as a linear combination of
the tensors of the form 7*T (" . (k>0, m +n<l), TV, ,
must be zero form +n> 1

Finally, it can readily be shown that two induced sym-
metric traceless tensors are orthogonal to each other if they
are induced by STSH’s of different ranks or by those which
are of the same rank but orthogonal to each other.

VI. ANALYSIS OF THE EQUATIONS FOR THE STSH'S

In this section we derive the formulas which give the
STSH’s on SV in terms of those on S~ starting from the
equations derived in Sec. IV,

Suppose that the first nonzero component of an STSH

By .., is h . .. .., thatis, hX..AX,Vl,..,m.zo for m <s and
By yi-.;, 70. Then from (4.8) we obtain
2 B —
—‘2—2-+ (N — i)cotx~a—-+q 5 S]
dy dy sin‘y

= —L(L+N-1)f, (6.1)

where we have used the abbreviated notation introduced in
the previous section. That is,

A :f;‘,“'is'

Because of the completeness of the STSH’s on S ~ ! we can
assume without loss of generality that

(6.2)

.fs O:}ia(gfv_ i )'-')91)’ (6.3)
where £/ is an STSH on §V ~! of rank s with
OFfe = [ —I(1 + N —2) +s1f%, (6.4)

where o represents the labels other than /. The nonsingular
solution of Eq. (6.1) is

fi=wPLOOFY (Ll>s).

(We do not specify the normalization in this section.)
To find the other components which accompany f, giv-
en above we postulate that

(6.5)

— ply g (n) (n} (n—2)
f;+n—c0 Ts+n“—cl 77T5+n~«2

+ o (=D T+ (66)
where the tensors 7°{" %%}, are the symmetric traceless ten-
sors induced by . The coefficients ¢{"’ are functions of Y
only. Since T\, is zeroif s + n > [, we assume here that />
and will discuss the cases where / < » later in this section.

Now let us derive the equations satisfied by ¢{™. First we
examine Eq. (4.6), which can be written as

Trf, ., = —[1/(sin* y) 1f,.-
The trace of (6.6) is

(6.7)
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[n/2})

Trf,,,= E (— Dfe{mpt—1
k=1
2kIN—=1+2(s+n—2K)] in o
(s+n—2k)(s+n—2k—1) °*+"7%
(6.8)
Equation (6.7) is satisfied if
(n) (S+n)(S+n-—-1) 1 (n—2)

Ci

2k [N+2(s+n—k)—3] sin’y k=t
(6.9)
By iterating this equation we find
o 1 (s + n)!
2%k (s 4+ n—2k)}

[ k 1 ]c(()n—Zk)
X .
al;I;N+2(s+n—2k+a—l) sin?* y

(6.10)
Equation (4.7) can be written as
\~7‘fm+1 = — [§-+ (N+m ——2)c0tx]fm. (6.11)
X
To calculate the divergence of (6.6) we first note that
VT =2 T, + S S,
s+n S+n
(6.12)
where n' = n — 2k. We find from (5.10b)
VTi';’,l_ n N+2s+n—4
s+n N+2(s+n)—>=5
X[(s+n—1D(s+n+N-3)
—I(+N=-2)]T" 0. (6.13)
Here VT (", can be written by using (5.12) as
VT, =T 5 +anT 50, (6.14)

where
a={n(N+25+n —4)/[(N+2s+2n —3)
X(N+2s+2n —5)]Hs+n —1)

X(s+n+N-3)—I(I+N-2D]. (6.15)
Hence we have
VT
2k ierin
=2yt T,
n(N+25+n —4)
(N+254+2n"—3)(N+2s4+2n" —5)
X[(s+n—1)(s+n"+N-3)
— I+ N-=)Ip* T2, (6.16)

By using this formula Eq. (6.11) can be reduced to

M+ DN+25+n" =[N+ 2(s+n—k)—1]

(s+n+1D)(N+254+2n" —3)(N+ 25+ 21" — 1)
X[(s+n)s+n+N—=2)—I(I+N—-2)]c"+ D
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_2(k+ 1)
s+n+1

= = —(?—-+(N+S+n—~2)cotx} ™.
ay

(n+ 1)
Ck 41

(6.17)

Then substitution of (6.10) yields
W+ DN+2s+n—3)
(s+n"+1D(WNV+25+2n" —3)
X[(s+n)s+n+N—-2)—I(I+N—-2)]c§"*P
s+n 1

_ e =1
N+42s+2n —3sin’y
= —{i+(N+s+n —-2)cot,y] i, (6.18)
dy

Notice that # and k appear only through n’ = n — 2k. Other-
wise this equation would be inconsistent. By letting

¥ = NP" () {6.19)

and ¢{ ™" =0, c{” for arbitrary » and k can be obtained
from (6. 10) and (6.18) aslong as s + n>>/, which is the case
for all n here because we have assumed />r. Then they satisfy
Egs. (6.7) and (6.11).

Now let us show that Eq. (4.8), i.e,,

2
Km—[a—2+(N—I)cotx—é—+D m]fm
) dy sinfy
- 2
+om X Gr emim—1) X gy

sin® y sin® y
+L(L+N—-1)f, =0, (6.20)
is satisfied by f,, obtained by the procedure explained above.
The proof is by induction with respect to m. Obviously this
equation is satisfied for m<s. Suppose it is satisfied for
m-m — 1 and m — 2. Now X, can be expanded as
{tm —53/2}

Km — z gk(X)nkT{m~s 2k)
k=0

It is sufficient to show that the coefficients g (x) are zero. If
TrK, =0,theng, (y) =0fork 0. If V-X, is also zero,
then go(y) = 0. After a tedious calculation we find

TrK,, = — [1/(sin’* ) 1K, _ 5,

(6.21)

(6.22)

VK,=— {;— +(N+m— 3)cot)(] K, ., (623

X
which are zero by the assumption of induction.

Next let us examine what happens if we let / <r. What
we will find is that there are no solutions in this case. Since
f 4« With s + n</ can be constructed without any problem,
we examine the component with s -+ n =/ -+ 1. Let us write

/1.1 as follows:

Sior=Fio0+ T (6.24)

where
- __ciz‘—s+l)77T;I_~1S—l)+
+ ( - l)kcl((l—s+l),,]le(l_—zi:_Z‘k—l) 4 e
(6.25)

Here f],, would be ¢§/ ~** DT {{7** D if T{'**" was
nonzero. The trace and the divergence of /], , can be found

”
I+1
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by considering what those of ¢§/ ~*+* VT {7 *+ " would be.
Thus we have

Trf),, =0, (6.26)
- 1 C(()I—s~l)
Tfinn=|
Sir =\ N5 23 sin? y
— [i+ (N+1— 2)cot)(] c(‘)’”"} T{—9,
Iy
(6.27)
The coefficient of 7§’ ~* on the rhs is nonzero as is shown in
Appendix B.
Now we find
farQN_1 TO*V, f =0 (6.28)
by partial integration because
VT~ anT =", (6.29)

(Recall that T{' """ =0.) Therefore one cannot find

f1. . satisfying Eq. (6.27). [In general one can add terms
proportional to induced symmetric traceless tensors other
than 7'{'~ % on the rhs of Eq. (6.27), but the above proof of
the absence of the tensor /], , satisfying this equation is still
valid because of the orthogonality of induced symmetric
traceless tensors. | Therefore one cannot construct an STSH
starting from f, = yP % (y)f " with / < ». Hence

O<s<r<iI< L. (6.30)

We have given a prescription for constructing an STSH
on S~ from one on SV~ . Now it is possible to construct an
STSH on S ¥ starting from one on .S which is labeled by
[1,,72;1,], where r, isits rank and /, is the angular momentum
on.S?and !/, is the angular momentum on S !. From this one
can construct an STSH on S ? of rank r, with angular momen-
tum /;. Then one can construct an STSH of rank 7, with
angular momentum /, on S * from the resulting STSH on S 3,
and so forth. An STSH on S thus constructed can be la-
beled by [ly,7y;...s05720]. It can readily be shown that
these STSH’s are mutually orthogonal with respect to the
inner product defined by (5.16).

The STSH’s on S form a unitary representation of
SO(N + 1). Equation (6.30) constitutes the branching rule
under the decomposition SO(V + 1) DSO(Y). From this
branching rule one can see that the STSH’s on S of rank »
withd= — L(L + N — 1) + r form the unitary represen-
tation which corresponds to the Young diagram labeled by
[L,r0,..,0] (see Ref. 13).

Vil. TRANSFORMATION PROPERTIES OF STSH’S
UNDER SO(N 1)

In this section we investigate transformation properties
of a certain class of STSH’s under SO(N + 1). We will use
the result of this section to find the normalization factors for
STSH’s in the next section. Since the normalization factors
for N = 2 are already calculated in Sec. ITI, we restrict N to
be larger than or equal to 3.

Let A be an STSH of rank r with
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O= —L(L+N—1)+r which satisfies the following
conditions:

(i) hire ., =0 (m' <m); (7.1a)
(ii) hf(m"’;’lwﬁ—(s1nx)2m_’(31n9) Lige (105
(7.1b)

where Y;,,, (1,0) is a scalar spherical harmonic on §* of
which the angular momentaon S™, $¥ ', and SV~ *are L,
I, and ¢, respectively, and 0 = (8,0, _ ,,....,6,); and (iii)

h (742 ., isan STSH on S™ ' that satisfies
Dh(mlqa) m_[_l(1+N 2)+m]h(mlqa)

XL byt

(7 Ic)
Here o represents the labels other than those explicitly writ-
ten. Clearly, A "I"””"’ can be labeled by [L,r;/,m;q,0;...]. (See
the end of the previous section. )

Next let us parametrize S ¥ in (N + 1)-dimensional Fu-
clidean space as

Xh:

x;=sinysin@sin by _, - -sin G,,

X, =sin ysin 8sin 6, _, - cos 6,,
(7.2)
X, == sin y cos 6,
Xy, =COSY.
The Killing vectors that form the group SO(N + 1) are giv-
en by

a a
Xy =x, — —x, —. 7.3)
(ij) ax] J axi (
The SO(N + 1) transformations of STSH’s are convenient-
ly described by their Lie derivatives with respect to the Kill-

ing vectors. The Lie derivative of a tensor 4, ..., with re-
spect to a vector Y* is defined by
Ly=Y"3,+3,Yh,,. ., +0, Y hyao
43, Y, (7.4)

If Y* is a Killing vector, tensor operators suchas V, org,,
commute with Ly. Therefore, if 4, .., is an STSH with
O= —L(L+N—1)+rso0is LYhHI...#’. Below we will
study the transformation of STSH’s A ;‘,'I’?’.".Z)r generated by the
Killing vector X = X , »,, Which can be written as

J a
X =cos 8 — —cot y sin 6 —. 7.5
P AT 50 (7:3)
The result is Eq. (7.28).
Let us define, for a given tensor hu.- s
h(m) - hX"'Xu' (76)

m

By definition of the Lie derivative (7.4) we find
d . d
Shimy =Lxh,,, =(cos6——cot sme—)hm
(m) X7 (m) oy X 90)

—m(sin 6k, _,, + cot y cos 6h,,,)

sin @

+r—m)——h - (7.7)
sin” y
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We define £, .., by

Bimy = (I Y ™ f iy - (7.8)

Then
J . d
8 =<cos€—-—cot sme—) "
f im) oy X 90 Som)

+ (r—m)(sin 6f,,, , 1, — cot y cos 6f ., )
+m[(sin 8)/(sin* ¥)1 fim_1,- (7.9)

First by letting f,,, —/f {m"°), on the lhs of this equation we
obtain

8f (ma) = (r — m + 1)sin gf {7492, (7.10)
Since

féma = (sin @) ~f (T b, (7.11)
one has

8f (m) = (r —m + 1)f (m = b, (7.12)
Thus we obtain
Lxh (mIqa)’ (r__m+1)h(m—1rlqa)

+ terms of the form A (7>)  (m'>m).
(7.13)

STSH’s & [";) with m’ <m — 1 are absent on the rhs be-
cause A ‘”‘"’"’  with m’ <m are zero and L, changes at

X xhe
most one lndex of the tensor. Since STSH’s A L’l'.".".‘;i form an
orthogonal basis of a representation of SO(N + 1) as was
remarked in the previous section, we must have A (7%,
on the rhs because of the unitarity of the representation.
There is no other term proportional to & {7’ with m' > m

for the same reason. Thus we expect

h(mlqo-)’_(r_m+1)h (m—llqo’)+c h(m+"1’lqa)

+ terms of the form A (™). (7.14)

To determine the terms of the form A f‘"’; we examine
8f (e which is

(m)

(m) (m)

8 (e = (cos 02 _ cot ysin6 —‘3—) £ (oo
4

+ (r — m)[sin G {7 — cot y cos Gf {4 ].
(7.15)

By substituting ¢§"’ obtained from (6.18) withs = m in
Fe = et
we find

f(mlqo) —
(m+1) —

9 Z_(sin6) ~"Y,,(8), (7.16)

m+1
(—m)(N+m+1-2)

i—t— (N+m—2)coty —f""""”

dy
(7.17)

The contribution from (» —m + 1) {" .T“',"""’ in (7.15) is

mir—m-+1)
(—-m+1)N+m+1-3)

(r_m + l)fg,':)-”qo)
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X[—a—+(N+m—3)cotx
c?x

X——— (sin §f {mia). (7.18)
Subtraction of this from (7.15) leads to
8f(mlqa) (r__ m + l)fE:;l,Iqa)
_ (sing) " [ U=r(U+1) 7
20+ N=-21{U—-—m)l—m+1)
_ ({+N+r—2)(U+N-3) T‘“]Y
U+N+m—2)(U+N+m—3) e
(7.19)
where
[—+ (N+l—2)cotx]
. ad
X(sm Bgé—lcos 49), (7.20a)
T(+)___

- (Ei/——lcot,y)
X {sin 9%+ (N+1— 2)0050] . (7.20b)

One can show by using the formulas given in Appendix C
that

T e =k_Yp_ g0 (7.21a)
T pge =k Y144 1409 (7.21b)
where
=2+ N—=2)/(2l + N—4))
XU—-q@)(L+qg+N-3)
X(L—1+4+1)(L+14+N—=2)]"2 (7.22a)
ky=UQRI+N-2)/Q2I+ N))
XU—g+1)(L+qg+N—2)
X(L—D(L+14+N-1)]"~ (7.22b)
Thus we obtain
Lyh (7% — (r —m + )b {0 Ve
= h iy MY F e h T, (723)
where
__U+N+r—2)(+N-3)
(U+N+m—-2)U+N+m-=3)
(—q)(U+g+N-3)
QI+ N—=2)(2I+N—4)
><(L—l+1)(L+l+N—2)]l/2, (7.24a)
o= ___U=nU+D
(—mU—-m+ 1)
(U—q+1D({U+g+N-2)
(QI+N)QQI+N-2)
><(L—l)(L+I+N—1)]V2. (7.24b)
Atsushi Higuchi 1559



To find the coefficient ¢, in (7.14) we use
5f(mlqo) ={co 0 a t 6 (mlgo)
(m+ 1) — S EX“"’COXSIH f(m+1)
+ (r—m — 1)[sin Hffz"fi)

— cot y cos 6f (4%,

— (m + 1) [(sin 6)/(sin® y) If {79
(7.25)]

and
(m+ Lilgo)y . (mligo)
Caf iminy™ =08 (m¥

{m, + l.g0)
(m<+ 1

— (r—m+ DT

c_fﬁﬁfﬁi 9,
(7.26)

Here f {7/}, and f {77 1% can be obtained by using the
formulas in the previous section. Functions f {74}, and

Sl 399 can be found by Eq. (7.17). After a tedious calcu-
lation, of which the details are given in Appendix D, we find

_c+

m+1DN+r+m—-—3NN+m—4)(g—m)(g+m+N-3)

Cyg =

X{tm—1D(m+N-2)—L{(L+N-1].

Thus

L h(mlqai_“(r_m_i_l)h(mfllqa)_’_c h(m+1’1qa)

(m:+!qo) (m!—-lqa)
+oeo h +e h

(7.28)

where ¢;, ¢, and ¢, are given in (7.27), (7.24a), and
{7.24b), respectively.

Vill. NORMALIZATION FACTORS FOR STSH’'S

In this section we calculate the n9rmalization factors for
STSH’s by using Eq. (7.28). Let f{7'7? be an STSH on
S ¥~ 1 that satisfies the normalization condition

(}C(mla)’}‘{m,!’d)) = 5mm'5li’50‘7' *

As we have seen in Sec. VL,an STSH / [ ?”.‘,ﬂf’ on S% can be
constructed by letting

(8.1)

Rt = NPLONS T, (8.22)
RERD, =0 (m'<m), (8.2b)

and deriving the other components from constraint equa]

(N+2m—2Y(N+2m -8 -m)U+m+N=-2)(—m+1)(+m+N-3)

(7.27)

szt 2 lenreg V177

(N+2)NJX(N—-2)

tions. We denote the normalized STSH by % ("% and de-

fine the normalization factor ¢}, by

B = ek D (8.3)
We will determine ¢}, below by requiring that
(;! (erIo'),iz (rL’m’I'o")) —_ §LL'5mm’5ﬂ'6aa’ . (8'4)

Due to the invariance of the inner product under
SO(N + 1) we have

(Lxh (erIcr)’h (rL,m + 1,1«7))

4 ( Emio) [ R (rhem+ L)y g, (8.5)
By using (7.28) in this equation we find
lesimi | 2 lemiog V1
= - ‘:‘“’24——1‘“ AL 1! —Z‘Cm :11)0q |2,
cam-m—1) "
(8.6)

wherec, (m—m ~ 1) is what one obtains by replacing m by
m — 1in (7.27). The factors |c$ye, | 7% and e 70,1 72
are present here because STSH’s on S ~ ! were not normal-

ized in Sec. VIL. Iteration of this equation yields

__:(r) (N+2m —4)[(N+2m—6)-
m (N+r+m—4)-

X{(g—m+1)(g+m+N—4)-
X[(-=m+2)(I+m+N—

N+r—2)(N+r-13)

G—D(@Gg+N-2)g(@+N=-3)1""U-m+ D +m+N=3)
HX-XU=DU+N=DII+N=2)12U+1DH{(I+N-3)

[(N+m—5)(N=3)(N-4]"

X[(L=m+2)(L+m+N=3)(L+1(L+N=2)1""efol e, V12 (8.7)
Here |c§f5; | =% is 1 because the scalar spherical harmonics are already normalized. Then |¢{,|~2 and lesog | 72 can be
found as follows. Let us set 7 = m in (8.6). Since |¢YY}| =2 = 1, we have
_ 1 - _1 -
leiog V172 = — m IS m — il 2 e T og |2 (8.8)
Here |c ., _ ;| 7% can be directly calculated by using
h (rem— Lo — ginm =2y (P} (X)f"”.‘”"’ (8.9a)
himbm— o) = m sin” y [— + (N +m — 3)cot ] PL()V, Fims 1o, 8.9b
v (m—1D(m+N—3)—I(I+N-2) Jeotx | wFr 00V (850
The result is
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ey 2= e DI A N A 3) (8.10)
o (I—m+1D(U+N+m-3)
By substituting this in (8.8) we have
e = D=2 = (N+2m—-6)(l—m+2)(I+m+N—4) N-D =2, (8.11)
o (N+m—5)(g—m+1)(@g+N+m—4) "7~
Iteration of this expression yields
leWo1|=2 = (N+2m—6)- - (N-2)(N—-4)
miod (N+m—5)(N—3)(N—4)
(I—m+2)(U+m+N—-4) I+ N-D{U+1)(I+N-3) (8.12)

(g—m+1(g+m+N—-4)-(g—1D(g+N—-2q(g+N-3)

We find |c(f3,| ~* from this equation by replacing 7, L, I, and N by m, /, g, and N — 1, respectively. By substituting these in

(8.7) we obtain

(N}

(N4+2r—5)(N+2m—-—1)(N+2m—3)

L r)
ertmt| (m (N+r+m—4)y - (N+2m—2)(N+2m—3)

><(L—m+1)(L+m-{—N—-Z)"'(L—r'—i—2)(L+r-{-N—3)

(8.13)

(I—myI+m+N=2)(I—r+DU+r+N-3)

IX. APPLICATION OF STSH’S TO THE DE SITTER
GROUP SO(N,1)

One can obtain the metric of the N-dimensional de Sitter
space-time from that of SV [Eq. (1.3)] by putting y = 7/
2 — it as we have shown in the Introduction. The corre-
sponding analytic continuation of STSH’s on $* yields sym-

metric, traceless, and divergence-free tensors hm...#r in de
Sitter space-time that satisfy
Oh, . =[—-LWL+N=1 +rlh,. .. 9.1)

These tensors form a representation of the de Sitter group
SO(N,1), or rather the de Sitter algebra. (One can write
Y = w/2 + it as well but the resulting representations are
equivalent to those for y = 7/2 — it.) There are no restric-
tions on the value of L. However, it will be restricted once
one requires the unitarity of the representation. Unitarity is
very important in applying group-theoretical methods to
various problems. Especially when one wants to use these
tensors to describe particles in de Sitter space-time, they
must form a unitary representation. In this section we will
determine the values of L for which the representation is
unitary. All the unitary representations of the SO(N,1) alge-
bra have been classified by Ottoson.!” (For N = 3, 4, and 5,
see also Ref. 18.) But it has not been clear so far which
representations are realized by the tensor eigenfunctions of
the LB operator in de Sitter space-time.

Unitarity is equivalent to the positive-definiteness of the
norm. As the inner product that gives rise to a norm, we take

hPh) = —i (4o =g [hD 5o

-—h“)“"“”'VOhff-).-*]’ (9.2)

My

where V, is the covariant derivative with respect to ¢ and

dt d 6y — g is the volume element of de Sitter space-time.
This inner product is defined only for tensors with the same
L
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Let us show that this inner product is independent of ¢
and de Sitter invariant if L(L + N — 1) is real. Define

a ag, (Dpy o, Dy ppera
V =h;f.’“;:Vh B b p R Ry h‘f.’i.#‘f. (9.3)
Then one has
Voree—Ll g (yTgve) =0 (9.4)
—&
Hence

a%fare,/—gV‘e —fdﬁc?,(\/—gV‘) =0. (9.5)

The invariance of this inner produce under SO(NV,1) can be
shown as follows. Since the Lie derivative with respect to a
Killing vector Y* commutes with covariant derivatives, the
change in ¥ “ under the transformation corresponding to Y'*
is

Ve =Ly Ve =Y V, Vo — (VY V*

=V (YHV— YoVH). (9.6)

This is a conserved current but its corresponding charge van-
ishes because

V—gdV°=43.V=g(¥yv°e—-y¥rhl.

Now we start analyzing the tensors obtained by analytic
continuation of STSH’s. We restrict ourselves to the case
where N>3. We will not discuss the N = 2 case because it is
much different from other cases and a separate analysis
would be necessary.

Since the quadratic Casimir invariant L(L + N

— 1} + #(r + N — 3} is real for a unitary representation, L

is either a real number or L == — (N — 1)/2 + i7 (7: real).
One can assume without loss of generality that
L> — (N—1)/2whenitisrealand that L = — (¥ - 1)/
2 +ir (7>0) when it is imaginary since the tensor eigen-
functions do not change by letting L - — L — N + 1. This is
because'®

9.7
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P (x)y=P % _(x). (9.8)
Let us start with the scalar case. Define

wPL(#) = (cosh 1) = N=2/2p L N oD/ sinh 1),
(9.9)

Next define
Y01 (1,8) = ¥ PL (DY, (6).

The inner products can be calculated by using'®

N

(9.10)

PIHO) = )
2°D([(v+ )21+ HYO((— v +pu + 1)/2)
(9.11a)
dpP 7 *(x) _ sin[i(v =) mIT((v —p)/2 + 1)
dx x=0 2= Wr (v +pu + 1)/2)
(9.11b)
The result is
o~ ~ w
Y, !Y o) = ‘Yoo’ *
( Lio>* Li ) F([mL)F(I+L+N—-1) n
(9.12)
Therefore the representation is unitary if
= —(N-—D2+ir (+>0) (9.13)
or
— (N —1)/2<L <0. (9.14)

When L >0, there are negative-norm eigenfunctions unless L
is an integer. If

—LL+N-1)] -

L=012,..., (9.15)

then the norms of the eigenfunctions with /<L are zero.
Zero-norm eigenfunctions do not transform into positive-
norm eigenfunctions under SO(N,1) transformations be-
cause their norms must remain zero. Therefore one can iden-
tify them with zero without causing any inconsistency. Then
the positive-norm eigenfunctions form a unitary representa-
tion.

Now let us go on to the case where »> 0. Let ft Eme) be
the tensor obtained from the normalized STSH h ""‘”‘I"’ by
replacing , P ( x) by NP (¢) and substltutmg )( 7/
2 — it. The inner product {(h =™ j CLml'o)y can be deter-
mined by using its invariance under the transformation gen-
erated by the Killing vector X ** defined by

X’:cosé)—a——tanhtsinai, (9.16)
at a6
as in the case of the STSH’s on S V. The result is
<il (erlo)’;: (er'é"o"))
_ 1 r—m| Ny | =2
( ) lcerl T 5mmi 5”'500' , (9' 17)

=FU—LWU+L+N—D

where |c),17? is given by (8.13). There is a factor of

( — 1)~ "because X "“ corresponds to — iX* instead of X' *
= X%y, 1.x givenby (7.5). Let us extract the L-dependent
factors as follows:

{—2)r+N-3)y~L(L+N-1)]

(]; (erla),i,; (erIa)) = K [(m - 1)(”’1 + N— 2)

, (9.18)

rJ—-Lrd+L+n~8N-1)

where « is a positive constant which depends on N, #, /, and
m. Thus if

LL+N—-1 < —(N=2), (9.19)

then the representation is unitary. This condition can be
written as

— (N—D/24+ir (r>0), (9.20a)

- (N—1)/2<L < — 1. (9.20b)
Now, if

L= —10,.,r-2, (9.21)

then the norms of the tensors iz/‘j Lo with m<L + 1 are
zero. Since zero-norm tensors do not transform into posi-
tive-norm tensors, they can be identified with zero. Then the
positive-norm tensors form a unitary representation if N>4.
For N=3,miseitherOor 1. Thusonly L = — 1is allowed
in (9.21) regardless of the rank of the tensors.

Finally we note that the unitary representations we have
obtained here constitute a part of those given by Ottoson,'’
as they should. [ The representations realized by scalars with

— (N — 1)/2<L <0 are not listed in the final result of Ref.
15 for odd N. But the condition for unitarity which the au-
thor writes down is satisfied by them. ]

X. ZERO-NORM TENSORS

We have seen in the previous section that there are zero-
norm solutions to Eq. (9.1) ifr = 0and L = 0,1,...,0rif r> 0
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-
and L= — 1,0,...,

r — 2. In this section we will show that
those with 7> 0 are given by analytic continuation of sym-
metric traceless tensors induced by STSH’s studied in Sec. V.

Let us consider the symmetric traceless tensor 7%, o
S ¥induced by an STSH 4, satisfying

Oh, = —L(L+N-1)+slh,. (10.1)
From Eq. (5.10b) we find
VT, =0 (10.2)

if L =s + n — 1. [ Note that one has to replace Nby N + 1
in (5.11b) because the analysis was on S ™ ~ 'instead of S ¥ in
Sec. V.] This led us to conclude that T'!%, =0 for
n>L—s.

Now we put y = 77/2 — it. Then Egs. (10.1) and (10.2)
become equations in N-dimensional de Sitter space-time.
(We denote the tensor obtained by the analytic continuation
of T, also by T{?,.) The angular momentum on S~

can take any integer value larger than s because 77, is
allowed to have a singularityat y = o [¢ = (#/2)i]. If L — ]
is not a non-negative integer, then 7°{", is nonzero even for

s + n> L. This can be shown by studying the singularity at

x =  as follows. Since the component &, ..., of 4, with
the largest number of y behaves like (7 — y)* =~/ near
y = @, we have
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VoV A,
n

= [(sinx)"}% (sin y) "’1 Bopeoyiyeoi,

~(m =) (10.3)
{(n}

This gives the leading singularity of 77\, , ., because oth-
er terms have at least one factor of sin’ y which comes from
the metric tensor and, therefore, are less singular. Hence
T, 0. Thus T'{"  is a nonzero symmetric traceless ten-
sor if L — /is not a non-negative integer. From (5.10a) with

N-N + 1 we have
DT§TQ,, =[n2s+n+N-3)
~L(L+N—-1)+s+n]T,. (10.4)

Let L=s+n— 1sothat 7{", is divergence-free as well.
Then

OT®, =[—(G—D(GE+N=2)+s+n]T",.
(10.5)

Thus the symmetric traceless tensor T'{"’, induced by
h (ss+n—1mio gatisfies the same equations as the tensor
h ¢+ ns—1mio  Hence the zero-norm tensor i 2™ with
— 1<Lgr—2 and O<m<L + 1 is nothing but the
(r—L — 1)th symmetric traceless tensor induced by
h (L= bm9 (1) up to a numerical factor. Especially,
for L = r — 2 a zero-norm solution of Eq. (9.1) h, .., can
be written as

kﬁl“'[‘r = V(ﬂpAﬁz'“Nr)’ (10‘6}
where A, .., is both traceless and divergence-free and
satisfies
DAy, == =D +r=2)+r—11A,., ..

(10.7)

Thus the symmetric, traceless, and divergence-free tensors
with L = r — 2 are analogous to the corresponding tensors
with (mass)? = 0 in fiat space-time.

Xi. SUMMARY AND DISCUSSIONS

In this paper we showed how to construct the symmetric
tensor spherical harmonics (STSH’s) on S ¥. The symmetric
traceless tensors induced by STSH’s were defined. It was
found that the STSH’s on S~ are most simply expressed in
terms of symmetric traceless tensors induced by the STSH’s
on SV 1L

We found the symmetric, traceless, and divergence-free
tensor eigenfunctions of the Laplace-Beltrami operator in
N-dimensional de Sitter space-time by the analytic continu-
ation of the STSH’s on §¥. We determined the allowed
eigenvalues of the Laplace—Beltrami operator under the re-
striction of unitarity. Those values for the STSH’s of rank
(for N»4) are given, by defining M?= —L(L+4+N

- D+ -2 (r+N—-3sothat M*=0forL=r—2,

as

M2 (r—1D(r+N—-4) (m=01,.r), (11.1)

M*=(@—-—m)(r+n+N=5 (I<n<r) (m=n,.r)
(11.2)
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M2 > 6
X X X % X X X
M2 =6
X X x ‘ X X X
Mo = 4
X X { X X
M2 -0

FIG. 1. The states in the unitary representation of the de Sitter group for
N=4and r =3 with fixed /.

where

{O-[M>—(r—2)(r+N—3)+rl}h,. ., =0.
(11.3)

Here m is the rank of the SO (V) tensors in the unitary repre-
sentation. For N = 3 only M ? = O is allowed in (11.2). The
cosmological constant A is given by (1.3) in our unit.

As an example, the states with fixed angular momentum
on the spatial section §? in the unitary representation for
N =4 and r = 3 are given in Fig. 1, whereas the correspond-
ing states in flat space-time are given in Fig. 2.
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APPENDIX A: PROOF OF EQ. (2.11)
Notice first that

d d u’ -
£ [t
{dx [( ) dx 1—x? @)
= —v(v+ )P #(x), (A1)
|
M2 > 0
X X X } X X X
N

h=-3 h=-2 h=-1 h=0 h=1 h=2 h=3

FIG. 2. The states in the spin-3 representation of the Poincaré group with
fixed momentum, where 4 is the helicity.
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and that P #(x) behaves like (1 — x)*/* for x~ 1. (Here
we are assuming that u is positive.) Then we have

1

V@ +1D)—vy+ 1] P#(x)P T H*(x)dx

—1+e¢

- [(1 —x?) %P:#(x)-P;ﬂ(x)

—(l—xz)Pv‘“(x)%PJ“(x)] , (A2)

x= —1+e€
where € is a small positive number. Now let v — i be a non-
negative integer. Then we find

. (— 1)v—f‘(1 +x)“/2

P H(x) ~ (x-—1) (A3)
x '{t+u) 2

by using (2.8) and the following formula':

r(Nriy—a-pA)

Ny—a)l'(y -5

XFlaBa+ L~y + Ll —2)

Z)y~a~l3 F(’}’)F(a +B s ?/)

INCSING))

XF(y —ayy — By —a—F+ 11 —2).
(A4)

FlaByz) =

+(1—-

By using the same formulas we find

') (1—|—x>""/2

PVT#(x)~ ; ’
F(l+p+vH0—v) 2

(AS)

By substituting (A4) and (AS) in (A2) and taking the limit
e-0wefind Eq. (2.11).

APPENDIX B: PROOF THAT THE rhs OF EQ. (6.27) IS
NONZERO

It is sufficient to show that
[—a—~+ (N+s+n— 2)cotx] %
dy

_ s+n 1
N+2s+2n—3 sin’y
for n</ — s. We will prove this by showing that the leading

term of the lhs in the limit y —0 is nonzero. First we find
from (6.18),

cg”~ V#0, (B1)

o ~agy' (x~0), (B2)
where o, is a positive number. Let us define a,, by
c(()n}zanxl—n_*_o(xl-«n—i-l)’ (B3)

where a,, is a constant.
By substituting this in (6.19) we have

n+1D(N+25s+n-—3)
G+n+DWV+25+2n-3)
XUI+N—-2) —(s+n)(s+n+N-2la,,,
s+n
a,
N+2s4+2n-3

=(N+s+1-a, — .-

(B4)
Assume that
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s+n
N+s+1—2)a, — a,
V+ N+2s+2n—3 "'
> (N+s+1=-2)a, (BS)
which is obviously the case for n = Obecause @ _, = 0. Then

one can show by using (B4) that, unless N =4 and s = 0,
(B5) with n—n + 1 is also satisfied as long as n</—s.
Hence we conclude by induction that Eq. (B5) holds for
n<l —s. Then from (BS) we find «,, >0 and

s5+n @
N+4+25s+2n~3

N4s+1—Da, — RN

(B6)

for n</ — s unless N = 4 and s = 0. But this is nothing but
the coefficient of the leading term on the lhs of (B1). For
N =4 and s = 0, one can show that

1
an—l>n+
2n+ 1 2n +1

for n</—s in a similar manner. The rest of the proof is
exactly the same as the other cases.

I+ e, — (I+2)a, (B7)

APPENDIX C: RAISING AND LOWERING OPERATORS
FOR LEGENDRE FUNCTIONS

The function P [ #(x) satisfies’®

(1—x%) % + vx} P ¥x)y=(v—u)P# (x), (C1)

[(1—x) (;ix— v+ 1>x]P:“(x)

= —(v+u+ DHP7H (x), (€C2)

[ J x

1 — x2 2 O MxX
( x) Ix (i_x2)1f2
= — P #+(x),

]P;"“(x)

(C3)

] d X

[ —x2y172 9 M

( X ) Ix + (1__x2)1f2
=W—-p)(v+pu+ 1P (x).

]P;“‘(x)

(C4)

APPENDIX D: CALCULATION OF THE CONSTANT ¢,
Recall that
Ermni i’)lqa)z (Sin 9) wm_IYLqu(Xye)- (Dl)

Thus we have to retain only the terms proportional to
(sinf) ™"~ IYL,qo (y,8) in calculating the rhs of (7.26).
Now each term in (7.26) is of the form (differential opera-
tor) X ¥, ., (v,0). We first eliminate second derivatives
with respect to y or 8 by using the differential equations
satisfied by ¥}, (v,0). Then, since the terms which have 8 /
dy or d/d6 directly applied to ¥, (y,0) must add up to
zero, we can make the following substitution:
d

——= — (N+m—2)coty,

2
g (D2)

(D3)

j—-«» m cot 8.
a0
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We can also let cot y cos §f {74} -0, (D7)
[1/(sin® ¥) 1Y, (x,8) -0, (D4) [ (sin 8)/(sin® y) ] f{ms® 0, (D8)
(sin @) =" 'Y, (x,0) - 0. (D5)  Then f{7%°), can be found by using Eq. (6.6) with s =m

Then we find that we can let and n = 2 and Eqs. (6.18) and (6.10) as follows:

d A ) fim4), = DT, — D, f 7, (D9)
c0s  ~—— — cot y sin § — ) f (™) .0, D6 e m+2 2
( dy X ag)" v (DO where
J
92 m(m+N—2)——l(l+N——2)]
T — — (mlgo)
(m+2) [682 Nt om—1 S (D10)
D=(m+l)(m+2) N+2m—1 1
! 2 N+2m—2 im—D(m+I1+N—-2(m—I+D)(m+I+N—1)
x[i+(N+m-1)cotX} [i+(1v+m—2)cotx], (D11)
I dy

and
D, « 1/sin* y. (D12)

By following the procedure explained above we obtain
sin 6 (:Iqa) - (m+ 1)(m+2) N+2m""l

A 2 N+2m-—2
Covimg (sin @) ="~ 1Y, (1.9), (D13)
(m—l)(m+l+N 2)(m—I+1D)(m+I+N-1) ’

where
Chimg =(g—m)(m+g+N-3)[(m—-1D)(N+m—2) —L(L+N-1] (D14)

Similarly, we have

(m——llqa') m(m+1) N+2m_‘3
m+ D 2 N+2m—4
Cvemg (sin @) ="~ 'Y,, . (1,0). (D15)
(m—l—l)(m+l+N Nm—-Dm+I14+N=2) 9
By using (7.17) and (7.21a) we find
—c_ fimi=leo) _ (sing) " m+D{~-nU+1)
TS maD A+N=2 l—-m—=DN+m+I1-3)(I—-m)(I—m+1)
a ][ a
X | e N - 2)cot e N+1—-2)cot
[3X+( +m Jeot y 3X+( + Jeot y
X(i—mcotG)(sinﬁ—q——Icosé) Y .. (v.,8) (D16}
En) 36 Llao X8

Then

—c_ f(ml—lqa') m+1D)(U—-r+1)
m+ b @A N=-D(-m— DN+m+1=3)I—m)(I—m+ 1)
X Cpimg (8D 0) ="~ 1Y . (1,0). (D17)

Similarly, we find
e, fimitieo (m+1DU+N+r—2)({+N-3)

T meD CQ@AN—DU—m+D)N+m+I—1)N+m+1—-2)(N+m+1—3)
X Crypmg (8I0 8) =" 1Y 10, (1,0). (D18)

By substituting (D13), (D15), (D17), and (D18) in Egs. (7.25) and (7.26) we obtain c,.
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Exact solutions in 141 dimensions of the general two-velocity discrete lliner
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The Illner model is the most general two-velocity discrete mode! of a Boltzmann equation in
one spatial dimension which satisfies an H-theorem. It includes, as particular cases, both the
Carleman and the McKean models. “Solitons” (one-dimensional solutions) and “bisolitons”
(two-dimensional, space-plus-time, solutions), which are defined as rational fractions, and
solutions with one or two exponential variables are determined. The model is treated as a
nonintegrable nonlinear one, and from the solitons the possible class of bisolitons is guessed.
Two classes of physically acceptable bisolitons are found. The first class is distributions
positive only along one semiaxis and identically zero outside. These are interpreted physically
by introducing elastic walls plus source or sink terms which become negligible at infinite time.
The second class is periodic solutions which can be seen as damped sound waves. Essentially
the same tools are used as in a companion paper for the six-velocity Broadwell model, where

the two bisoliton classes mentioned above also exist. This suggests that general methods for
obtaining nontrivial exact solutions could exist for the hyperbolic semilinear discrete

Boltzmann models.

1. INTRODUCTION

At the present time, many people think that discrete
models can provide useful examples for the existing prob-
lems in kinetic theory. Due to the numerous difficulties ap-
pearing in the study of the continuous Boltzmann equation
(BE), they hope that discrete velocity models may shed
some light on the solutions of these problems. In this frame-
work, it seems to me a reasonable preliminary condition that
these discrete models could be studied with similar methods
providing fairly general results.

In a companion paper' we determine a class of exact
1 4+ 1-dimensional (space-x-plus-time-f) solutions of the
six-velocity discrete Broadwell® model with three indepen-
dent distribution functions. It is the aim of the present paper,
for a two-velocity discrete model, to see whether methods
and tools similar to those used for the Broadwell model lead
to comparable results.

The most popular two-velocity discrete models are the
Carleman and McKean® models. The Carleman model has
been extensively studied: global existence, uniqueness, bound-
edness, oscillations, and asymptotic behaviors of the solu-
tions.* Some of these results have been extended to more
complex discrete models, for instance a 14-velocity model.’
For obvious reasons, the mathematical results were obtained
for smooth and relatively small initial data, for instance the
distributions are integrable when |x| — .

For two-velocity discrete modelslet us call f,,7 = =+,
the distributions of particles moving in opposite directions of
the x axis, with velocities + 1. The most general binary colli-
sion term Col( f_, f_) is a quadratic form of the products
fo ft f2 f f_ with three arbitrary parameters. Illner®
clarified these mathematical models by supplementing them
with the physical restriction that they should be compatible
with the H-theorem. He obtained a two-parameter family of
models
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(0, +m3d.) f, =mCol(f,, [ )
=qlaf’, —(@+o)fof-+ef)
(1.1)

where the restrictions @<0, ¢>0 ensure that
3, Y fo logfy + 3. (f,logfy — [ logf_)<0,

Vfi>0, Vf_ >0
(which is a stronger condition than the usual V¢>0).
Throughout the paper, we restrict our study to a<0, ¢>0.
The values — a = c¢ =1 lead to the Carleman model and
a=0, c=1 to the McKean one. Let us introduce
N =f, -+ f_ the density of particles, and J=f, — f_ the
stream velocity (1.1) can be rewritten as

IN+3.J=0,
IN+dJ=J[(a+c)+Na—-co)],

(1.2)

the first linear equation expressing the mass conservation.
We notice that these models fail to conserve momentum.
We first want to obtain algebraic exact solutions N, J of
(1.2) and second, building N + J, verify the positivity of the
distributions f,. Note that the conditions” N>0, N —J>0
are not sufficient to preserve positivity (as we shall see expli-
citly later). We will not consider the homogeneous formal-
ism because, for this simple model, we think that at least the
spatial dependence must be present. The known exact solu-
tions are mainly those of the Carleman model’"? if we ac-
cept the Platkowski results.'® All these solutions satisfy the
ordinary differential equations (ODE’s) which can be trans-
formed into integrable linear differential equations. Self-sim-
ilar solutions, with only one variable, are of this type, and
further they are in one dimension. For the Carleman model a
more subtle periodic solution® has been obtained by Bobylev,
and clarified and extended by Wick. Assuming that N and J
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are conjugate harmonic functions, then flz=x+iy)

= N + iJ is an analytic function from which the reduction
to integrable differential equations is possible. In this way, a
periodic two-dimensional solution was obtained. Summariz-
ing the results obtained so far, the goal has been to extract
from the nonintegrable hyperbolic system (1.1) [or (1.2)]
particular cases which could be reduced to integrable linear
differential equations.

Here we want to face (1.2) as a genuine nonintegrable
system and try methods which have been successful for other
nonintegrable nonlinear partial differential equations
{NLPDE’s). The continuous homogeneous BE becomes
through the generalized Laplace transform'' a NLPDE of
this type. Exact solutions were obtained, called “solitons”
and “bisolitons” because they were defined as rational frac-
tions with one exponential variable w = d exp{(yx + pt) or
two w; =d; exp(y;x + p;t). (With this definition we can
recover the soliton and bisolitons of the two-dimensional
completely integrable NLPDE.) Further it turned out'? that
the homogeneous BE was generic of a whole class (not in-
cluding the semilinear hyperbolic systems) of nonintegrable
NLPDE’s sharing common properties both for their linear
operators and their bisolitons. Similarly here, for the semi-
linear hyperbolic systems, by investigating solitons and biso-
litons for different discrete models, we hope that common
properties will emerge for another class of nonintegrable
equations.

For (1.2), the one-dimensional soliton solutions, being
self-similar solutions, can be obtained directly from integra-
ble differential equations. However, they are useful because
the bisolitons when d; -0 must reduce to the solitons
w = w,;. Consequently they provide some guesses for the
search of bisolitons. They are obtained as rational solutions
with denominators A = 1 + w (Sec. I A). Then asymptotic
|x| — o« positivity properties are interesting, although differ-
ent from the Broadwell ones. There always exists one of the
limiting x axis where lim f_, lim f, have the two opposite
signs of 2 and ¢. Consequently in general (ac <0) they can-
not be positive solutions on the full x axis. (This holds for the
Carleman model g + ¢ = 0, contrary to the Dukek and Non-
nenmacher’ analysis.) However, the particular ¢ =0 or
¢ = 0 models can avoid this difficulty and sometimes these
soliton solutions can be physicaily interpreted as shock
waves.'° Finally we notice that in all a<0, ¢>0 cases, a lot of
positive soliton solutions exist for x on a semiaxis.

The simplest possible ansatz bisolitons [see Eq. (2.5)]
have denominators of the type A = 1 + Zw, + pw,w,. The
constant i in A represents the coupling between the solitons
w, and w,. We check the consistency of such solutions with
the constraints coming from the linear mass conservation in
(1.2) and the most singular term (proportional to A™?) of
the nonlinear part of (1.2) (see the Appendix). We find that
the bisolitons without soliton coupling in A or z = Q are not
possible. This result is not surprising as it is a consequence of
the previous nonintegrable NLPDE study'? of the y« = 0 bi-
solitons. It was shown that the operator of the linear part
must be factorized, a property not existing for the hyperbolic
semilinear equations. For the 50 case we find that only
p =1 1is allowed which means A = (1 + w,)(1l +w,) or
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equivalently the bisolitons can be written as a sum of two
solitons. Starting with

N=n0+z%, J=]0+E_JA'_’ i=1+wi’

(1.3)

all parameters can be algebraically determined. (Notice that
in general N 4+ J—const when |x| - « and so are not inte-
grable.)

The linear mass conservation law in (1.2) can always
support a superposition of soliton solutions. On the con-
trary, the nonlinear part gives the conditions for the cou-
pling of solitons

(a+c¢)+ (c—a)(vi/p, +v,/p;)/2=0, i#j, (1.4)

and only two different v, /p; values are compatible. “Multi-
solitons” with more than two solitons are not possible; this is
the main difference between the present class of nonintegra-
ble equations and completely integrable ones (the same dis-
tinction occurs for the Broadwell modz1). In conclusion the
bisoliton parameters satisfy the relations of each soliton
component plus the coupling relation (1.4). It appears use-
ful to define two new parameters v, which reduce to y;/p;
for the Carleman model and such that the coupling relation
(1.4) becomes v, + v, = 0. We arbitrarily choose v = v, as
the remaining parameter and the algebraic bisolitons be-
come rational fractions of the w; with two parameters n, (or
Jo) and v. In the remaining sections of the paper we study
both ¥;, p; real or complex (v real or purely imaginary) and
look at the positivity properties.

In Sec. 111 we show that for y,, p; real no positive bisoli-
tons exist along the full x axis (this is the main difference
with the Broadwell model'). However, we can find bisoli-
tons compatible with positivity if we restrict to the semi-
(x>0)-axis. We establish the class of possible positive solu-
tions following the 2<0, ¢>0 values of the parameters of the
Iiner model. Two classes must be distinguished depending
whether in (1.3) j, = 0 orj,#0. Invariance properties allow
a reduction of the studied intervals for the parameters.

We distinguish between the asymptotic positivity re-
quirements X — oo, f— o and the ¢>0, x>0 positivity for
which we give sufficient conditions on the constants d; of the
w, =d; exp(¥.x +p;t) soliton components. Specular
boundary at the x = 0 condition is possible only for the Car-
leman @ + ¢ = 0 model.

In Sec. IV the soliton components w; are complex conju-
gate w, = w, and we define w = w, = d exp(yx + pt) with
d, v, p complex. The above v parameters becomes /vy and the
discussion occurs with the two parameters 1, {orj,) and v;.
Invariance properties still allow a simplification of the pa-
rameter study. We must distinguish between the two cases
where the spatial part of w has y complex or purely imagi-
nary.

(i) If y is complex, then no positive solution exists on
the full x axis. However, positive solutions on a semiline, say
x>0 exist.

(i) If ¢ is purely imaginary (see Sec. IV A), then the
solutions are periodic. For all parameter values a,c (ac#0)

of the Illner model there exist positive periodic solutions
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(exact periodic solutions exist also for the Broadwell mod-
el). For the positive (i) and (ii) solutions, sufficient condi-
tions on the d parameter of w ensure the positivity for 0.

Let us compare the periodic solutions obtained here for
the Illner model from the bisoliton method, with the Boby-
lev—Wick periodic solution of the Carleman model. For the
parameter values a + ¢#0 of the Illner model it is shown
that the &V, J functions associated with the bisolitons are not
conjugate harmonic functions. The same result is true in
general for the bisolitons of the Carleman modela + ¢ = 0.
However, there exists a particular restriction on the param-
eters |v;| = ¢ for which this property for N and J holds and
then the solution coincides with the Bobylev—Wick one.

For the physical interpretation of the periodic solutions
we distinguish between two cases. For a + ¢5£0 they are
propagating waves with an absorption factor. They can be
seen as damped sound waves. However, the absorption can
be so strong that in fact only one or two oscillations in time
can be seen. We define as a criterion the ratio of the real to
imaginary part of p. We show analytically and observe nu-
merically that when the modulus of this ratio decreases, then
the number of effective oscillations in time increases. On the
contrary for the Carleman a + ¢ = 0 model, the waves are
nonpropagating with time and the solutions can only de-
scribe damped oscillations in the space variable.

In Sec. V we try to give a physical meaning for the solu-
tions positive only along a semiline (x>0 for instance). Simi-
larly as what was done'? for the inhomogeneous Kac model,
we define new distributions f,,, identical to f, for x>0 and
identically zero for x < 0. The new distributions are a solu-
tion of kinetic equations of the Illner type, with two addi-
tional terms at x = 0, that we must interpret physically. For
the Carleman model, only one supplementary term exists
which can be interpreted as an elastic wall at x = 0. For
other Illner models, a + ¢5#£0, besides this elastic wall, an-
other term is present which, for the w; real solutions, can be
interpreted either as a source or as a sink, decreasing expon-
entially in time and becoming negligible compared to the
elastic wall at infinite time. For the w, complex conjugate
solutions, the second term, while decreasing exponentially
and becoming negligible when ¢ — «, changes sign with 7. It
acts like an oscillating source, a sink term with an interpreta-

TABLE I. Solitons.

tion not as simple as above.

In Sec. VI we illustrate the results of the paper with
numerical calculations. For some examples, we plot the
N+ nJ =2 f, relaxation curves for the class of solutions
positive along x>0 (Fig. 1) and for periodic solutions (Figs.
2-4) the N + J,N relaxation curves and different time oscil-
lations when prp;~ ' decreases.

Il. RATIONAL SOLUTIONS WITH EXPONENTIAL
VARIABLES

We seek solutions of the Illner model (¢<0, ¢>0) which
are rational fractions of either one exponential variable
w=dexp(yx + pt) (solitons) or two variables w;

=d; exp(y;x + p; ), i = 1,2 (bisolitons). The study of the
bisolitons will be performed in two successive stages. First,
in this section we determine the algebraic structure of these
solutions, and second, in the following sections, we look both
at the asymptotic positivity constraints |x| — co, #— oo and at
the positivity >0. A priori the denominators of the rational
fractions solutions of (1.2) are of the type A?, A being a
polynomial in w (or w; ) and g unknown. However, we re-
mark that the quadratic nonlinearity is associated with lin-
ear first-order differential operators. If the most singular
part of the solution, which comes from the A7 factor, is
determined by a balance between linear and nonlinear parts,
then necessarily g = 1.

A. Solitons

The solitons, self-similar one-dimensional solutions,
with the variable yx -+ pt, are completely integrable solu-
tions of ODE’s. Despite their simplicity, for pedagogical rea-
sons, we briefly present the results (Table I). They will pro-
vide some hints in the search of the possible bisolitons.
Further the study of their properties, particularly the positi-
vity, will be a guide for the corresponding bisoliton proper-
ties. We start with the ansatz

N=ny+n/A, J=j,+j/A, A=1+uw,
w=dexp(yx +pt), d>0,

ny, 1, jo, J, 7> p, d being real constants, that we substitute into
the Illner system (1.2). We obtain four relations (Table 1,

(2.1)

A: AnsatzN=n,+n/d, J=j,+j/d, A=1+4+w,
B.

w=dexp(yx +pt), d>0

Relations (1) jy + np =0, (2) jy{(a + ¢)j, + (a — ¢)ny) =0, (3) and (4)
(ny +jp) = —2pjla+c) + (a—c)jort +jng) =jl{a+0)f+ (@a—cin], a<0, >0

C:  Algebraic solitons definition y/p = (2v —a — ¢)/(¢ — a)
Cl: jo=0N—-J=n,{l + (—1+a/v)/4),

N+ T=nfl+(—14c/v)/B), p=nglc—~a)/4la—v){v—2c)

C2: joF#O: N —J=2ja+ (v—a)/A)/(c—a)

N+4j=2fc+ (v—c)/AY/(c —a), p=jw(c—a)/2(v—a)(v-—c)

D:

1y a=0:01)j=0,n,>0,v>0;N FJ—-ny nyand 0, nee/v
(i2) jo>0,v>0; (N £ J)/2j,—0, 1 and v/c, v/c

(it) c=0:(1.1) jo=0,n,>0,v<0; N JFJ—ny, nyand nea/v, 0.
(i.2) jo<0, v < 0; (N FJ=J)/2jp—1,0and v/a, v/a

E: Physical positive soliton on x>0, 120, with a0, ¢#0:

Physical positive solitonson xe[ — o, + ], >0, condition |x]|— e

El: j=0:n,>0 (a +¢c)/2<v<c, d>sup(la/v],e/Iv]), p>0,¥>0, v = ny{c — a)/24 >0

E2: jo>0:sup(0,(a+¢)/2)<v<e, d>|v/al,p<0,y<0,J=jw/A>0.
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part B) easily solved. Two classes of solutions occur depend-
ing on whether j, = 0 or j,50. It appears convenient to in-
troduce a parameter v linked to the ratio ¥/p and identical to
it for the Carleman modelc = —a =1,

y/p = (a+c—2v)/(a—c). 2.2)

The solutions, written down in Table I, part C are rewritten
here in a form appropriate for the positivity discussion

(N—DA/ng=w+a/v,
(N+DNHA/mg=w+c/v, j,=0,
(N—DN(c—a)A/2jy=aw + v,
(N+DN(c—a)A/2jy=cw +v, ju50.

These solutions depend on two arbitrary parameters 7ng, v
(or j,, v) which are important for the asymptotic positivity
and one more integration constant d >0 (A > 0) important
for the positivity at t = 0. When |x| — o or #— o0, there exist
for w only two possibilities: either w— « or w--0 which
when substituted into (2.3a) and (2.3b) will provide asymp-
totic constraints.

We discuss possible solutions on the full x axis and begin
with the asymptotic |x{— o postitivity constraints. For the
Jjo =0 solution we note that lim(N —J,N +J) is either
ny(1,1) on one side or (n,/v) (a,c) on the other side. Due to
ac<0 we see that positivity is violated if ac 0. For j, #0 we

(2.3a)

(2.3b)

find both limits (2j,/(a — ¢))(a,c) and (2j;v/(c — a))(1,1) .

for N ¢ J, leading to the positivity violation if ac#£0. In con-
clusion, positive soliton solutions cannot exist on the full x
axis if ac < 0. (In particular, this result holds for the Carle-
man modela + ¢ = 0.) There remains the possibility ac = 0.
Webegin witha = 0,¢> 0: from (2.3a) and (2.3b} it follows
that positivity (x€[ — o0, + o0 ], £20) is satisfied for the
Jo == 0 solution with ny> 0, v> 0 as well as for the j, >0 one
with v> 0. Similarly, for the model ¢ =0, a <0 we find a
positive solution when j, =0, n,>0, v <0 as well as for
Jo<0, v<0. The soliton solutions with the variable
x + tpy~ ! are candidates as shock waves if |p/7|<1 and the
total mass N has a jump between the two limits |x|— .
These two limits are ny(1,(a + ¢)/v) for the j, = 0 solution
and (j,(c —a) ") (a+¢2v) for j,#0. From (2.2), |p/
7|<1 means v/c <0 or v/c¢> 1 for the 2 = 0 model and v/
a <0orv/a>1forthec = 0one. Of course the distributions
N + J must be positive. It is why our asymptotic |x{— e
positivity condition, leading to ac = 0, is a first step in the
determination of shock-wave solutions. For these models
ac = 0 and one of N + J, there exists one of the two limits
|x] - oo which is zero (see above) representing an infinite-
Mach-number shock wave. (See the Platkowski paper'® for
a discussion. )
If we restrict our study to a semiline, for instance x>0,
then N+ J>0 (£>0) exist also for a#0, ¢#0. First for
Jo =0 (2.3a)}, in order to satisfy positivity when x or - w0,
necessarily p and ¥ must be such that (N “FJ) —n,, p>0,
and ¥ > 0. Looking at ¢ in (2.2) and p written down in Table
I, part C1 we find (g + ¢)/2 <v <¢. On the other hand, for
any >0 we notice that (2.3a) leads to the lower bound
(N—-ID/ny>d —la/vl, (N+J)/ny>d—c/|v|, so that
positivity is satisfied for |d | > sup(|a/v|,c/|v|). Second, for
the j,5#%0, j,>0 solution, a similar analysis when #— oo,
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x - oo leads to ¥ <0, p <0. Then (2.2) and Table I, part C2
give the constraint ¢ > v > sup(0,(a + ¢)/2) from which we
see that N + J is always positive for £>0. The lower bound
(N—=D)(c—a)A/2j,>v — |a]d gives the last constraint
d > |v/a}. For the a = 0 or ¢ = 0 models exist of course as
solutions on the semi-x axis and we have disregarded here
these particular cases. In Table I, part D E|E, a summary of
the positivity discussion is written down.

B. Possible bisolitons

We introduce the two-exponential variables w,
=d,; exp(¥;x + p;t) and require

p1Y2 — p2v1 #0 (2.4)

for a true two-dimensional solution. We remark that when
d, = 0 (ord,; = 0), the bisolitons must reduce to the solitons
studied above, withw = w, (orw,). Wenotice also that if we
write the solitons of the above subsection like N /D then N
and D are linear in w.

Let us look at the possible denominators A of the bisoli-
ton. It must be of the type 1| + Zw, plus terms at least qua-
dratic in w,, w,. However, pure power terms w§ (or w§),
p> 1, alone, which do not vanish when d, =0 (ord, =0)
are not present because they do not exist in the soliton case.
In other words A must reduce to 1 + w; when d; =0, i#/.
Thus A must be of the type A = 1 + Zw; + ww,P(w,,w, ),
Pbeing a polynomial in w,, w,. For simplicity we assume the
simplest choice P==y, a constant.

We write down a possible class of ansatz bisolitons,

N=’30+’%9 J=J-0+”£‘; A=1 +wa + pW, Wy,

(2.5)
with n = ng, + Zn,w;, j =joo + 2j,w;. We notice that sup-
plementary terms proportional to w,w, in the numerators n
and j do not enlarge the class of ansatz because the ratios
with A still lead to (2.5). The study is done in the Appendix.
Two different possibilities occur depending upon whether
pu#0 or u = 0. We tackle the constraints coming from two
relations: mass conservation and nonlinear terms propor-
tional to A ™2 which necessarily factorize A,

N, +J, =0,

nA, +jA, —jl(a +c)j+ n(a—c))=0(A).
The calculations are tedious but the results are simple.

(i) The assumption g0 leads necessarily to u = 1
{Sec. 1 in the Appendix) means that A is the product
(1 4+ w;)(1 + w, ). Furthermore the numerators are of the
type n = Zn.(1 +w,), j = Zj, (1 + w;). Consequently, at
this stage where only the nonlinear constraint (2.6) is taken
into account, the class of possible ¢£#0 ansatz (2.5) is re-
duced to

n, , i
N=no+3 -, J=JO+E-Z-C, A =14w, 2.7

(2.6)

where the constants ng, 1;, jo, J;, ¥;» p: have to be determined
from the other constraints of the nonlinear equation in
(1.2).

(i1) The u = O case corresponds in A to the vanishing of
the coupling between the solitons. Such bisolitons appear
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naturally in the study of the continuous homogeneous BE.
The class of NLPDE noncompletely integrable leading to
such bisolitons has been investigated.'? They correspond to
factorizations of the operators associated with the linear part
of the nonlinear equation. For the inhomogeneous discrete
BE such factorization of the linear operator does not occur
and we expect that such bisolitons do not exist here. The
calculations are done in Sec. 2 of the Appendix. Taking into
account the constraints {2.6) and with a lot of cumbersome
calculations, we find that bisolitons with z = 0 do not exist.

In conclusion, among the class (2.5), then (2.7) is the
only possible subclass of bisolitons. In the following subsec-
tions we shall first substitute the ansatz (2.7) into the non-
linear Illner system (1.2) and determine explicitly the pa-
rameters of the bisolitons. Second, with the help of
invariance properties we shall show that it is sufficient to
consider the parameter values in reduced intervals. Finally
in the other sections we shall establish the asymptotic
|x| - o0, - o0, and £>0 positivity constraints.

C. Algebraic forms of the bisolitons

The substitution of the ansatz (2.7) into the Illner sys-
tem and the vanishing of the coefficients of const A, !, A%,
(A,A,) 7! provide five relations (some of them are double)
which are written down in Table II, part B. The four first
relations are the soliton ones associated with the soliton
parts w; of the bisolitons. Notice that the bisoliton ansatz
(2.7) is formally written as a linear superposition of two
solitons w;. The last relation [see also (1.4)] coming from
(A,A,) " represents the coupling between the two solitons
such that the bisoliton exists. If, as in the soliton case (2.2),
we introduce for each soliton a new parameter v, associated
with the ratio p; /; (and reducing it for the Carleman mod-
el),ie, ¥,/p; = (a + ¢ — 2v;)/(a — ¢), then the condition
for the existence of a double soliton (called bisoliton) is sim-
ply v, + v, = 0. We arbitrarily choose

(2.8)

as the new parameter and v, becomes — v. This simple con-
dition for the existence of bisolitons traduces the fact that
discrete Boltzmann models represent weakly nonlinear
models called semilinear by the mathematicians. It is much
more difficult to obtain similar objects in the continuous BE.

v=2v,=a-+c— (a—c)y/p,

TABLE I1. Bisolitons.

Once the coupling between the two solitons has been found
then the algebraic determination of the solution in terms of
v, Jo» Ho i easily done. We still have two classes depending on
whether j, = 0 orj, #0, written down in Table I1, part C1-2,
and rewritten here in a slightly different way:

(N—DAA/y= — 1 +ww, + alw, —w)/v,
p1=nplc —a)Y/4lv —cyla—v), (2.9a)
(N+DA A/ ny= — 1 +wauw, +clw, —w)/v, j,=0,

(N — DAAy(c — a) /2,
=(—a)(1 —ww,) +viw, —w,),

p1=Jjwvla—c)’/2(v—a)(v—c), (2.9b)

N+ DA A (e —a)/ 2y =clww, — 1) + v(w, — w;),

j0¢09

convenient for the positivity study. In both the j, = 0 and
Jo#0 cases we have from (2.8) y,=p,(a+c—2v)/
{(a — ¢) and for the second component part of the bisoliton
the simple relations v~ — vip, = p ( — v), ¥, = 7, ( — ¥).
The fact that these solutions (2.9) sustain a two-dimensional
space [or (2.4) is satisfied] is verified by the relation y,{(v)/
pP1(V)#vy/ps =¥ ( —v)/¥,( — v). We check now that if
one soliton component vanishes then the bisoliton is reduced
to the soliton of the other component. Starting from Table
II, part C2 for j,#0, let us definew = w,, n, = 2jv/(a — ¢),
p = p, and perform the limit d, - 0 or w, — 0; then the bisoli-
ton is reduced to the soliton Table I, part C2 for j = 0. Con-
versely, starting from Table 11, part C1 for j, = 0, defining
w=wy, jo= (@ —c)ny/2v, and letting d,—0 we find the
soliton j,50 of Table II, part C2. In conclusion the bisoli-
tons obtained are really the two-dimensional extension of the
solitons of Sec. IT A.

D. invariance properties

The bisolitons (2.9a) and (2.9b) depend on the two pa-
rameters n,( j,), v which are the coefficients of the w,’s and
on the two arbitrary constants d; contained only in the w;. In
fact, two invariance properties for N + J allow a reduction of
the ny( j,), v intervals which must be studied.

(i) For the bisolitons j, = 0 or j,50 let us define the

A: Ansatz N=ny+ Zn, /0, J=jo+ 2 /A, A, =1+ w, w, =d; exp(y;x + p;t)
B: Relations (1) j;7; +n,0, =0, (2) jo[(a + ¢)jp + (@ —cIngl =0, (3) and (4)
vy +Jips) = ~ZpJila+e) — (@ — ) (jon; +jingd =jilla+ e)j;, +(a—cin}, (5)ya+c+ (a—e)/ (yi/py+ vo/p2)/2 =0
C:  Algebraic solutions definition: ¥,/p, = ( — 2v+a + ¢)/{a—¢), yo/p, = v+ a+¢)/(a —¢)
Cl: jo=0,N—J=n{l+(—1+a/v)/A, — (1 +a/v)}/A)), p, = nyc — a)/4(v — c)(a—v)

N+J=n1+(—1+ec/v)/A — (1 +e/vVV/D) po=p,(— )

C2: jo#0, N —J=2j[a+ (v—a)/A, — (v+a)/B,}/(c — a), p, = jov(a — €)?/2{v —a) (v — ¢},
N+JT=2le+ (v—c)/Ay— (v+¢)/B)/(c—a), p, =p,( — V)

D: Invariances: 7 ;: {n,— — n, (01 jo— — jo), d; —d 7}, v fixed},
T 1 {ng (orj,) fixed, d,2d,, v— — v}

E: Positive solutions on a semiline x>0 with real A;

El: j,=0,8+4¢<0,0<v<infle, —~ (a+¢)/2), 1 <e/v<d,<d,,

P1>P2>0, 7 >¥,>0, 20 =nglc — a)(w, — w,)/vA,0,<0if d;, = d,, N-n,

E2: j,>0,a+¢<0,0<v<infle, — (a+¢)/2), l <c/v<d, d<d,,

£1<0,0:50,0, 4+ 0, <0, 7, <0, 1,50, ¥, + 72 <0, J = jo(wyw, — 1)/8,8,<0, N-2jpv/(a — ¢}
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transforms 77, with the following changes in the param-
eters:

T {ng— — ng (orjo— —jo), d; —d ', v fixed}.

With the transforms 77| we obtain p;, - —p;, ¥;— — ¥,
w; »w;” ', A, —»w; 'A,, and finally 7 (N + J) - N + J.

(ii) Similarly let us define a second class of transforms
yﬂf

T uing—ne d,=2dy, v— — v}

With 7 we find p,=2p, 72, A=A, and finally
T u (N +J)—-N + J. Without loss of generality we can, lat-
er on, restrict our study to #,>0 (j,>0) and v>0. The
properties corresponding to other domains n, <0 ( j, <0),
v <0 can be obtained by applying 7| and 7 ;.

1il. BISOLITONS WITH REAL EXPONENTIAL
VARIABLES

The properties discussed up to now for the bisolitons
were algebraic and valid for y;, p; real or complex. Here we
assume that y;, p; are real ny>0 (j3>0),v>0,d, >0 (or
A; #0) and discuss the physically acceptable solutions.

A. Physical solutions on the full line xe[ — «,+ =]

We study the asymptotic positivity |x|— oo noticing
that if one A; — <« for one limit, necessarily the same A, - 1
for the other. Two possibilities can occur.

(1) For both A, the limits are + o and 1. Forj, = O we
find (N FFJ) —n, for one limit and — n, for the other, for
Jo#0 we find for N + J the two opposite limiting values

=+ 2j,¢/ (¢ — a) and for N — J the two opposite limiting val-
ues + 2jqa/ (¢ — a). In all cases the positivity is violated.

(ii) Let us assume that A, — o0, A, - 1 for one asympto-
tic limit and A, —1, A,— oo for the other. Then for j, = 0,
N — J (or N + J) has two opposite limiting values + rqga/v
(or + nye/v), for j,5#0, similarly we obtain N —J (or
N +J)— 4 2jv/(c — a), the only escape v = 0 leading to
¥; =p; =0, w; = const.

In conclusion, the bisolitons with real y;, p; cannot be
physical solutions on the full line. This means that the escape
ac = 0 for the solitons do not hold for the bisolitons.

B. Physical solutions on a semiline x>0 (we recall that
ne>0,v>0,d,>0)

1. Solutions jp =0

First, looking at the asymptotic positivity for either
1— o0 Or X— oo we show that necessarily ¥, >0, p; > 0. Itis
sufficient to notice that when x — o, (i) if ¥, > 0, ¥, >0, then
N TJ-ng (1) if >0, 7.>0, N—J- —nsa/v,
N + J—=ngc/v <0, except for the particular case ¢ = 0; (iii)
if ¥,<0, <0, N FJ—> —ny<0; (iv) if 7,<0, 7,<0,
N — J—nea/v <0 except for the particular case a = 0. The
same proof works for p,, p,. Can we have solutions for these
particular cases ¢ = 0 in (ii) and @ = O in (iv)? Looking at
the explicit expressions (2.92) of the y;, p, as functions of n,,
v we find that the ¥,, p; do not have the signs prescribed in
these particular cases. On the contrary we find v values for
which the p, and the y, are positive. We obtain p, >0 if
a<v<e,p,>0if —c<v<e —a,y,>0if(a+c)2<vec,
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¥.>0if —c<v< — (a-+¢)/2. Consequently on the one
hand we have the restriction @ + ¢ <0 on the parameters of
the Illner model and on the other hand the condition
0 <v<inflc, — (a + ¢)/2) on the v parameter.

Second, for the last positivity constraint N 4+ J> 0 for
any ¢>0 values we seek the signs of p, — p,, ¥, — ¥ forag, v,
a, ¢ satisfying the previous conditions: from {2.8) and (2.9a)
we have

no(c —a)*v(a +c)
o

R A @ =)

_ngle —a) vy — (@ + ¢*)/2)
(v* — ) (@® —P) ’

and find p; >p,>0, ¥,> ¥, >0 in the v assumed interval.

Then from (2.9a) we easily obtain two lower bounds Vx:0,

V>0,

AAN—D/ng> — 1 +dd, —a(d, —dy)) /v,

AAN+I/ny> — 1 +dye/v—d(d, —c/v),

3.0

Vi—72

(3.2)

from which we see that the positivity ¥x >0, V>0 is satisfied
ifd,>d, > c/v> 1. In conclusion there exists solutions j, = 0
positive on the semiline x>0.

2. Solutions j,> 0

First we look at the asymptotic positivity when either
t— oo Or X— oo and show that necessarily y; <0, p, <0,
%2> 0, p, > 0. It is sufficient to notice that when x — oo : (1) if
1>0, ¥>0, N+J-2j,c/(c—a)>0, N—J-2a/
{c—a)<0 (except if a=0); (i) if y,>0, 7,<0,
N+J- —2Ywv/(c—a)<0; (i) if y,<0, 7,<0,
N—J-» —2ja/(c—a)>0, N+J- —2jc/(c—a)<0
(except if ¢=0); (iv) 7, <0, >0, N—J [or
(N+/)]-2Yyv/(c —a)>0. Concerning the particular
a = 0 and ¢ = 0 cases, from the explicit expression (2.9b) of
the ¥, p;, wedonot find v values such that thep,, ¥, have the
appropriate signs. On the contrary for ac <0, we find v such
that ¥, p, are negative and 7,, p, are positive. From (2.9b),
for the above p; signs we see that v must satisfy
O<v<inf(c, —a) and for the ¢, signs, O<v
< inflc, — (@ + ¢)/2). Finally we have the same restrictions
as for the j, solution, ie., a+c¢<0 and O<v<inf-
(¢, — (a +¢)/2).

Second, from (2.9b) we want to deduce lower bounds
such that restrictions on the d; will give sufficient positivity
conditions Yx>0, V¢>0. Here we must have information on
the signs of p, + pa, 71 + 72

o1 + 2 _J¥(a —zt:)z(a +o)

WV —ahH (v —=ch)
: 4 2
P :jovz(c—a)(22v2 —a 2—c )
(W —a )Y (v* —¢?)

(3.19

and we find O0<p, < —p,, O<y,< — 7,. The two lower
bounds are easily deduced

A, AL(N —J)
>[(1 —dd,)(—a) +v(d,—d,\) ]2/ (c ~a),
A AN+ (3.2
> — 1+ vdy/e 4+ w (d, —v/e)]2jc/(c —a),
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from which we obtain that the positivity Vx>0, ¥£>0 is sat-
isfied if d,<d,, d\d,<1, dy>c¢/v> 1. A summary of the re-
sults of this subsection is quoted in Table II, Part E 1.2. For
both j, = 0 and ji, 50 solutions the sufficient positivity con-
ditions and the restrictions on the parameters belonging to
other intervals n, <0, j, <0, v <0 can be deduced with the
help of the 7| and .7 ; transforms.

C. Specular reflection boundary condition at x=0

Letusrequire N —J =N + Jatx = 0orJ =0atx = 0.
Necessarily we consider the j, = O solution and from (2.9a)
obtain A (x =0,f) = A {(x =0,t) or d, =d, and p, =p,.
From (3.1) we see that for the bisolitons the only possibility
is @ + ¢ = 0 for which ¥, + ¥, = 0. This means that for the
present class of solutions, the Carleman model is the only
possible one with this type of boundary.

D. Muitisolitons?

Can we have more than bisolitons or can we find solu-
tions containing N solitons with components w;
=d; expp,(t +xv,/p;). N>2,v,;/p,; different values? Re-
quiring that when d; 0, j> 2 the solution reduces to the
previous bisoliton, the simplest ansatz is N = n, + Zn;/A;,
J=jo+ Zj;/A;, A; = 1 + w;. The linear mass conservation
gives j,¥; + n,p, = 0 and from the coefficient of (A4, ) !
in the nonlinear Illner equation we find

a+c+i‘-'i2-fl(&+p—k) —0, Vi, Vk ck.

2 Yi o Yk

For the bisoliton ;N = 2 there is only one relation which ex-
presses the coupling between the two soliton components.
On the contrary for N > 2 the set of relations leads Vito v,/
p; = const independent of / or to an impossibility.

IV. BISOLITONS WITH COMPLEX CONJUGATE
EXPONENTIAL VARIABLES

Let us come back to the algebraic bisolitons written
down in (2.3a) and (2.3b) (or Table I, part C1.2), assume
that the v parameter is purely imaginary v = iv; and recall
that p, =p,( —v), ¥, =¥,( — v). We have p, = p,(iv),

TABLE III. Bisolitons with complex A: v = iv,.

pr=p( —ivi)y=p¥, v, =yF Letusdefinep =p,, y =1y,
w=uw,d=d,w=dexp(yx + pt),andchoosed, =d *. It
follows that w, = w*, A, = A* and N + J are real. We no-
tice that these solutions could as well be obtained directly
starting with an  ansatz N =n,- 2 Re(n/4),
J=j,+ 2 Re(j/A), A =1+ w, n,j, ¥, p being complex.

The invariance of Sec. II D is still valid and the trans-
forms can be written 7 ; {ny— — n, (orj,— —j,),d—d ™',
T, fixed} and Ty {n, (orj,) fixed, d—d*, v > —v; }.
Consequently we still restrict our study to ny,> 0 (or j, > 0)
and v > 0. Westill restrict our study to n, > 0 (orj, > 0) and
v; > 0. We still have two classes of solutions: j, = 0, j,7#0,
however, the last one violates positivity as we show. The
solutions j, %0 can be written as

(N =D |A]> =2la(w)> — 1) + 2viw,)/ (c — a),

Wy =Im w, (4~1)
(N + DA = 2le([w]* = 1) + 2viwy )/ (c — a),
Jo#0.

When either 7 or |x| go to infinity there exist two possible
asymptotic behaviors: (i) either |@w|— w0, N —J—>2jpa/
(¢ —a) which violates positivity unless a =0, (ii) or
|w| >0, N + J- — 2jyc/(c — a) still violating positivity un-
less ¢ = 0. Further if a=0 (or ¢ =0), then N—J (or
N + 1), proportional to w; changes sign for x and ¢ varying.

Hereafter we always consider the j, = 0 solution that we
write (see also Table II1, part B)

(N—=DIAP =ny( — 1+ |w]* — 2aw, /v ),
(N+D|AP? =no( — 14+ |w|* = 2cw /vy),
no(c —a)*(V2 —ac — ivy(a +¢))
T A+ @+ VD
no(c — a)*((a + ¢) (Vi + ac) + ivi (2v§ + a®> + ¢*))

- >

4(c’ +v) (@ +7)

(4.2)

withp = p, + ip;, ¥ =Yg + iy;. Let usshow that if y, 0,
physical positive solutions on the full x axis are not possible.
When [x|— oo, on one side {w| — o, N — J—n, while on the

A: Ansatz N=ng+2Ren/A,J=j,+2Rej/A, A =1+dexp(yx + pt) ny, j, real, n, j, v, p, d complex
B:  Algebraicsolutions ju,=0N ~J =n,[1 —2Re A~ + (2a/v)Im A I N+ T=no[1 ~2Re A~ 4 (2¢/v; ) Im A1)

no(c —ay’{vi —ac —ivi(a+c¢)}

po= , y=pla+c-—2v)/(a—c)

42 + AV +ay)
C: Invariances 7y : {ng— — ny (01 jo— — jo), d—d ', v, fixed},
Ty {ng (orf,) fixed, d—d*, vy —» — v 1.
D:  Periodic solutions 7, >0, v; >0

Dl: v, = £ —ac, pg = nolc —a)/2>0for ny>0, for vy >0, p; = no(a® — c*)/4/ — ac,
¥y = ngla — e)¥/ &/ —ac, N?Jl—» no>0,n +J>0if |d | >sup(yfer, + T+ a,),
a, = |¢/al, a, = |a/c}; for rz0<0,p;m<0, N+ J>0ifld]| <inf( — Ja, +JT+a,).
D2: a+c=0, /vy =2n,c/ (2 + V2) =pp/C, ¥r =p1 :O,Ni.i'l—> g >0
N+ J>0if|d | > le/v| + T+ [c/v |5 If vy =c, Nand J harmonic conjugate

E: Positive soliton on a semiline x>0

ny>0, 08 >0, ¥z >0, no restrictionon vy ifa=00rc=0,vf> —acifa + ¢ <0,

< —acifa+c<0,|d|>supB; + J1+ 67,8, =la/v|, B, = e/},

J(x =0,t) = ny(c —a)v; ' Im A~ changes sign, N— n,,

1573 J. Math. Phys., Vol. 28, No. 7, July 1987

Henri Cornilte 1573



other side |w| -0, N — J— — n,. There remains two possibi-
lities: either ¥ = O, and at fixed ¢, the solutions are periodic
on the full x axis, or ¥ %0 and we must restrict our study to
some semi-x axis (for instance x>0).

A. Periodic solutions y, =0
From (3.2) weseethat ¥ = Oeitherifvi + ac = Oorif

a+c=0.
1. vi=—ac (a+c#0, a0, cx0)

We choose v; =+ — ac> 0, and begin with n,>0 and
find

Pr =nolc —a)/2>0, p; =ny(a® —c*)/4f — ac,

7 = nola—c)’/&/ —ac (4.3)
(pr>0 even if v, <0). When 1-wn, |(w-w,

N FJ-ny>0, let us seek sufficient conditions on 4 such
that the positivity is satisfied for any 7>0. From (4.2) we
deduce two lower bounds, (N FJ)|A|¥/n,+1—|w]?
greater than either — 2|wlyl|a/c| or — 2jw|y|c/a] from
which we obtain

N+ J>0 if |d|expprt>sup (a; +{T+a;),
(4.4

Recalling pr >0, it is sufficient that the inequality (4.4)
holds at # = O for |d | alone. For the other sign choice v; <0,
with the help of the transform 7 |, we must replace d by d *
leading to the same result for |d |. We notice thatin (4.4) the
sup is larger than 1 so that |d|>1 avoids the possibility
A = 0 for some x, ¢ values.

For ny <0, we want to check the validity of our invar-
iance properties applied to the positivity constraints. First as
above, we deduce directly the sufficient positivity condition:
ny, <0 leads to py <0, N+ J— — n, and we deduce from
(4.2) two lower bounds (N FJ)/(—ny) — 1+ |w)?
greater than either — 2|w|\/[a/c| or — 2|w|{/|c/a]. It fol-
lows that

N+ J>0 if |d|exppgt>sup Ga;, +T+a,),

{4.4")
with the same a; asin (4.4). Here also it is sufficient to apply
(4.4’) att = Ofor |d |. Second we apply the transform 77| to
our above result obtained for n,>> 0. In (4.4), for t =0 we
replacedbyd ~!. Itistrivial to verify that we obtain the same

condition (4.4") for t = 0. We notice also that in (4.4’) the
inf being less than 1 avoids the possibility A = 0.

a, = lafe], a,=/lc/al, ny>0.

no<0, 120, x>0,

2. a+c=0, Carleman model
We begin with n,> 0 and find
vivio ' =2n4c?/ (Vi 4 ¢?) = pre 150, (4.5)
Yr=p1 =0, w=dexpy(cy; 't +ix)

and ¥N+J — n; Lower bounds, easily deduced from

t— oo
(3.2), lead to sufficient >0, x>0, positivity conditions,
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(N+D|APrg'> =14 [d |2 —2c|d vy >0

if |d|>|e/vy| + 1+ [e/v]*.

For the other choices v; <0, ny, <0 we use the transforms
1, T and proceed as above. For instance for n, <0 we
find |d| < — le/vi] + 1T+ [e/v ]

Let us consider the restricted class of solutions such that
vy = c. Then 7, = py and the condition p” + 3 = Ois satis-
fied. In the case N and J are harmonic conjugate functions.
In (4.6) the positivity condition becomes |d | > 1 + 2 for
no> 0. If we require further that d is real then the solution
becomes identical to the one determined previously by
Wick.® However, let us recall that the solution exists for any
v, real values for which N and J are not, in general, conjugate
harmonic. Further when v; crosses the value ¢, nothing spe-
cial happens for the solutions.

(4.6)

3. Physical interpretation of the periodic solutions
We write down the total mass NV and the current J and
look at their large time behavior

N/ng—1=2Re(l +i(a+c)/2v)A™!

~e %A, cos(y1x + pit +dy),

J/ny=2Re(a—c)(2v;A)~! 47

=e P4, cos(rix +pit +6,),

with 4, A; being positive constants and ¢,, ¢, constant
phase factors. They represent damped ( pr > 0) oscillating
and propagating (if p; £0) waves. Notice that for the cur-
rent [J | -0 when - o and in the mean the flux of particles
is equivalent to zero. We discuss the two different cases
a+4c5#0 (seeSec. IVA 1)yanda + ¢ = 0 (seeSec. IV A 2).

(i) a + c¢#0. The solutions correspond to damped
sound waves. Nng ' — 1~ (exp — pgt)cos(y; (x — v,t)
+ @), where the sound speed |vy| = la + ¢|/(¢c — a), de-
pendent only on the Illner parameter values g, c, is the same
for all solutions { pg, ¥; are written down in (4.3)]. Fora
periodic solution, the asymptotic mass value n, is fixed and
we have only one sound mode. In the dispersion relation y;
wave number versus p; frequency we have only one value. If
the ratio of the absorption coefficient p by the frequency p;
is not small, we have very few effective oscillations when the
time is growing. A good criterion for sound waves (not too
strongly damped) is

lor/p1] = |2 = ac/(a +c)| <1. (4.8)

For ¢ fixed taking Illner models with — a increasing we
must observe more and more effective oscillations in time of
N for a fixed x value. Choosing ¢ = 1,anda = — 9, — 225,
— 625, — 2500 with ratios pg /p; = 0.75, 0.13, 0.08, 0.04
we observe an increasing number 1, 3, 6, 13 of oscillations
(see Sec. VI).

(ii) For the Carleman model p; = 0, the oscillations are
not propagating. The periodic solutions cannot correspond
to sound waves, they are damped oscillating waves.

B. Physical solutions on a semiline x>0

We assume n,> 0 {for #,<0 we use .7 ;). In order to
avoid a positivity violation when x or ¢ goes to infinity [see
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(4.2)], we must, in both limits have |w|— o or pg >0,
¥Yr >0 (N FJ-ny>0). However, pgp is always positive
while, with 7 having the sign of (a + ¢) (3} + ac), we find
yr >0 either for a +¢>0, v} > —ac or for a + ¢ <0, v}
< — ac. In the following, we assume that these restrictions
are satisfied, still choosing n,> 0.

In order to find sufficient £>0, x>0 positivity conditions
we deduce two lower bounds from (4.2): (N —-J) !A!zno— !
+ 1 — |w]|? greater than either — 2|wa/v|or — 2|we/vy|,
with |w| = |d |exp(ygx + prt). Wefind ¥ + J> 0, V10,
Vx>0if

Idl>31'!Pﬁi + 41 +B1 Bi=la/v|, B=le/w].
4.9

We emphasize that such solutions exist for all parameters
values a<0, ¢»0 of the Illner model. Note that fora =0 or
¢ = 0 we have no restrictions on v; while in the other cases
the restrictions written above exist. Fora =0ora +¢>0,
thesupin (4.9) is given by the second term, whileifc = Qor
a + ¢ <0, it is the first one. The Carleman model solution
(Sec. IV A 2) for which pp >0, yx > 0is for x>0 a particu-
lar case of the present class of solutions.

Can we have a specular reflection boundary at x =0 or
J{x = 0,t) =07 We must choose the j, = 0 solution and
from (4.2) we find that Im w = 0 or d real p; = 0. Once
more, the only possible model is the Carleman one
(a+¢)=0.

C. Conjugate harmonic N,J functions

Let us assume that in addition to the mass conservation

law N, +J, =0, N and J satisfy N, —J, =0 or (9%

+3%) (N,J) = (0,0). Then N and J become harmonic
conjugate functions. For the ansatz (2.7) thismeans ¥7 + p?
=0, which is not possible for real ¥;, p;. In the present
section, where the y; and the p; are complex conjugate, we
must have p? + ¢* = 0 or the two conditions pgp; + ¥z %
=00k +7% =pi +1i-

Let us check on the explicit p, ¥ written down in (4.2)
for these two conditions. From the first condition we find
two possibilities: either @ 4+ ¢ = 0 (Carleman model) or v{

+ 2viac + ac{a® + ¢ — ac) = 0. The second condition for
a + ¢ = 0 gives |v;| = ¢ for the Carleman model (see Sec.
IVA1). On the contrary, the second condition, for
a + ¢50 in the first condition, leads after some algebraic
calculation to the result v/ = ac which is impossible for the
Illner model ac < 0. Finally the possibility of constructing
explicit Nand J harmonic conjugate functions exists only for
a particular value of the parameter of the Carleman model.
For instance we can directly check, for the periodic solutions
v2 = —acof III A 1, that % + p?#0.

V. PHYSICAL INTERPRETATION OF THE POSITIVE
SOLUTIONS ON A SEMILINE, x>0

In analogy with a previous physical interpretation’® of
the inhomogeneous Kac model solution, which was positive
only inside a well-defined interval, we define new distribu-
tions ,?,7 = §(x) f,, which areidentically zero for x < 0 (out-
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side the semiaxis x>0). Starting with the kinetic equations
for f,: (3, + 1 ;) f, = n col( f,, f_) we deduce the cor-
responding kinetic equations for f,

(B +n3)f, =nCol(F,f) + 1S +S,
77S+So = na(x)f'r] (x = OQI))
28 = 6(x)N(x =0,t), 25,=358(x)J(x=0.).

We must interpret physically the two supplementary
terms S, and 7S. For a positive additional term, like a gain
term in the collision term, it is interpreted as a source term at
x = 0, while a negative term, like a loss term, is interpreted
as a sink at x = Q.

(1) The term 76 (x) N (x == 0,¢) /2, which, due to the po-
sitivity of ¥, has the sign 9y = <+ 1, is interpreted as a source
for particles of velocity + 1 and a sink for particles of veloc-
ity — 1. The amount of incoming and outgoing particles
being the same, 7S can be viewed as an elastic wall at x = 0.
In general N(x = 0,¢) — const when - oo, so that the elastic
wall is always present. For a perfect specular reflection
boundary condition at x = 0, then J=0 or 5,=0, the elastic
wall is the only supplementary term on the rhs of (5.1).
(This happens only for the Carleman model choosing
d, = d, if A is real and d real for A complex.)

(ii) The second term &8(x)J(x = 0,¢t)/2, which is the
same for both particles of velocities + 1, has not necessarily
a definite sign.

If J(x = 0,¢) does not change sign, then S, can be inter-
preted as a source (J>0) or as a sink (J <0). If it changes
sign for different time values ¢,,z,,..., then it acts like a source
{or a sink) during the time intervals [#,,¢; _ , ] in which it is
positive (negative). Nevertheless, in general, we find that it
decreases exponentially in time, such that for infinite time, it
becomes negligible compared with the elastic wall 7S.

We discuss the different possibilities with the restric-
tions n,> 0 (or j,>0) v> 0 (or v; > 0). For the other sign
cases we must use the transforms 7, and 7 ;.

(5.1)

A. Solutions with real y,, p, and jo==0 (see Sec. liiB 1)
From (2.9a) we find forJand N

uzﬁgﬁc_—ﬂ(_l___l_)

v A, A,
—mlemWmw) L . (5.22)
vA A,
We recall that a+¢<0, O<v<inflc,— (@ +¢)/2),

P1>p2>0, or ww;” ' -0 when ¢ . If we choose d, = d,,
then w, — w;<0, j<O while |/ |=0(exp —p,t). Thus S,
looks like a sink which, when the time increases, becomes
negligible compared with the elastic wall 5S, |Sy/
715 | =0(exp — p,t).

B. Solutions with real v,, p, and j, >0 (see Sec. 1ll B 2)
From (2.9b) we find for J, N
. i 1 , (— 14+ wuw,)
Il =g ) =it T
) 1 2 &2 (5.2b)
N-2jv/(c—a)t— .
We recall that for ¢ + ¢, v we have the same restrictions as
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above. Further here p, <0, p,>0, p, +p, <0, d,d,<1, or
J<0. As above S, looks like a sink and due to
|J | =0(exp — p,?) it becomes, at infinite time, negligible
compared with the elastic wall, {S,/78 | =~0(exp — p,t).

C. Solutions with complex conjugate v,, p, (see Sec.
IVB)

From (4.2) for the solutions with j, = O we have
J =ny(c—a)yy 'ImA~!

_ —nle—a) pu ipyt
——-—-—-—VI a7 &% Im(de”™y,
We recall that pg >0, 72 >0, and |J| =0(exp — pg?).
However, when ¢ increases, J changes sign an increasing
number of time. So S, acting alternatively like a source or
like a sink has dropped oscillations and still becomes negligi-
ble compared with the elastic wall: |S,/75 | ~0(exp — pr 7).

N—n,. (5.3)

D. Solitons on a semiaxis x>0 for 20 c#0 (see Sec.
IHA)

For the j, =0 solution, we recall that n;>0, p>0,
(a+c¢c)/2<v<ec. N(x=0,t)->n, when
J=ny(c —a)/2vA having the same sign as v and
[J ] =0(exp — pt). S0 S, can be seen as a source (v>0) ora

{—> c0,

sink (v<0) which becomes negligible |S,/7%5 |
~0(exp — pt) when t— 0.
For the j,>0 solution, we recall that p<0,

sup(0,(a + ¢)/2)<v<ce, J=juw/A>0, |J|=0(exppt),
N-2j,v(c — a). In this case S, can be viewed as a source

LN—J (a) N-J ®
2.0 20+
— =0
......... t=2
150 15} —— t=6
1.0 i
—_—t=0
......... t=0.1
- t=z0.4
05F —— t=08
a=-3 c=1 a=0 c=!
h=4 V=05 Jp®2 0 n,=1 V=05
d1=05 do=2 d=4+il5
Yy =-68 Y,=106 Y=02+06i
Py =-9.1 Ps426 P=02-04i
N+J
I~ —_— =z
.......... t=0.
— tz 0.
----- t= 0

which becomes negligible |S,/%S | =0{exp pr).

Let us define the average flow velocity, (V) = J(x,t)/
N{x,t); we remark that for the four above cases studied in
Sec. VA-V D we have |{V )| ~0(exp — const ) -0 when

I—c0.

VI. NUMERICAL CALCULATIONS FOR BISOLITONS

In Fig. 1 we quote the relaxation curves for distributions
N + J>0Oonasemilinex»0. In Fig. 1(a) we present a model
Jo =4, v; and p; reals, for the valuesa = — 3,c =1 of the
Illner model with v = 0.5, d, = 0.5, d, = 2. In Fig. 1(b) the
¥i,» p; are complex conjugate and j, = 0. We choose the
McKean model a =0, ¢ =1 with n,=1, v, =0.5, and
d =4 +1i1.5 In Fig. 1(c), the y,, p; are real but j = 0. The
Illner parameters area = — 4, ¢ = 1 whilen, =1, v =0.5,
d,=d,=15.

In Figs. 2-4 we quote the relaxation curves for periodic
solutions (damped sound waves) with the period spatial
variable x' = y;x/2€[0,1], where ¢ = 1 is fixed and — a in-
creasing, — 9, — 225, — 625. We plot different relaxation
curves for N — Jin (a), N+ Jin (b), Nin (¢). In (d), the
spatial variable x = 0 being fixed we plot different oscilla-
tions of N (x = 0,¢) which are effective. When the ratio p, /
p1 decreases 0.75, 0.13, 0.08, the damping becomes less im-
portant, allowing the possibility to observe an increasing
number of oscillations.

Vii. CONCLUSIONS

Two different one spatial dimensional discrete velocity
models, the two-velocity Illner model and the six-velocity

e £ =0
ceveeeens ¢ = 0.05
——— t=0.15 .
0. —-— t=0.70 FIG.. 1. Plots of ¥ + J against x&{0, o0 |
. for different s values (a)a = — 3,c =1,
= -4 c=1 jo=4%4, v=405  d,=035, =2,
J=0 nx1 v=05 Yi= =68, =106 p5=—9.1,
di=15 =15 P =426 (b) a=0, c=1, j,=0,
Y=1.11 Yp=238 no=1, % =05 d=4+il5
Py=13.9 P,=595 y=02+i06 p=02—04 (c)

a= —4,¢c=1,j,=0,n,=1,v=0.35,
di=d, =15, p, =139, p,=525,
yi=1111, y, = 2.28.
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FIG. 2. Plots of the periodic solu-
tions  against X' =y x(27) !
€[0.1], for the Illner model ¢ == 1,
05— Jo=0, ng=1, v, =y —a and dif-
ferent —a values. (a), (b), (c)
N —J, N+ J, Nvs x for different ¢
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0 05 X p =54 i20/3, y =i25/3,
d=6-+2i, -1 =075,
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1,2
1 g
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Broadwell model, have been studied with the same method.
We have found two types of exact two-dimensional positive
solutions: either periodic or half-space solutions. In addi-
tion, for the Broadwell model, there also exists positive exact
nonperiodic solutions on the full x axis. It could be interest-
ing to investigate more complex discrete models and see
whether this method of solitons and bisolitons leads to simi-
lar classes of physically acceptable exact solutions.

For the Broadwell model, there also exist models in two
and three spatial dimensions. I am investigating the two spa-
tial one and, although the algebraic resolution is very te-
dious, I hope to find acceptable physical solutions.

Another interesting by-product of the determination of
exact solutions is the possibility to check the fluid dynamical
limit with the introduction of the mean free path into the
collision term.
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APPENDIX: POSSIBLE ANSATZ BISOLITONS

We study the class of possible bisolitons (rational func-
tions)

N ©
3=-225 c=1 t=0
j0=0 ng=1 <
0=113+i843
d=30+iV2
or/ =013
FIG. 3. Plots of the periodic solutions
| against x' = ¥, x(27) " '€[0.1], for the
0 05 X Illner model c¢=1, jo=0, ne=1,
) vy =+ —a and different — g values.
Nix=0,t) (a), (b}, (¢) N—J, N+J, Nvs x' for
(@ different ¢ values, (d) N, for x = 0 fixed,
13 against £. a = — 225, p =113 4 i843,
’ y=i853,d =30 + if2, prp ' = 0.13.
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FIG. 4. Plots of the periodic solutions
against x' = y,x(27) " '€[0.1], for the
Illner model ¢=1, f,=0, n,=1,
v, =+ —a and different — g values.
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@ against 1. a = — 625, p = 313 + 13906,
y=i3918, d=50+#2, proi!
= 0.08.

0,7 I

X'=Xy,/2n

VR

N=I’l0+%, J:jo‘f'—j"“’

i T4+ Y w; 4 pw,w, = A,

(A1)
n=nRe + z nw;, J=joo+ Ejiwi’
w; =d; exp(y;x + p;1),
solations of the Iliner system
N, +J.,=0, N, +J,=J[{a+c)]+Na—c)l,

a<0, ¢>0, (A2)

Mg, Jor Pogs Joo s Jir Vi» pi being constants. In a two-dimen-
sional space we must require

Y12 — V2 o #0. (A3)

Weassumeu #0in Sec. 1, 4 = 0in Sec. 2. Weinvestigate the
full constraints coming from the linear differential equation
(A2) and for the nonlinear one, we retain only that the term
proportional to A~ must factorize A,

Jla+cy+ (a—c)n] +nA, +JjA, =0(A). (AZ)
We find that u 40 requires 4 = 1 while . = 0is not possible.

1. ps#0

Ll: N, +J, =0 leads t the identity (n, +j.)A

— (nh, +jA, ) = 0. We prescribe that the coefficients of
w;, W}, w,w,, wiw, into this identity are zero. We obtain

(1 +w)py

”Zzni(l‘f‘wi)’ j= ”Z“—;“—“,
k

k i,

(A4)

and two possibilities, either u=1 or u#1 and n,y,
— nyy, = 0. We look at the possibility 5 1, so that we can
rewrite (A4),

nzﬁl[E (7: +wz‘?"k)]s k= —?—31[2 (p; +w;,0k)},
’_112’11/72 (A3,)
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3.10"3

5.0~ t

and substituting into (A2') we want to know whether the
assumption g # 1 is still possible.

1.2: Nonlinear constraints. Equation (A12') can be re-
written

Ja+c)j+n(a—c))+nA, +JA, E(bo +> b,-w[)Aﬁl,

Ay =n/1 (A2")
with b, b; unknown to be determined. We prescribe that in
(A2") the coefficients of const, w;, w,w,, w?, w,-zwj are zero.
Weobtain by, b;: by =7,2p,((a +c)Zp, — (a—c)Zy;), b,
= v;{y1 + ¥2) — p;( p; + p,) and three relations where we
define new variables x;, = p,/¥; [ (A3) means x,#x,],

=Gl =0/la+c+x,(c—a)), i=12,
(= D21 —xxy)
+1,(2(@a+¢) + (e —a)(xx,))) =0. (A5)

We discard the g = 1 case and the coefficient of (u — 1)
gives another expression for 7. Still assuming x,%#x, we
find

(a+c)x; + (c—a)(1 +x7)/2=0,
(a+c)(x;+x) +{a—c)(1 +xx,) =0

If a + ¢5£0 the only possibility is x; = x, = + 1, while if
a + ¢ = 0 we have x, = x, = + i. Finally, (A3) cannot be
satisfied for p 1.

2. |,L=0

Without loss of generality we redefine the constants in

(A1),
n . J
N'““:no'f'K'y J=]0+"‘—7 A=1+zwu
A (A1)

n=noo + MWy, J=joo + 2>

2.1: N, + J, = 0. From the vanishing of the coefficients
of w;, w}, w,w,, wiw, we find
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n=nw (72— ¥) + 2 J=m{w(p,—p) —pi)
Ry=n/(¥, — V1) (A6)
2.2: Nonlinear constraint. We use (A2"), i, being de-
fined in (A6). The coefficients of const, w;, w,w,, w? deter-
mine by, b, and give three expressions for 7;,
by =y(r,—71)
(A7)

bo =1, p\((a +c)p, — (a —c)y2),

by =" (a+¢)(pr—p)? +p2(p2—p1)s
(p2—p1)>— (i —1)°

(p2—pa—c)(y,—¥) — (@+c)(p—py))

_ pi—7i

B pilla—c)y; — (a+c)p;) ’

Introducing x; = p,/y; and first assuming x? 1, we find
either x, = x, or

(@+¢)(x; +x;) + (¢ —a)(1 +x.x,) =0,
2, (a+c)y+(c—a)(l+x2)=0.

If @ + ¢#0 the only possibility is x? = | while ifa +c =0
we have x, = x, = + /. Second, if both x? = 1, the denomi-

n, =

i=1.2. (A8)

(A9)

—(p2—p )+ (=)

nators of the last Eq. (A8) vanish leading to ¢ = ¢ = 0. [If
only x3 =1 the last i=2 relation in (A8) gives
x, = (@ — ¢)/(a + ¢) while the other relations lead to x3
= 1.] Finally, (A3), for the lllner model, cannot be satis-
fied for u = 0.
2.3: Instead of the Illner model we consider the most gen-

eral quadratic nonlinearity.* This means + (aN?,
+2bN . N_+cN> )in (L.1) or N, + N, =AN? + BJ?
+CNJ in (1.2) withd=b+(a+¢)/2,B= —b+ (a
+¢)/2, C=a —c. (The Illner model corresponds to
2b+a+c¢=0,a<0, ¢>0.) We want to show that if we
restrict our study, as here, to nonlinear A ~? terms, the only
possible 4 = Osolutions requirea = ¢ = 0, b 0. For the an-
satz (Al’), then (A6) is still valid. Equation (A2") be-
comes j°B + n*4 + njC + nh, +jA, = (by + Zb,w; ) AR,
and the vanishing of the wA; powers, as above, give

by = ’_11(‘840% +Ay; —p1720),

ny =

As above, introducing x; = p, /¥, and first assuming x# 1,
we find either x, = x, or
(x; +x,)(4+B)—-C(1 +Xx;%;) =0,
—2x,(A+B)+C(x}+1)=0.
We can check in the Illner model 4 =0, B=a +c,
C = a — c that (A7 )~(A9’) reduce to (A7 )-(A9). If the
determinant of (A9') is different than zero then
A + B = C = 0ora = ¢ = 0 and the only possibility to satis-
fy (A3) is to have a term like N, N_ in the collision term
(without N2, terms). The model of Ruijgrok and Wu'? is of
this type and there exist for this model solutions with z = 0.
If the determinant of (A9') is zero, then either x; = x; or x?
= 1. Second, if both x? = 1, the denominators of the last
(A8} relations vanish leading to 4 + B = Cx; or x, = x,.
[If only x2 == 1, the last (A8’) relation gives x,C =4 + B,
and substituting into the other (A8’) relations we find x2
=1.]
In conclusion only quadratic terms of the type N N _
could allow g = 0 bisolitons.

(A9)
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The effect of a one-dimensional potential of finite range on the statistical
parameters of an incident ensemble of particles. I. Pure states
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If an ensemble of particles moving parallel to the x axis in the positive direction impinges on a
piecewise continuous potential confined to the interval [ — q,a] (¢>0) it will divide into a
transmitted ensemble and a reflected ensemble. It is shown that the classical results for the
means, variances, and covariance of position and velocity of the transmitted and reflected
ensembles hold in quantum mechanics if the incident state is assumed to be pure and defined
by a C_ wave function whose Fourier transform has bounded, positive support, on which the
modulus and argument of the transmission and reflection coefficients are C_ .

I. INTRODUCTION

We shall consider the problem of an ensemble of parti-
cles initially moving freely parallel to the x axis in the posi-
tive direction, which subsequently impinges on a piecewise
continuous potential ¥ which vanishes outside some finite
interval { — a,a] (@ > 0). If the particles obey CM (classical
mechanics) the velocity v, (¢) and position x;, (¢} of a parti-
cle of the ensemble at time t~ — oo are given by

v, (1) =uv, (1.1a)

X, (1) = x;, + v, (1.1b)
where v, x,, arereal constants and v > 0. An observable 4 isa
{possibly time-dependent) function on the two-dimensional
phase space (2, and its expectation value {4 ), is obtained by
averaging over some time-independent probability density
M, on €. The following results for the incident ensemble

follow easily from the fact that expectation is a linear func-
tional:

(1.2a)
mean position = {x;, (#));, = (X, in + V)it (1.2b)
If we write Var,, A for the variance {(4 — (4 ),, )*);., then

mean velocity = (v, (£)),, = V).,

variance of velocity = Var,, v,, (1) = Var,, v. (1.2¢)
If we write Cov,(4,B) for the covariance
(4 —{4),)(B—(B)y))ithen
covariance of position and velocity

= Covy, [x;, (£),0;, (2))

= Cov,, (x;,,v) + ¢ Var,, v, (1.2d)
variance of position of the incident ensemble

= Var,, x,, ()

= Var,, x;, + 2t Cov,, (x;,,0) +¢*Var, v.  (1.2e)

Suppose now the particles obey QM (quantum mechan-
ics). An observable 4 is now a self-adjoint operator in the
Hilbert space % = L,(R). In particular, if fis a real-valued
function on R, multiplication by f is self-adjoint; we shall
denote this operator by f. So also is F *}F, where F is the
Fourier transformation; we shall denote F *}'Fby}”. In partic-
ular, the position operator is %. If k is the wave number, m is
the mass, v = #ik /m is the velocity, and § = F *{F is the ve-
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locity operator, then & is the momentum in units of #.

To obtain the resuits in QM corresponding to the results
(1.1) in CM, we use the Heisenberg picture. The velocity
and position observables at time 7~ — < are then given by

v‘m(t) ::6’ (133)
X, (2) =x;,, + 0t, (1.3b)

respectively, where x;, = X. The results (1.2) (with v re-
placed by & on the right-hand sides) for the statistical param-
eters of the incident ensemble can be shown to be valid in
QM, provided Var,, % and Var,,  exist.'

We shall obtain the formulas corresponding to (1.2)
when t— + o for the transmitted and reflected particles.
First we do this for the CM case, and in subsequent sections
for the QM case. For simplicity we shall assume that, in the
QM case, the statistical state of the incident ensemble is a
pure state described by a C_ wave function ¢,, whose Four-
ier transform Fy,, has compact support in the positive inter-
val {keR: k>0}; thus (4 ),, = (¢, |4 |¢;,). In a subse-
quent paper we shall show that this assumption is not so
restrictive as it appears.

The establishment of (1.3) and (1.2) is straightforward
given the assumption that ¢,, is C_ —in fact, a member of
the set .7 of Schwarz testing functions. For now by elemen-
tary Fourier analysis = — iAD /m on ., where D is the
differentiation operator. Also the free evolution operator U,
=F*exp( — iwt)F, where exp( — ior) is multiplication by
exp( — iwt) (@ = #k*/2m). Thus

v(ty =U*U, =0,
which is (1.1a), while
x(t) = U*U, = F* exp(iot)iD exp( — iot)F
= F*DF + F*itF =X + it,

whichis (1.1b). Equations (1.2) now follow from the linear-
ity of (*),,, if the covariance Cov,, (4,B) of two (possibly
time-dependent) observables 4,B of the incident ensemble is
defined by

{((4—(4),,)°(B—(B)))in>»

where CoD denotes the symmetric product (CD + DC) of
two operators C and D.
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Il. CLASSICAL RESULTS

We are assuming that the potential is piecewise contin-
uous, hence bounded above. It follows that there is a thresh-
old velocity v,,,.,, such that if the velocity v of a particle in
the incident ensemble exceeds vy, it Will be transmitted,
while if v < Uy, it will be reflected. If no particle initially
has the exact velocity v, the incident ensemble divides
into two subensembles, one of which is transmitted, the oth-
er reflected.

Consider a particle with v> v,y When 1~ — oo its
orbit in () is described by (1.1). When t~ + « the particle
has been transmitted. Its position x,, (z) and velocity v,. (¢)
at time ~ + oo after transmission are now given by

U, (2) =, (2.1a)

(2.1b)

where x,, is a shifted time zero position. In fact, if #,, is the
time delay due to transmission—that is, the difference
between the times spent in the interval [ — a,a] with, and
without, the potential—then

X, (8) =x, +0vt,

Xy = Xip — Uttr! (22)

where ¢,, is a function of v.

If A is a classical observable, then its expectation value
{4 )., over the transmitted particles is obtained by averaging
over i, the probability density on € of the transmitted par-
ticles. Here p,, is obtained by multiplying u,, by the prob-
ability of transmission, which equals unity if v > v, and
zero if v < vy ., and then normalizing. The results corre-
sponding to (1.2) are easily derived from (2.1) and the lin-
earity of expectation. They may be written down from (1.2)
by replacing v, (£} by v, (1), x;, (¢) by x,,. (¢}, x;, by X,,,
() by ()., Var, by Var,, where Var, 4
=((4—-(4),)),, and Cov, by Cov,, where
COV“ (4,B) = ((A - <A )tr B — (B >tr ))tr’

If v < Uy, esn the particle is reflected. For #~ 4 oo, when
reflection is complete, its velocity and position are, respec-
tively, given by

U (1) = —uv, (2.3a)

X () =x, — v, (2.3b)
where

X, = — X, + V., (2.4)

t,. being the reflection delay time—that is, the difference
between the time spent by the particle in [ — a,a] with, or
without, the potential. The results for the reflected particles
for the statistical parameters are obtained from (1.2) by re-
plaCing vin (t) by vre (t)’ xin (t) by xre (t)’ v by - <-)in by
(*).es X;n, BY X, Var,, by Var,,, and Cov,, by Cov,,, where
(A ). is the expectation value of 4 over the probability den-
sity u,. of the reflected particles, etc. Here p,, is obtained
from u,, by multiplication by the probability of reflection
and normalizing.

Iil. QUANTUM TRANSMISSION

Let 7 be the transmission coefficient, a function of the
wave number k. The unnormalized transmitted wave packet
is F*#Fy,, = 7, (using the notation introduced in Sec. I).
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The probability of transmission is w,, = ||7¢,,]|> A freely
evolving observable is represented by the self-adjoint opera-
tor A(t) = U¥4U,, where U, is the evolution operator for
free motion. The expectation value of 4(¢) for the transmit-
ted particles (whent~ + w0 ) is

wt:1<:h/}in |A(t)]’7"‘//m> (31)

Let §,, = F* exp(i arg 7} F be the unitary operator of
multiplication by exp(7 arg 7) in the & representation, and

|#| = F *|7| Fbe the operator of multiplication by |7 in the &
representation. Then 7 = S, |7| and so (3.1) can be written

Ay (D) = [ (O ), (3.2)
where '

A () =8%4()S, (3.3)
and ¢, is the normalized wave function defined by

Yo = w0 27| (3.4)

Here S, produces a unitary transformation of the space of
observables, mapping A4 (¢) into 4, (¢) according to {3.3).
For reasons which should become clear in the sequel we shall
call it the transmission shift operator.

The shifted velocity at time ¢ is v,, (¢), where, by (3.3),

vtr (t) = S?:'Uin (t}Str'
Since v, (#) = ¥ and S,,, § commute, we obtain

))tr(t) =1, (3.53)
Equation (3.5a) is the QM analog of (2.1a)—the velocity
observable is unaffected by transmission.

The shifted position operator at time ¢ is x,, (), where,
by (3.3),

X, (5) =S8Ex, (1)S,,.

Using (1.3b) we get

X, (1) =x,, + 0t (3.5b)
where
xtr =S:'xinStr' (3.6)

Equation (3.5b) is formally analogous to the classical
result (2.1b). In order to show that it is indeed the QM
analog we must show that x,, is given by (2.2) with ¢, the
transmission delay time. We can do this very easily if we
make the following assumption: |7| and arg rare C_ on the
support of Fif,,. For this assumption means that we can ex-
press x,, = X as F*/DF, and then by (3.6)

x, = S*F*DFS,,.

Since S, = F* exp(i arg 7) F, where exp(i arg 7) is the op-
erator of multiplication by exp(/ arg 7), we easily obtain

Xy = Xjp 5‘itr’ (37)
where
t, =v 'Dargrt. (3.8)

[ By hypothesis the support of Fi,, consists only of positive
numbers, and so (3.8) is well defined. ]

The quantity z,, is none other than the well-known Ei-
senbud-Wigner delay time. In nonrigorous language it is the
time delay of the peak of the transmitted wave packet rela-
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tive to the peak of the incident wave packet.” Thus (3.7} is
indeed the QM analog of (2.2).

The results (1.2) now follow for the transmitted parti-
cles in QM, on using (3.5) and the linearity of (- ),,; in them
x,, (#) and v, (¢) are replaced by x,, (¢) and v, (1), respec-
tively, x;, by x,., (*)in by (), Var,, by Var,, Cov;, by
Cov,,,and v by D.

In the CM case discussed in Sec. I1 the probability den-
sity u,, used in calculating {-), was obtained from y,, by
multiplying by the probability of transmission and normaliz-
ing. In the QM case discussed in this section (- ),, is calculat-
ed from a wave function #,, obtained by multiplying the
momentum amplitude Fi;, by the square root |7| of the
probability of transmission and normalizing.

IV. QUANTUM REFLECTION

Let p be the reflection coefficient, again a function of k.
The unnormalized reflected wave packet is F*PoF,,
where Pis the parity operator. Since P commutes with F and
F* this can be written Ppy,, . The probability of reflection is
w,, = ||PpY,, |I* = ||p¢., ||> The expectation value for the re-
flected particles of 4(#) is

wr: 1<Pﬁ¢in !A(t) |Pﬁ¢m >'
Define the unitary operator S,, by

(4.1

(4.2)

where exp(iargp) is the operator of multiplication by
exp(iargp), and let [p| = F*|p|F in the usual notation.
Then p =S, |p], and so (4.1) can be written

S, =F*exp(iargp)F,

A ) e =W |4 (DY), (4.3)
where

A, () =SEPA(1)PS,, (4.4)
and ¢, is the normalized wave function defined by

Yoo = W B (4.3)

Here (4.4) shows that 4, (¢) is obtained from A(¢) by a
reflection followed by a unitary transformation. Again we
shall show that the physical meaning of this unitary transfor-
mation is a shift, and so S, may be called the reflection shift
operator.

The velocity observable becomes

U (1) = S % Pv, (1)PS,,
which reduces to

Ve (1) = — B. (4.6a)
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Equation (4.6a) is the QM analog of (2.3a)}—reflection sim-
ply reverses the sign of the velocity.
Similarly the position observable becomes

x. (1) =SkPx, (1)PS,.
and use of (1.3b) reduces this to

Xre (t) = Xpe ™ i}t’ (4.6b)
where
xre ZS;‘;PxinPSre' (4-7)

As with transmission (4.6b) will be the QM analog of
the CM resuit (2.3b) provided the QM analog of (2.4) can
be proved. We now assume |p| and argp are C_ on the
support of Fif,,. Then x,, = % = F*{DF, and since Px;, P
=PiP= — %= —x,, (4.7) yields

x,. = —S*F*DFS,,.

If we use (4.2) this reduces to

xre == —xin + ijire) (4-8)
where
t. =v 'Dargp. (4.9)

(Again our assumption about the support of Fi;, means
that 7., is well defined.) The quantity ¢ is the Eisenbud—
Wigner delay time for the reflected particle—that is, the
time delay of the peak of the reflected wave packet relative to
the peak of the incident wave packet. Thus (4.8) is the QM
analog of (2.4).

Comparison of (4.6) with (1.1) shows that the results
(1.2) are valid for the reflected particles obeying QM if (- ),,
becomes ('}, v, (£) and x;, (#) become v, (¢) and x,. (1),
respectively, x,, becomes x,,, v becomes — 7, Var;, becomes
Var,., and Cov,, becomes Cov, . Since Var,( —D)
= Var,, ¥ and Cov,, is linear in 7, we obtain

mean velocity = — {0,

mean position = (x,.),. — (3) 1,

variance of velocity = Var,_ D,

covariance of position and velocity
= — Cov_(x,,0) +tVar, 7,

variance of position

= Var,, x,, — 2t Cov,, (x,.,0) + t* Var,, D.

'J. E. G. Farina, Int. J. Theor. Phys. 21, 83 (1982).
E. P. Wigner, Phys. Rev. 98, 145 (1955).
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If an ensemble of particles moving parallel to the x axis in the positive direction impinges on a
piecewise continuous potential confined to the interval [ — g,a] (¢ > 0) it will divide into a
transmitted ensemble and a reflected ensemble. It is shown that the classical results for the
means, variances, and covariance of position and velocity of the transmitted and reflected
ensembles hold in quantum mechanics if the position and momentum probability densities of
the incident ensemble are assumed to be sufficiently localized, both in momentum and
position. It is also assumed that the support of the probability density of momentum is
bounded and positive, and on it the moduli and arguments of the transmission and reflection

coefficients are sufficiently well behaved.

1. INTRODUCTION

In the previous paper' (whose notation we shall use
here, and to which we shall refer to as ‘I') we discussed the
effect on the statistical parameters of an ensemble of parti-
cles moving parallel to Ox of their passage across a potential
V confined to the interval [ — a,a]. We assumed there that
the statistical state of the incident ensemble was pure. Such
an assumption, however, cannot be justified for an ensemble
occurring in nature. Such an ensemble would have the prop-
erty that every subensemble would have the same statistics,
and it is difficult to believe that is so. More importantly, we
only have limited information about such ensembles—for
example, the shape of the momentum probability density
Pemom;n May be known, or the region of space outside which
the position probability density p,;, is negligible. Infinitely
many states will be consistent with our information, and not
all of these will be pure. It therefore becomes important to
replace the assumption that the state of the incident ensem-
ble is pure by one which may be reasonably supposed to hold
for an actual ensemble. The assumption which we will make
is the very reasonable one that |X|'ppesin(x) and
[k |*Pmom.in (k) (k = mv/fi = momentum in units of #) are
bounded for all v>0. (For example, if p, i, 30d Progrn in WETE
Gaussians this assumption would be satisfied.)

We also assumed that ., was C_ . We shall show that,
although the state may not be described by a wave function
(if it is not pure), nevertheless all wave functions occurring
in the Gleason expression® of the state as a convex linear
combination of pure states are C_ —indeed, as we shall
show, they are testing functions in the sense of Schwarz.

In I an assumption was made about the support of Fif;,,
viz. that it was bounded and positive. We shall make the
same assumption about the support of po,omin- That is, we
shall assume that Supp p,,...:n is contained in some interval
[kpka] (O<k;<ky< o).

This last assumption is quite natural. For the particles of
the incident ensemble are moving to the right, and so their
velocities are positive. Classically the lower bound v, = #ik,/
m on the velocity ensures that the time a particle would
spend in [ — @,2] in the absence of the potential is bounded.
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In practice it is consistent with our information to assume
that the probability of the velocity of an incident particle
being greater than some velocity v, = #ik,/m is zero.

We shall also assume that points where |p|, arg p, | 7|, or
arg 7 are singular are not in supp p,.,m., - For example, at a
resonance when D arg 7 becomes infinite we might well ex-
pect the variance of position of the transmitted ensemble to
become infinite. In practice the assumption that |p|, etc., are
C_ where they are not singular is satisfied, so our assump-
tions about them are reasonable.

1. EXPECTATION VALUE IN QUANTUM MECHANICS

A state u in QM is a probability measure on the lattice
& () of projectors on a Hilbert space /7. A set of weight-
ings {w; }}_ | is a countable set of positive numbers that sum
to unity; its cardinal number N is either a positive integer, or
. Gleason’s theorem? states that given a state z3 a set of
weightings {wj }Y_, and a corresponding set of unit vectors
{¢;}/L, in 2 such that, if £ (E) is the probability assigned
by u to E in & (57), then

N

wE =3 wlEy|

j=1

.10

Thesets {w,;}/_ , and {¢,}}_ | determine the state x, but the
converse is not necessarily true.
Definition 2.1: We shall call the pair ({w;}/_,,

{4, )L 1) a representation of . O
Definition 2.2: J denotes a positive integer such that
JEN. O

Observables in QM, which we shall denote by 4, B, C,
etc., are self-adjoint operators in 5#°. We shall denote the
expectation value of 4 in the state u by {4 ), etc.

Proposition 2.1: 1f (4 *) exists so does (4 ). Further each
¥, is in the domain & (4) of 4, and

N

) =3 w4y, (2.2a)
j=1
N

4% =3 wlldy|* (2.2b)
j=1
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Proof: See Ref. 3, Chap. 3, or Ref. 4. ]

Proposition 2.2: Suppose ;€% (4) for each j. Then if
N

> w4y, [I?

j=1

is convergent both (4 ) and (4 ?) exist and are given by
(2.2).

Proof: Let E, be the member of the spectral family of 4
corresponding to the finite interval 7 of R. Then E,4E, isa
bounded self-adjoint operator, and

N N
((E,AE,)?) = 2 wj”EIAEI’rijZ< z ijA%Hza
i= j=1
so when 7 expands to fill up R ((E,4E,)*) has a unique
limit; that is, {4 ?) exists. By Proposition 2.1 so does (4 ),
and (4 ) and {4 ?) are given by (2.2). O

If 4oB = }(4B + BA) is an observable, ;€% (4°B)

for each j, and N < oo, its expectation value is given by

(4oB) = 3 w, (g, |4°B |4,

j=1
which can be written (since A and B are observables)

(AB) = 3 w, Re(dt; [BY). (2.3)

j=1
These assumptions are, of course, too restrictive so we take
(2.3) as a definition of (4°B ).

Definition 2.3: We say that (4°B) exists if the right-
hand side of (2.3) is convergent, in which case (2.3) defines
the value of (4°B ). O

Proposition 2.3: If (4%) and {(B?) exist then so does
{A°B).

Proof’

3w |Re(av, BY,)|

<3 wllay,) 1By,

j=1

J
= 3 @y, 1) @)

(Schwarz’s inequality)

(3 whav ) (L wisw )"

=1

{Schwarz’s inequality)
<(42)3B?'? [by (2.2b)].

Thus the right-hand side of (2.3) is absolutely conver-
gent, so {4°B ) exists by Definition 2.3. We also obtain

[(4oB }|<(42)(B?)'/2, 2.4)

1. COVARIANCE IN QUANTUM MECHANICS

In Ref. 4 certain results were obtained on the hypothesis
that a4 + bB is an observable for a pair of nonzero real
numbers @ and b. These results are not of the right form for
our purposes here. In this section we shall derive these re-
sults in a modified form, ready for subsequent application.

Definition 3.1: We shall say that two observables 4 and
B are equal on p if they satisfy the following condition: if
w31, {¢,})_ ) is a representation of u then, for each
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value of j, ¥,€Z(4)NZ (B), and Ay; = By;. We shall
write this equality as 4 = , B. O
Proposition 3.1: If {4?) and (B?) exist and C =, a4
-+ bB then (C) and {C?) exist and
(C)=a(d)+b(B), (3.12)
{(C? =a’(A?) + 2ab (4°B) + b%(B?). (3.1b)
Proof: Recalling Definition 2.2, C = , a4 + bB implies
that

S wlcy|? = az.;l w;[|4¢; || + 2ab

j=1
J J
X 3 w; Re{4y;|By;) + b2y |1y
j=1 j=1
IfN < w0, setJ = N, otherwise let J— « and use Propo-
sitions 2.1 and 2.3: in either case we obtain

N
S w||Cyy || = a*(4?) + 2ab (4°B) + b*(B?).
i=1
The right-hand side of (3.2) is finite, hence so is the left-
hand side. Thus {C?2) exists by Proposition 2.2, and (3.1b) is
obtained from (3.2) using (2.2b) and (2.3). Now (3.1a)
follows by the facts that C=, a4 + bB implies that
{(C) ={ad + bB ), and () is linear. 0
Proposition 3.2: If (4?) and (B?) exist and
C =, ad + bB then, if {D?) also exists,

(CoD Y =a{AdoD ) + b (BoD),
(DoC) =a(DoA ) + b (D°B).
Proof: Since C = , a4 + bB,

5: w; Re(Cy;| Dy;)

j=1

=aq }J: w; Re(4y;|Dy;) + b }J: w; Re(By;|Dy;).

j=1 j=1

(3.2)

(3.3a)
(3.3b)

If N < oo set J = N, otherwise let J— . In either case
we get, using Proposition 2.3,

N
2 w; Re{Cy;|Dyy;) =ald4oD) +b(BoD). (3.4)

i=1
The left-hand side of (3.4) therefore exists, hence (3.3a)
follows by the definition of {(CoD ). Then (3.3b) follows

from (3.3a) by the fact that (CoD ) = (DoC), etc. ]
Remark 3.1 Proposition 3.2 establishes the bilinearity
of (-0-). ]

Proposition 3.3: If Var 4 and Var B exist, C =, a4
+ bB, and a,b are both nonzero then
(A= (4 ))o(B~(B)))
is independent of the representation of .
Proof: If we subtract (3.1a) from C = , a4 + bB we get

C—(C)=,ad—(4))+b(B—(B)).  (35)

Since Var 4 and Var B exist we can replace 4, B, and C in
(3.1b)byA4 — {4 },B — (B ),and C — {C ), respectively, to
obtain

VarC=a?Var4 + 2ab{(4 — (4 ))o(B— (B)))
+b?%Var B. (3.6)

Since abz£0 we can use (3.6) to express
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{(4 — {4 ))o(B — (B))) in terms of quantities which are
independent of the representation of u. a

Definition 3.2: 1f {(4 — (4 })o(B — (B ))} is indepen-
dent of the representation of i the covariance of 4 and B,
Cov(A4,B), may be defined by

Cov(4,B) = {(4 —(4))°(B—(B))). (3.7

Proposition 3.4: If Vard and VarB exist, and
C =, aA + bB, where a and b are nonzero, then

Var C = a* Var 4 + 2ab Cov(A4,B) + b? Var B. (3.8)

Proof: Definition 3.2 is applicable, so insert (3.7) into
(3.6). 0

Proposition 3.5: If Var A and Var B exist, and C = , a4
-+ bB, where a and b are nonzero, then

Cov(C,B) = a Cov(A,B) + b Var B. (3.9)

Progf: Since Var A and Var Bexistand C = , ad + bB,
(3.5) is valid, so again replace 4, B, and C in Propositions
3.1and3.2byA — (4 ),B — (B ),and C — (C ), respective-
ly. Thus Var Cexists and by (3.3a) withD=B — (B)

((C—A(C))o(B—(B)))
=a((4—(4))°(B~(B)))

+b((B—(B))°(B—(B))).

Since C =, a4 + bB, where a and b are nonzero, Proposi-
tion 3.3 enables us to use (3.7) for the first term on the
right-hand  side.  Also  ((B— (B))o(B—(B)))
= {(B — (B))*) = Var B so we get

{((C—{(C)Yo(B — (B))) =a Cov(4,B) + b Var B.
(3.10)

The right-hand side of (3.10) is independent of the represen-
tation of y, so the left-hand side equals Cov(C,B), and (3.9)
results. 0

V. LOCALIZED STATES IN ONE DIMENSION

The results derived in Secs. IT and II1 are general; in this
section we return to the special case of one degree of free-
dom.

Definition 4.1: A state u is localized if |x|"p,. (x) and
1k P om (k) are bounded for all v>0. O

Remark 4.1: As we pointed out in the Introduction it is
reasonable to suppose that a state x4, which can be taken to
describe an ensemble of particles in nature, is localized. 0O

Proposition 4.1: Let ¥ denote the set of Schwarz testing
functions R — C; then, if 4 is localized, forj = 1,...,N, ¢; and
Fy; belong to ¥ while

%y, = F*DFy,. 4.1)
Proof* First we note that,’ a.e.,
N
Poos (X) = 3wt (0) 3, (4.2a)
Ji=1
N
Prom (K) = 3 w; |y, (k) |2 (4.2b)

j=1
Since w; >0 for each value of j, (4.2) implies that

[, () P<w; ppos (X) e
|F; (k) P<W; Proom (k) ace.
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The hypothesis that u is localized now implies that, if v>0,
[x|"#; (x)|* and |k |"|Fy; (k)|? are essentially bounded. It
follows (Ref. 6, Chap. III) that ¢; and Fy; are equal a.e. to
C_, functions; they can therefore be redefined so that they
are C_, functions, and (4.1) is valid pointwise. 0

The following result is obvious.

Proposition 4.2: If u is localized then (£%), (8*), Var %,
and Var 7 all exist.

V. FREE MOTION IN ONE DIMENSION

In the Heisenberg picture the state u is fixed at its time
zero value, while an observable represented at time zero by 4
is represented at time ¢ by A(¢) = U¥AU,, where U, is the
free evolution operator. Thus

U, = F* exp( — iot)F, (5.1)
where exp( — iot) is the operator of multiplication by
exp( — iot) (o = #ik*/2m = mv*/2#).

Proposition 5.1: If p is localized the velocity observable
v(?) at time ¢ and position observable x(¢) at time # satisfy

v(t) =, b, (5.2a)
x(t) =, X+t (5.2b)
Proof: See Sec. I of 1. O

Remark 5. 1: The result expressed by Proposition 5.1 for
the free evolution of velocity and position in the Heisenberg
picture is, of course, well known. We have proved it here for
localized states. ]

Proposition 5.2: If u is localized then the means, var-
iances, and covariance of position and velocity at time ¢ are
given by

(1)) = (D), (5.3a)
(x(1)) = (&) + (D)1, (5.3b)
Varv(t) = Var , (5.3¢)
Covi{x(),v(1)) = Cov(X,D) + t Var D, (5.3d)
Varx(t) = Var ® 4+ 2t Cov(X,0) +¢t>Vard.  (5.3e)
Proof: Since u is localized (%) and (&%) exist, so we can
use the result proved in Ref. 4. 0

Remark 5.2: The results (5.3) are valid under more gen-
eral conditions,* but the hypotheses of Proposition 5.2 are
adequate for our purposes. ]

Remark 5.3: Proposition 5.2 may be proved directly by
use of (5.2) combined with (3.1a), (3.8), and (3.9). 0

VI. ASSUMPTIONS

We now return to the problem of an ensemble incident
on a piecewise continuous potential confined to [ — a,a].

Assumption 6.1: The initial state is localized and has
representation

({win,j jj'v=1, {![’in,j};v: 1)

Assumption 6.2: The probability density of momentum,
Peom.in» Of the incident ensemble, has support contained in
[k,k,], where 0 <k, <k, < 0.

Assumption 6.3: 1If

Wy, = _Zl Win, j“ﬁ/’in, j“z’

(6.1a)
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then w,, is the probability of transmission, and the state of
the transmitted ensemble has representation

({wt: lwin,j ”%‘bin,jﬂz ,{v= 1s {Hwin,j H_ };i‘ in,j}jI‘V: 1 )‘

Remark 6.1: This is a natural generalization of Sec. III
of L

Assumption 6.4: If

N
We = 2 win,jilﬁ¢in,j"2’
j=1

then w,, is the probability of reflection, and the state of the
reflected particles has the representation

({wr; lwin,j“ﬁ‘ﬁin,jnz f: 1 {nﬁ'f'in,jﬂ‘lpﬁ/’in,j ,N= 1)

Remark 6.2: This is a natural generalization of Sec. IV
of 1.

Assumption 6.5: |7|, arg 7, |p|, and argp are C_ on
Supp pmom,in ’ the Support Ofpmom,in *

Remark 6.3: 1t follows from Assumption 6.1 and Propo-
sition 4.1 that ¢,, ;€% (j= 1,...,N). Therefore by (4.2b)
applied to the initial state Supp Fif, ; CSUPD Prom,in
(j=1,..N). Hence by Assumption 6.5 7¢,, ; and pt,, ;
also belong to & (j = 1,...,N).

(6.1b)

VIi. THE INCIDENT ENSEMBLE

We shall denote by y,, the state of the incident ensem-
ble, and by =, “equality on u,,” (cf. Definition 3.1). We
shall also denote by (-),,, Var,, +,and Cov,, (", ) the expec-
tation value, variance, and covariance over u,, , respectively.
The conditions of Proposition 5.1 are satisfied so we get the
following proposition.

Proposition 7.1: The velocity observable v, (¢) and posi-
tion observable x,, (¢} at time ¢ satisfy

(7.1a)
(7.1b)

Vi (1) =44 U,

xin (t) = in Xin + i}t!
where x;, = X.

The conditions of Proposition 5.2 are also satisfied so we
have the next proposition.

Proposition 7.2: The means, variances, and covariance of
position and velocity at time ¢ of the incident ensemble are
given by

Win (1) )in = (D)ins (7.2a)
(Xin ()i = (Xin Vin + (Dt (7.2b)
Var,, v;, (¢) = Var,, b, (7.2¢)
Covy, (xi, ()04, (8)) = Covy, (x,,,0) + ¢ Var,, 7, (7.2d)
Var,, x,, (#) = Var,, x;, + 2t Cov,, (x,,,0) + t* Var,, b.
(7.2¢)

VIILEXPECTATION VALUES OVER THE TRANSMITTED
ENSEMBLE

Suppose an observable is represented by 4 (¢) = U *A4U,
at time 7, and the expectation value of [4 () ]? over the trans-
mitted particles is finite. Then by Proposition 2.1 and As-
sumption 6.3 the expectation values of 4(¢) and [4(#)]?
over the transmitted particles are given by the expressions

N
Z Wy lwm,;‘ <:f¢in,;’ IA (1) }%¢in,j )3

j=1

(8.1a)
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N

> wy w4 O (8.1b)
j=1

Using the transmission shift operator S, defined in I (8.1)

can be written

N

z wtr,j<¢tr,j IAtr (t)'¢tr,j>! (82&)
J==1

N

2 wtr,j”Atr (t)¢tr,jl|2s (82b)
j=1

where

wtr,} = wt: 1l‘uin.j ii%win,juza (83)
ey = ll%win,j“hwﬂ’y&in,p (8.4)
A, (1) =S*AD)S,. (8.5)

The set {w,, ;}/_ , is a set of weightings, and {¢,. ; }}_,
is a set of unit vectors in 57
Definition 8.1: u,, is the state defined by the representa-

tion
({wtr,j}]{\; 11 {lvbtr,j 1N= 1);

expectation value, variance, and covariance over y,, are de-
noted by (),,, Var,, -, and Cov,, (-,"), respectively, and
equality over u,, by = .. O

Expressions (8.2) and Definition 8.1 lead to the follow-
ing proposition.

Proposition 8.1: If the expectation value of [4()]? ex-
ists over the transmitted particles then the expectation val-
ues of A(z) and [4(¢)]? over the transmitted particles are
(4, (1)), and ({4(#)]?),,, respectively, where (-),, is de-
fined by Definition 8.1 and A4,, (¢) is the observable defined
by (8.5). 0

Proposition 8.1 has a converse.

Proposition 8.2: If ([Atr(t)]z)tr exists then 4(¢) and
[A(£)]? have expectation values over the transmitted parti-
cles, and these are given by (4, (1)), and ([4,(£)]?),,
respectively.

Proof: 1f ([ A4,, (£) ]*),, exists then by Proposition 2.1 the
series (8.2b) converges. It follows that the series (8.1b) con-
verges, and so by Proposition 2.2 4(¢) and [A4(z)]? have
expectation values over the transmitted particles, given by
(8.1), and therefore by (8.2); that is, by (4, ()}, and
([4: (D], o

Now S,, and U, commute, and 4(z) = U¥XA4 U,, so
(8.5) gives

A, (1) =U¥, U, (8.6)
where
Atr = S?;’Astr (8.7

Proposition 8.3: If Cov,, (4, (), B,, (1)) is defined then it
isthe covariance of 4 (#) and B(t) over the transmitted parti-
cles.

Proof: Cov, (4,, (1), B, (1)) is given by

N
Z w!r,j Re((Atr (Z) - <A!r (t))tr)¢tr,j!(Bzr (t)
j=1
- <Btr (t)>tr)¢tr,j>'

This may be rewritten
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N
> wi Wi ; Re((A() — (A () Jit,; [(B(D)
=1

-"(Btr(t))tr)% in,j)' (8.8)

By Proposition 8.1 (4, (#)},, and (B, (1)), are the expecta-
tion values of A(¢) and B(t) over the transmitted particles.
Since Cov, (4,, (1), B,, (#)) is defined the expression (8.8) is
independent of the representation, and hence by Assump-
tion 6.3 defines the covariance of 4(¢) and B(t) over the
transmitted ensemble. O

IX. STATISTICAL PROPERTIES OF POSITION AND
MOMENTUM FOR THE TRANSMITTED PARTICLES

Forj=1,..,N, ¢, €5, Supp Fy,, ; C [k, .k,], while |7]|
and arg 7are C_, on Supp Fif,, ;. Hence the proofs of Sec. 111

of I relating to the shifted position and velocity observables
go over, and we obtain the following results:

U, (8) = U, (9.1a)

X (8) = X, + U8, (9.1b)
where

Xy =S EXS, (9.1¢)

Xir = tr Xin — f’;m (9.1d)
where

t, =v 'Dargr. (9.1e)

Proposition 9.1: Var,, 9, Var,, 0%, Var, X, and Var,, x,,
all exist.

Proof: The probability density p,om .. for momentum for
the state u,,is given by

N
Prmoms (k) = 3wy, ;|Fify,, ;(k)|*  (Definition 8.1)

j=1
N
= 3 wq w7 F, (k)
i=1
[by (8.3) and (8.4)].
Now by (4.2b)

N
pmom,in (k) = Z win,j inpin,j (k) IZ

j=1
is the probability density of momentum in the initial state
ﬂ in? 80
Prmomyie (K) = Wi |TCK) | "Praom,im (K). (9.3)

Equation (9.3) shows that Supp Prom,« S SUPP Prom,in»
and so by Assumption 6.2 8upp p,.... .. is bounded, hence vis
bounded on this support; thus (%), exists, and hence so
does Var,, ¥.

By (9.1e) v ¢, = D arg 7, and so by Assumption 6.5 is
bounded on Supp poom.» hence {(it.)?), exists. Thus
Var,, it,, exists.

To prove that {(£%),, < o, first note that % = ,, F*iDF,
so by (8.4)

&4 112 = 117,11 20D |71 Fehi 1%

using (8.3), this gives

wtr,jniwtr,j “2 = wtr_ !win,j ” (D 1T¥ )F¢in,j + §T§DF¢in,jH2‘
Now Assumption 6.5 implies that |7] and D |r| are

(9.2)
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bounded on Supp promin 2 Supp F¥, ;. They are therefore
both less than or equal to some positive number M, which is
independent of j. Thus

Wy ;%W 511
=Wy Wi, ; [ (DT Fa 4|7
+ 2 Re((D |T))FY, ;||7|DFY, ;) + |||7|DF, ;117]
<wi "W MP(WFo ;17 + 201 Fn; [ DF 5|
+ ||IDFy, 1)
=Wy Wi M1+ 2|[%8, ] + 139,15,
since X == ,, F*iDF.

Summing the inequality (9.4) forj = 1,...,N using

N
2 Wy =1,

j=1
we obtain

';1 Wy, “‘i:/}tr,j ﬁz

(using Schwarz’s inequality)

(9.4)

(9.5)

N
<ug M(142 3 0l wll b, |

J=1
a4 2
+ 3 w80, 7)
i=1

and so by Schwarz’s inequality and (9.5)

ad 2
Z wtr,j“xwtr,j“
j=1

N 172
<wg'M 2[1 + 2(2 wm,,-l!fczbm,;uz)

V=1

N
+ 5 i i ]
2

=w; 'M?[1+2(E))? + )] < .
Therefore (£*),, exists by Proposition 2.2. The existence of
{{x,, )%, now follows by (9.1d) since x;, = X. 0

Proposition 9.2: The means, variances, and covariance of
position and velocity at time ¢ of the transmitted ensemble all
exist and are given by

W () = (D) e (9.6a)
e (D) = K Y + Dty (9.6b)
Var,, v, () = Var, 1, (9.6¢c)
Cov,, (x,, (1), (1)) = Cov,, (x,,,0) + ¢ Var,, D, (9.6d)

Var,, x,, () = Var,, x,, + 2t Cov,, (x,,,0) + ¢ Var,, D.
(9.6¢)

Proof: By Proposition 9.1 {#*),, exists, hence the right-
hand sides of (9.6a) and (9.6¢) exist. Thus by (9.1a)
(v, (£)), and Var, v, (¢) exist for all ¢, and are given by
(9.6a) and (9.6¢). Thus {[v, (¢)]*),, exists so by Proposi-
tion 8.2 these yield the mean and variance of velocity of the
transmitted ensemble at time ¢.

Equation {9.6b) follows from (9.1b) by (3.1a), since
(#*),, and ((x,,)?),, exist by Proposition 9.1.

Equation (9.6d) follows from (9.1a) and (9.1b) using
Proposition 3.5. That the left-hand side equals the covar-
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iance of position and velocity of the transmitted particles
follows from Proposition 8.3.
Finally (9.6e) follows from (9.1a) and (9.1b) using
Proposition 3.4. O
Proposition 9.3:

(9.7)

Proof: 1t is easy to show from (9.1d) using Proposition
3.2 that

<(xtr - (xtr>tr )0(5 - <5>tr))tr
- <(xin - (xin >tr)o(5 - <5>tr))tr
— {(Bly — (Bl 1 20D — (B ) Doy (9.8)

The left-hand side of (9.8) is Cov,, (x,,,0), and the second
term on the right-hand side equals

Cov,, (x,,,0) = Cov,, (x;,,0) — Cov,, (07,,D).

f(m(k) (T ) )0 = (B Ymome (KK,

which is clearly independent of the representation of .. It
follows that the first term on the right-hand side of (9.8) is
independent of the representation of ., and so defines
Cov,, (x;,,0) by Definition 3.2. Now (9.7) follows. O

X. THE REFLECTED PARTICLES

The statistical properties of the reflected particles are
derived in a similar way, and we state the results without
proof (cf. Sec. IV of I).

Definition 10.1: u_, is the state defined by the represen-
tation

({wrc,j }JN= 1 s{;bre,j }]N= 1 )9
where
re, J = wr; Iwin,jllﬁ¢rc,j{iz’ (101)
¢re,j = “ﬁ‘bin,j“_lllbhpin,j; (102)
expectation value, variance, and covariance over u,, are de-
noted by ()., Var, -, and Cov,. (-,), respectively, and
equality over u. by = .. O
Definition 10.2:

A, (1) =S*PA(1)PS.,. (10.3)

Proposition 10.1: If the expectation value of [4(¢) ] ex-
ists over the reflected particles then the expectation vatue of
A(t) and [4(2)]? over the reflected particles are {4, (¢)),.
and {[4,. (1) ]?)., respectively.

Proposition 10.2: If {[A,.()]%),. exists then 4(¢) and
[4(2)]? have expectation values over the reflected particles,
and these are given by (4,. (1)), and ([4,. () ]),., respec-
tively.

Proposition 10.3:

Ve (8) = o — 1, (10.4a)
(10.4b)

w

Xre (t) = re Xre — Bti
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where

Xee =S Px;, PS,, (10.4c)

Xee = 1o — Xin + Dby, (10.4d)
where

t. =v 'Dargp. (10.4e)

Proposition 10.4: Var,, i, Var,, it
Var,, x,, all exist.

Proposition 10.5: The means, variances, and covariance
of position and velocity at time ¢ of the reflected particles all
exist, and are given by

Var,, X, and

re?

Wee (1)) = — (D) (10.52)
Xre () e = (Xee e — (D) rely (10.5b)
Var,, v, (t) = Var,, 7, (10.5¢)
Cov, (x. (). (1)) = — Cov, (x.,0) + t Var,, D,
(10.5d)
Var,, x,, (#) = Var,, x,, — 2t Cov,, (x,.,0) + ¢? Var,, .
(10.5¢)
Proposition 10.6:
Cov,, (X,e,8) = — Cov,, (x;,,0) + Cov,. (3t,,,D).

XI. DISCUSSION

Assumption 6.1 could be relaxed by not requiring p,. ;.
and p,,om,m to fall off to zero so fast at infinity; however, this
assumption is physically reasonable as it stands.

Assumption 6.2 could also be relaxed, by removing the
upper bound on SUpp pr.om.i. and replacing it by a require-
ment of sufficiently rapid fall-off when k— «. However, as
pointed out elsewhere,” the initial state is experimentally in-
distinguishable from one in which p,....;, satisfies Assump-
tion 6.2, so further relaxation of this assumption is not re-
quired by physical considerations.

Rigorous justification of Assumptions 6.3 and 6.4 are
outside the scope of the present paper.

Finally, the requirements imposed by Assumption 6.5
can be relaxed. Our arguments remain valid if we only re-
quire |7|, arg 7, |p|, arg p, and their first derivatives, to be
defined and bounded on Supp p,,om,in - In this case 7¢;, ; and
P, ; may no longer be C_, but they are still differentiable
and L,.
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On partial differential equations related to Lorenz system

D.Y. Hsieh
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Partial differential equations are constructed such that a truncation scheme as adopted by
Lorenz [J. Atmos. Sci. 20, 130 (1963)] will lead to Lorenz equations. The partial differential
equations are much simpler than those of the Rayleigh~Bernard problem and are essentially of
the mixed type. Various aspects of the partial differential equations are explored. It is
suggested that the switching back and forth between the elliptic and hyperbolic regimes
represents the chaotic behavior of the system in the context of partial differential equations.

. INTRODUCTION

When Lorenz' first proposed the set of equations that
would later bear his name, he obtained those equations by a
drastic truncation to three spatially periodic modes from the
complicated system of nonlinear partial differential equa-
tions of the Rayleigh—Bernard problem. Without going into
the details of the development, it is sufficient for our pur-
poses to state that for the Rayleigh—~Bernard problem, we
have two coupled high order and highly nonlinear partial
differential equations for the streamfunction ¥(x,z,t) and
temperature 8(x,z,t). Lorenz proposed, in essence, to let

Y =X(t)sinaxsinz, (H
6 = Y(t)cos ax sinz — [Z(t)/2]sin 2z, (2)

and then substitute into the partial differential equations. By
retaining only those spatial modes as represented in Egs. (1)
and (2), he obtained the following Lorenz equations:

d_X: —oX + oY,

dt

%’ti: —YirX+XZ, (L),(Ly)
.‘%z — (1+38)Z + XY,

where o, 7, and (1 + 3f3) are positive parameters. We shall
refer to this system by (L) or (L) when S is assigned some
particular value.

The rich contents of the Lorenz equations have been
explored extensively.” The bifurcations of the solution, the
appearance of strange attractors, the chaotic behavior of the
solutions, and the phenomena of period doubling and inter-
mittency have all been associated with the study of Lorenz
equations. Thus the Lorenz equations can stand alone with-
out their historical association with the Rayleigh—Bernard
problem. However, it is still legitimate to ask the question in
what sense and to what degree the Lorenz equations repre-
sent a valid description of the original Rayleigh—~Bernard
problem, In a larger context, since most physical problems
are formulated in terms of partial differential equations, we
may also ask in what sense the approximation with a finite
number of modes by truncation or other means can reveal
the behavior of the original problem. Numerical solutions of
the Rayleigh-Bernard problem® have shown that some of
the salient features of the Lorenz system disappear when

1589 J. Math. Phys. 28 (7), July 1987

0022-2488/87/071589-09$02.50

more modes are retained than the number Lorenz retained.
It seems also that the occurrence of certain phenomena de-
pends on the number and which modes are retained.

Now the Rayleigh-Bernard problem Lorenz studied
originally is a system of two highly nonlinear partial differ-
ential equations of three independent variables (x,z,7). One
equation is first order in ¢ and fourth order in (x,z), while the
other is first order in ¢ and second order in (x,z). Except for
the linearlized problem, it is difficult to analyze those equa-
tions in any way besides the numerical computation. There-
fore, in order to clarify the larger question raised above, it
would be useful if we could have a manageable partial differ-
ential equation with an interesting reduced system of ordi-
nary differential equations. Then we shall be able to make a
comparative study of the original partial differential equa-
tion and its reduced systems.

With the celebrated Lorenz equation in mind, we are
thus led to construct such a system of partial differential
equations. Weshall try to construct a system that is as simple
as can be found. Most importantly, if we use a truncation
scheme similar to (1) and (2), as envisaged by Lorenz, we
should again obtain the same Lorenz equations. Then the
rich contents of the Lorenz system are presumably also con-
tained in the solution of these partial differential equations.

In the following, we shall first construct such a system of
partial differential equations, then various properties of the
partial differential equations will be studied.

Il. THE PARTIAL DIFFERENTIAL EQUATIONS

Consider the following system of partial differential
equations for ¥(x,¢) and 8(x,r):

Wy g9
ar dx (Gp)
90 aze ay a6
—= —{1 -5 42—,
at d-po+F ax? +r<9x wc?x
where o and r are positive parameters, and 0<F<1.
Let us now take
¥=(1/DX(t)sinx, 3
0= (1/42)Y(t)cos x + } Z(t)cos 2x, (4)

and substitute (3) and (4) into the system (Gg). If we re-
tain only the coefficients of sin x, cos x, and cos 2x, it is
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straightforward to verify that we obtain the Lorenz system
(Ly).

The variable 8 can be eliminated from the system (Gg)
by differentiating the second equation with respect to x, and
we obtain

3%y 2¢~2¢ I _ 5 0%

oz T A oxdr | ax?ar
ay ay Iy
1_py ¥ _,94 9
S il v »

~4p 2 s o1 - pry=0. (Hj)

The partial differential equation (H,) is a third-order
equation. However, for the case 8 = 0, Eq. (H,) is a second-
order mixed-type equation. The third-orderterm — B(J°y/
Jx? dt) has the regularization effect of smoothing things out,
while the underlying feature may be largely represented
through the mixed-type behavior. For the case of B = 1, Eq.
(H,) can also be simplified in some cases.

It is possible to detect some traces of the Rayleigh-Ber-
nard system in (Gg ). But (Gy) is a system of partial differ-
ential equations of only two independent variables (x,?) and
the order of the equations are also much lower than the Ray-
leigh~Bernard system. It is a much simpler system, yet is still
a rich system, at least as rich as the Lorenz system.

1. THE LINEARIZED PROBLEM

It may be recalled that the Lorenz system (L) has the
following equilibrium points:

(0): X=Y=Z=0.
(CuG): X=Y= [0 +30r-D]'?% Z=r—1.

The equilibrium point (0) is stable for r < 1, and becomes

unstable for 7> 1. The equilibrium points (C,,C,) emerge

only for r> 1. The linearized problem of the system (G ) or

Eq. (Hg ) would thus correspond to the behavior of the solu-

tion in the neighborhood of (0) for the Lorenz system (L).
Take Eq. (Hg ). The linearized equation is

9% ¢ 3%
P + o(r — B) Béx2 E
+(a+1—ﬁ>-5';”—+o<1-—ﬁ>¢=0. (5)

Let us use the method of normal modes and take
¥ = w(t)e™, thus (5) becomes

(fl’tlf B‘fi—w+ Cw=0, (6)
where

B=o+ (1—p) +Bk* (D
and

C=o[(1-B)— (r—Bk?]. (8)
Thus

w=a,e” + a,e*’, (9
and

vi, =10 —B+ (B>—4C)"]. (10)
1590 J. Math. Phys., Vol. 28, No. 7, July 1987

Now since o and r are positive and 0<B<1, it is clear that
B> 0. Thus v, and v, both have negative real parts if and
only if C>0. In other words, the problem is linearly stable if
and only if

r<B+ (1 —=B)/k?. (1
Therefore the system is linearly stable if 7<f3, whatever the
value of k is. The larger the value of k, the more unstable is

the system. When &k = 1, which corresponds to the Lorenz
problem, the criterion (11) becomes

r<1. (12)

The criterion (12) agrees with the stability criterion for the
equilibrium point {0) of the Lorenz system.

IV. THE STEADY STATES

The equilibrium points of Lorenz system (L) would
correspond to the steady states for Eqs. (Hg) or (Gg). Let
us consider the time-independent solutions of (Hg). Take
¥ = 1(x), then (Hz) becomes

o(r—B) 2" — 4oy ¢+ (1 =B =0.

(13)

Equation (13) can be rewritten as two coupled first-order
equations. Introduce ¢(x) by

ay —.

14
. (14)
Thus (13) becomes
de¢ 1
e 4p — (1 — . 15
Ty e (=R (15)
The system {14) and (15) can be readily integrated, since
b _ (r=>~¢ , (16)
dp¢ l4p—(1-PB)]¢¥
which is separable, and we obtain
2 2 (1-4) 44 '
—— —_—p——In|l——"~2—| =4 17
(r — 3) V—e——3 -3 an

It may be seen from (17) or the system (14) and (15) thata
particular solution is

p=U-=p/4. (18)

For large |g |, the orbit as given by (17) is a parabola given
approximately by

[2/(r—B)]¥* — @ = const . (19)

For r < B3, there is no closed orbit, and the orbits are schema-
tically shown in Fig. 1.

For r > f3, the orbits for ¢ < {1 — ) /4 are closed, while
those for @ > (1 — B)/4 are not. They are schematically
shown in Fig. 2.

The qualitative features can also be seen by taking a
closer look at the equilibrium point ¢ = ¢ = 0. For small
|@ |, if we expand the log function in (17) in terms of power
series in ¢, Eq. (17) is given approximately by

[(2/(r—B) 1+ [2/0 -P)lp?=4. (20)

Thus the equilibrium point ¢ = ¢y = 0 is a center for r> S
and a saddle point for r <.
The closed orbits represent the periodic solutions for

D. Y. Hsieh 1590



a
-6
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*

I

FIG. 1. Schematic orbits of the steady states for r < B

¥(x), which in turn correspond to equilibrium points of the
Lorenz system. Combined with the results from Sec. III, we
see that the system (Hy) is linearly stable for r<f3, and
linearly unstable for »> . However, for r </, there is no
bounded nontrivial steady state solution. Bounded spatially
periodic steady state solutions emerge only when 7 exceeds
B. So there is a correspondence between these qualitative
features in system (L) and system (Hy).

vl
o

FIG. 2. Schematic orbits of the steady states for r> 5.
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(_i-
/] /x
L

e

FIG. 3. Schematic solution of a steady state for r> 3.

Making use of (17), we can obtain ¢(x) and ¥(x) by
direct integration. Denote

C=4p/(1-5),
then Eq. (17) can be rewritten as
P =10-5)/8(r-p)]
X[44/(1 =B+ P+ In|l —P|]. (21)
Thus we obtain from (15) and (21) that
d_q)z B [2(1 —B 1
dx (r—p58)»

44
X2+ @ +1 1_<1>) . 22
(1 B+ +In | 1 (22)

(1-9)

Equation (22) can be directly integrated. Let us concentrate
our attention on periodic solutions, i.e., r>fFand < 1. A
typical solution is represented in Fig. 3. Let ,, and @,, be
the maximum value of |¢/| and |@ |, respectively. Then we see
from (17) and (20) that

Yy~ (r—p41",
’ N[[g(l—ﬂ)A]'/Z,
M A, for A large.

For A<« 1, we see from Eq. (20) that the (¢,¥) orbit is
an ellipse and the solutions for ¥ and ¢ are

Y=1[5(r=p41sin([(1 -B)/(r

for A small,

_B)]l/?.x) ’
(23)

— B 1'"%x).
(24)

= (=41 cos([(1 -B)/(r

The wavelength of these periodic solutions A is given by
A=2m[(r—B)/(1—=P1". (25)

For the Lorenz system, we have A = 2. Thus only for
r~1 can a close correspondence between the steady state
solutions of the system (Hg) and the equilibrium points
(C,,C,) of the system (L) be established.

As A increases, the wavelength A increases also. For
A> 1, it may be established that

A=0WWy) =0([(r—B41'%). (26)
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Thus for large r, the wavelength of the periodic solutions
will be proportional to r'/?, and cannot be maintained
around the value of 277, which is implied in the Lorenz sys-
tem.

V. STABILITY OF THE STEADY STATES

Let us now investigate whether the steady states, in par-
ticular the spatially periodic steady state, are stable. Take
¥o(x) to be the steady state solution, we may discuss the
stability problem from two approaches.

(i) The regular perturbation approach: Write

P(x,t) = Yo (x) + ¥, (x,2) . (27)

Substitute (27) in (Hg ). Since ¢, (x) satisfies Eq. (13),
we obtain, after retaining only terms linear in ¢,, the follow-
ing equation:

821//1 21//1 I’y L 3%,

92 —A oz ar Ixadt | axior

B g//_l 50O, azm
+(oc+1-p) E% a o Yo

409y, 4 o(1 By, =0. (28)

Although Eq. (28) is a linear equation, it is not easy to
solve it analytically. Since ¢,(x) is a periodic function with
period A, we may also look for solutions that are spatially
periodic with period A. The term 5(J *1,/dx* 3t) has a ten-
dency to smooth out the solution. If we neglect this term, Eq.
(28) is either elliptic or hyperbolic depending on the relative
magnitude of o(r — 3) and 3, because the characteristics of
the equation are given by

dx
—?:¢oi

Thus the equation is elliptic where 7 < o(r — f3), and
hyperbolic where ¢¢ > o (¥ — B). Ellipticity is usually asso-
ciated with instability. Since the maximum of |1/, is roughly
[1 (r—pB)4 1" as indicated by (17), thus the equation is
elliptic when A4 is small. On the other hand, lower-order
terms have a damping effect. Hence the ellipticity needs to
overcome the damping mechanisms to cause instability. But
it is perhaps reasonable to state that for large o(r — ) and
small 4, the system is unstable. The term £(J°y,/dx* 9t)
may smooth things out eventually. But perhaps it will not
alter the general qualitative behavior in the short run.

For large 4, the maximum of 7 will be larger than
o(r — ). Thus in much of the region the equation is hyper-
bolic, which will imply stability. But there are still regions of
ellipticity in the neighborhood of #,(x) = 0. Numerical
studies are needed to study the behavior of the solution of
this mixed type equation.

(ii) The multiple scale expansion approach: The spa-
tially periodic steady state solution i, can be written as
y(x;4), where 4 1s a measure of amplitude. We can look for
a solution of the type 1y(x/A (£);4(¢)), where A(¢) and 4 (¢)
are slowly varying function of r. Whether A(¢) and A(¢)
remain in the neighborhood of constant values of A and 4 as ¢
increases determines the stability of the spatially periodic
steady state.

(Y6 —o(r—B)]. (29)
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The analysis can be carried out by a multiple scale ex-
pansion. The details are presented in the Appendix. The sta-
bility criterion can be expressed in the form of Eq. (A14),

a’2A

~|—G(Ar[3’a)——:0,

where G can be computed in terms of ¥, (x;4).

For finite 4, since ¥,(x;A) is not a simple function, nu-
merical computation is needed to calculate G. However, for
small A, since ¢, is given by (23), it may be shown that the
spatially periodic steady state is stable.

VI. THE SPATIALLY PERIODIC SOLUTIONS

It is reasonable to expect that the connection between
the partial differential equations (G ) or (Hg ) and the Lor-
enz system is to be found in spatially periodic solutions. Let
the period be 4. Denote

(W) = ‘L Y(x,t)dx .

Other averages over the period A, (6 }, (¢*), and so on, can
be defined likewise. Let us now consider the case that both ¢
and @ and their derivatives are all periodic in x with period 4.
Let us integrate the first equation of (G, ) with respect to x
over the period A. We then obtain

d S
Z<¢)—— o) .

If we multiply the first equation of (Gg) by (2¢/0), add to
the second equation of (Ggz), and then integrate with re-
spect to x over the period A, we obtain

Ly +0(0)] = — 20| () +
dt

(30)

(31)

a-5
5 6)

(32)
From (31), we see that (1) —0 as - o. Thus asymp-
totically not only # is periodic in x, but §, ¥ dx is also peri-
odic in x. However, it does not imply that || -0 as - .
To discuss the implication of (32), let us denote

p=) +0(0), g=)+[(1-5)/2]1(6).
Thus (32) can be rewritten as

dp _
7 20q .

In Figs. 4 and 5, we have plotted lines of constant pand ¢
in the () — (8 ) plane for the cases o> (1 —3)/2 and
o< (1 — )72, respectively. At any point where g > 0, p has
a tendency to decrease; while at any point where ¢ <0, p has
a tendency to increase. It is not clear how p decreases or
increases. However, when the state reaches a point on g = 0,
it tends to stay there. Take the case of o> (1 — 8)/2 (Fig.
4). Consider any point & for which g < 0. The motion tends
to remain in the region D, which is bounded by the lines
p =p(a), (¥*) = 0,and g = 0. Thus for subsequent motions
we have

[(0)<(1/0)|p(a)], (33)

W<l =g /{20 — (1 =P} Ip(a)]. (34)
Thus for o> (1 — B)/2 any motion initiated with g <0
tends to be bounded all the time with the bound given by
(34).
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<g>

FIG. 4. Tendency of motion of the system in the ({8), {#*)) plane for
o> (1—-B)/2.

The same result is valid for any motion initiated with
g>0when o< (1 — f3)/2, as represented in Fig. 5.

The state ¢ =0, i.e., (¥*) + [(1 —B)/21(8) =0, if
ever reached, will be the asymptotic state for large ¢. It may
be mentioned that for steady states

p=[1/r—B]1 20"+ (1 -B)F]. (35)

Thus g = Ois equivalent to (¢ ) = 0, which isindeed the case
for periodic steady states.

VIl. ELLIPTICITY AND HYPERBOLICITY

Following the original study of Lorenz, most numerical
studies of the Lorenz equations (L) set the parameters
o = 10and 8 = §, while varying the parameter r. Except for
the requirement that o > 2 + 3f3, most of the qualitative be-
haviors of the Lorenz system seem to be insensitive to the
variation of B or . However, for Eq. (Hy), it is clear that
the problem is somewhat qualitatively different when 8 =0
orB=1.Whenp = 1, from Egs. (13)-(17), it may be seen
that no bounded periodic steady state solution exists. On the
other hand, when 3 = O, the order of Eq. (H ) is reduced by
1. The term d°3y/2x* 3t in (Hp) is a “good” term, whose
presence can smooth out irregularities that may arise other-
wise. Still it may be illuminating to consider the case that
B <1 or even when B = 0, since the underlying irregulari-
ties, if they exist, may reveal some intrinsic properties of the
system.

If we set = 0, then Eq. (Hy) is of the mixed type. The
characteristics of Eq. (H,) are given by
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FIG. 5. Tendency of motion of the system in the ({6), {¥)) plane for
o< (1—=5)/2.

L A S L (36)

dt
Thus the equation is elliptic when ¥* < or and hyperbolic
when ¢ > or. When r is large or when # is small, Eq. (H,) is
elliptic. Ellipticity is associated with instability of the sys-
tem. More precisely, for initial value problems, solutions of
the elliptic equations tend to depend sensitively on initial
data. The instability due to ellipticity will make ¢* grow with
t. But when ¢” exceeds the value of or, Eq. (H,;) becomes
hyperbolic. Hyperbolicity implies stability of the system.
Therefore the initial unstable growth will be arrested. The
solution will start to exhibit some wavelike features. How-
ever, the system (H,) is dissipative. The dissipative mecha-
nisms in the lower-order terms in Eq. (H,) will tend to di-
minish the magnitude of %, and drive the system back to the
elliptic regime. When the equation is elliptic, the instability
mechanism will operate again and raise the magnitude of ¢/
over the value of o7, thus push the system to the hyperbolic
regime, This type of switching back and forth from ellipticity
to hyperbolicity may be what corresponds to the chaotic be-
havior of the Lorenz system. The sensitive dependence on
initial data inherent in the elliptic equations is certainly con-
sistent with the trademark of the chaos. The boundedness of
the solution as established in Sec. IV may indicate the exis-
tence of some strange attractors. What the meanings of these
concepts are in the context of partial differential equations is
still not clear.
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Numerical studies of Eq. (Hy) should shed light on
these intriguing questions. To carry out numerical studies, it
may be noted that the boundary line between ellipticity and
hyperbolicity for Eq. (H,) is given by ¥ = (or)'/% It can
also be shown that on the hyperbolic side the characteristics
form cusps at the boundary line. In the hyperbolic regime,
shocks may appear. Thus from a numerical point of view, it
is better to work with Eq. (Hg) with 8> 0. Whether finite
values of 3 would add too much diffusion is also a point
worth noting.

Vili. AREDUCED SYSTEM AND HODOGRAPH
TRANSFORMATION

The method of hodograph transformation is sometimes
useful in dealing with mixed type partial differential equa-
tions. Let us consider a reduced system by dropping the two
damping terms in (Gy):

w00 %0 _ v 00

at ox Ot dx dx
The corresponding single partial differential equation is
3%y %y %y Y Y
-2 —2—L - =0, (Hg)
ar? e Vaa P a “
and the corresponding reduced Lorenz system is

—‘-1{=0Y, £Z1—Z=rX—XZ, il’g—z)(Y.

dt dt dt
Equation (H ) is also of the mixed type. But the lower-
order damping terms are not present. System (L ) has the
following first integrals:

20Z—-X*=D (37)
and

(Z—-r)’+Y>*=B>. (38)
These integrals define a two-parameter family of periodic
solutions in ¢.

To solve the system (Gg ), let us introduce the hodo-
graph transformation by interchanging the roles of (x,¢) and

(¢,0) as independent and dependent variables. Denote the
Jacobian of the transformation:

(Gr)

+ or

(Lr)

J=29x
a(4,0)
we obtain
W_1a w__1a
ax J 99’ dx J 3y’
W _ _1ox 99 _109x
A J 3 a  J Iy
Thus system (Gy ) becomes
a_ L aa_a oo
a6 N a0 v
If we eliminate ¢, then we obtain
2 2 2
‘3’2‘ rdx ’; _2,9% _lﬂzo, (H,)
Yy o 06 o d0dy o J6

Equations (G, ) and (H, ) are both linear, but they are still
of the mixed type. The boundary between the region of ellip-
ticity and hyperbolicity is again ¢* = or.
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There are particular solutions of the form

x(,8) =f(¥)e”. (39)
If we substitute (39) in (H,, ), we obtain
2 2
Denote
o = (a/o0)y (41)
and

2n =ogr —20/a,

or
a=20/(or—2n). (42)
Then Eq. (40) becomes
2
df—2w£+2nf=0, (43)

do? do
which is the Hermite equation. When 7 is an integer, a solu-
tion is the Hermite polynomial of order nH, . Therefore a
particular solution of (H,, ) is

x, = H,(2¢/(or — 2n))e?o?/tor—2m (44)

Any linear combination of x,’s is also a solution. Using
(G, ), we may obtain particular solutions for #:

2 ela&/(ar—ln) leHn ( 2¢’ ) d¢ .
or—2n or—2n
(45)

These particular solutions should be helpful to guide the
numerical studies of the problem especially in the neighbor-
hood of the transition between elliptic and hyperbolic re-
gimes.

t, = —

IX. ASYMPTOTIC STATES FOR LARGE r

For the Lorenz system (L), Robbins* has found a stable
periodic solution as the parameter » becomes very large. Let
us introduce a small parameter € and set

t=er, r=1/€. (46)
Now let

X(tye) = (1/6) [XO(T) + eXl(T) + te ] y

Y(re) = (1/€)) [Yo(7) + €Y (1) + -],

Z(te) = (1/€) [Zo(r) + 1 + €Z\(7) + -],
then the zeroth order of the Lorenz system becomes
X oy, Yo _xz, % _xy,

dr dv T

We may note that (L, ) is really the same as (L ) in the
last section, if we let Z — r = Z,. By carrying out the next-
order expansions, Robbins has shown that a stable periodic
solution exists for finite 7, and as r decreases, period-dou-
bling bifurcations appear.

Let us take the same scaling for Eq. (Hg ) and let

Y(x,t€) = (1/€) [Yolx,7) + €y (x,7) + -1, (4T)
Then the zeroth- and first-order equations of (Hg) are

3%y ‘o 3%y, — 2y, 3%y, %% _

(La)

, 48
or? Ix? Ix Ir ox Jr (48)
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2 2
a3y, 6¢1_2 %Yy, 8%
a2 7 o "/"’axar 3x37'¢
0 0o _ 5 I I
dx or or Ox
3
o '@0 —(c+1— B)a¢°+4a¢ '/' . (49)

Equation (48) is the same as Eq. (Hy ) of the last sec-
tion when r = 1. In the last section, we have explored some
aspects of this equation. Now to make connection with the
periodic solutions of (L, ), we should look for solutions pe-
riodic both in x and ¢ for Eq. (48). It is not clear whether
such solutions exist. Even if there are such doubly periodic
solutions, what would be the corresponding period-doubling
bifurcation in the context of partial differential equations is
also not clear. Much work is still needed to clarify these
issues.

Now if, instead of (46), we introduce a different scaling

and let
t=er, r=1/¢, (50)

and further, let

X(te) = (1/€) [Xo(7) + X (7)) + -],
Y(te) =1/€ [Yy(1) + €Y (7) + -],
Z(te) =1/ [Zy(1) + €Z,(7) + ],

then the zeroth order or the Lorenz system again is (L, ).
However, if we now apply the scaling (50) and the expan-
sion (47) to Eq. (Hy), the zeroth-order equation becomes

39, %o _ o Ity _
P ara P ax o
Equation (51) is different from Eq. (48). While (48) is a
mixed-type equation, (50) is a hyperbolic equation. In fact,
Eq. (48) can be integrated once to give

(51

%_z%%%:cm. (52)
X

ar
To make connection with the Lorenz system, the function
C(x) in (52) should be a periodic function. Equation (52)
has been investigated recently by Salas ef al.> They studied
also specifically the case that C(x) = sin 2x, and found mul-
tiple steady states for characteristic initial value problems.
Whether there are solutions periodic both in x and ¢ is again
not clear.

If we use another different set of scaling and let

r=1e v=y/e+ -,
then the leading-order equation of (H; ) becomes

2 2 ’ 341 ’ ]
Oy O 8w,
at'? dx' ot’ Ix’ 2’ ax' ar’

t=¢€t', x=ex,

(53)

Equation (53) can be integrated once to yield
A
at’ 54 ox' —F ox'?

The homogeneous equation of (54) is the well-known
Burgers equation. This equation has recently been investi-
gated by Kreiss and Kreiss.®

=C(x). (54)
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X. THE TRAVELING WAVE SOLUTIONS
Traveling wave solutions are solutions such that
P(x) =9, O(x1)=6(n),

and

(35)

where c is a real constant. If there exist periodic traveling
wave solution, then the solutions will be periodic in both x
and ¢.

When we substitute (55) in (G ), we obtain

dy do
Jhak 7
cdn o +o prl (57)
P —1(-B)H+B d"+2¢—
dn dn dn
(58)

We may recast the system (57) and (58) into the following
first-order system:

@ _o a6 _

i e ¥ +x), an X
dy or or

B~y (1-p0— (Lot )y 20y
dn ¢ ¢

(Gr)
The system (G, ) has only one equilibrium point at
¥ =0 =y = 0. To investigate the stability about this equi-
librium point, consider the linearized equation, and take so-
lutions proprotional to e*”. Then we found that

F(v)=Bv’ + [(0o/¢)(r —B) +c]V*

—[(I=B) +olv+ (o/c)(1 - B) = (59)

Again, we are only interested in cases where o and r are
positive, 0<fA<1, and r> 8. Take ¢ > 0, then after investigat-
ing the behavior of F(v), F'(v), and F " (v}, itis readily con-
cluded that for the three characteristic roots of (59), say
V1,V2,V3, We have

vi<0, Riv,;>0, Rlv;>0. (60)
Therefore, except for exceptional cases, the equilibrium
point is unstable. When 8 = 0 or 8 = 1, the third-order sys-

tem is reduced to a second-order system. For =0, the
characteristic condition (60) becomes

v, <0, v,>0. (61)
For the case 8 = 1, then (60) becomes
v, <0, v,=0, v;>0. (62)

For f = 1, the system (G ) reduces to a second-order sys-
tem for i and y. Although there is another equilibrium point
atyy = — y = — ¢/2, which is stable, yet since df /dn = y,
it is not an equilibrium point for (/,6,y).

Some preliminary numerical computation failed to find
any periodic solution for the system (G ).

Xl. DISCUSSIONS

We have constructed a system of partial differential
equations (Gg) or the partial differential equation (Hy)
which are among the simplest that contain Lorenz system
(L) in some approximation. We have analyzed and dis-
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cussed various aspects of these partial differential equations.
Certain qualitative features of these partial differential equa-
tions correspond with those of the Lorenz system. Others are
difficult to say without entensive numerical studies. A nota-
ble feature of these partial differential equations is that in the
limit of 8- 0, the equations are of the mixed type. It is sug-
gested that the switching back and forth from the ellipticity
and hyperbolicity may correspond to the chaotic behavior of
the reduced system of Lorenz. Again, detailed numerical
studies are need to confirm this suggestion, and work is in
progress towards this goal.

Qualitatively for >, Eq. (Hz) has those properties:
When the amplitude is small, the system is not stable due to
the ellipticity. For large amplitude, it becomes hyperbolic.
The system has lower-order damping terms as ¢ progresses.
It also has spatially diffusive mechanism. The ellipticity
tends to make the system unstable and the hyperbolicity to
cause wavy behavior, while the damping and diffusion
would smooth out the irregularities. These are indeed also
qualitative features contained in the Lorenz system.

Given the Lorenz system, there is of course, no unique
“simplest” parent partial differential equation. In fact, the
system

at Cax (K3)
39 96 oY
— I — 1— 6 — 9 ’
ER (1-8) -+-ﬁ e + ( V)
if we take
=2 X(t)sinx, (63)
=2 Y(t)cos X + 2Z cos 2x , (64)

and use the same truncation scheme, will again lead to the
Lorenz system (L). The system (K ) may be simpler than
(Gg) in some aspects, but may be less simple in other
aspects. For one thing, it is difficult to obtain a single partial
differential equation as simple as (Hg ).

Finally, it may be pointed out that one can detect the
qualitative similarities between the system (Gg) and the
partial differential equations of the Rayleigh-Bernard prob-
lem. Physical problems can also be found that are described
approximately by the system (Gg).

APPENDIX: MULTIPLE SCALE ANALYSIS OF
STABILITY OF STEADY STATES

Let us write (Hp ) as follows:
L s o1 -pw

ifw
€ Ot?

o(r—ﬁ)

2 3
Y "y

+2 Ix ot +h Jx? ot

9,9
A) at ﬁx o’
where the order parameter € is introduced artifically in the
first term on the right-hand side. Let us assume the following
expansion of :

1[’ = 1/’0()’,7') +ep () + -0,
where

(A2)
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T=¢€t, (A3)
and
(A4)

Substituting (A2) into (A1), we obtain, to the succes-
sive orders of ¢, that

y=k(r)x.

2
o(1): a(r— ﬁ)kzaa'f°

— 40k o, ¢°+0(1 -, =0,

(AS)
O(e): L [¢1 = 1 s (A6)
where
%Y 4k 8¢
L =k?2 [ 1
)=k SE— = S
(r—p8)
and
1 3%, 3%,
== k
o(r—PB) PR %a ar
3y, 5¢ I, 9
_+_k2 [4] 1 0 k [0} 1]
9 dr —(c+1-p) +2 3 or
(A8)

The solution of (A5), as given by (22), can be repre-
sented as

Yo = Yol y/k(7) — xo(7), A(7T)), (A9)

and for the case of our interest with r > 3, ¥, is periodic in y.
Moreover, the function §” ¥, dy is also periodic in y. Here
k(7) is chosen so that the period in y is independent of 7.
Thus k = k(A4) and the period can generally be set to be 27.

It may be verified that di,/dy and dy,/dA are two lin-
early independent solutions of the homogeneous equation
L[‘/’l] =0.

Let us introduce

~ 2 "y
- | ———— d 3
U, =1, CXP( (r—ﬁ)kJ- Yo .V) (A10)
then (A6) can be written as
A A 2 v
L =F S — dy), Al
) =Frew( -2 [Twoa), @i
where
A a 9%y 1 [ Y,
L = 1 1—p8) —2k=28
R e Fenyed (URT R
(r—[)’) %]1/11 (A12)

Followmg the method of Kuzmak-Luke,” the condition

that 1//1 or 1, will again be a periodic function of y with period
27 is

21ra¢o ( 1 'y
Yo i —_— =
J; o | €Xp (r——ﬂ)kJ. /N dy) dy=0.

Let us take x, to be constant in (A9), then, since

(A13)
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Iy _ Iy dA | Iy dk
dr 04 9r Ok dr’

etc. and k = k(4), (A13) will be a differential equation of
the form

d?A

e (Al4)

+ G Bo) A~
dr

The coefficient G will determine whether 4, a measure
of the amplitude of #,, will stay in the neighborhood of a
constant value.
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Operator product expansions (OPE’s) are studied in unitary “minimal conformal models” on
the circle. The presence of null vectors at a certain level (signaled by the the vanishing of Kac’s
determinant) leads to linear relations among SU (1,1)-covariant (“quasiprimary”) fields at
that level. In the Ising model this is shown to imply the proportionality of two composite
tensor currents of dimension 6 and the vanishing of 4 among the first five composite fields
expected to appear in the OPE of the stress energy tensor and the canonical Fermi field (of
weight 1). For the supersymmetric tricritical model it only implies the vanishing of the

quasiprimary Fermi current of dimension 3.

I. INTRODUCTION

In a paper that opened a new avenue in the study of two-
dimensional critical models, Belavin, Polyakov, and Zamo-
lodchikov' found an infinite series of models for which the
conformally invariant Green’s functions satisfy linear par-
tial differential equations and can, in principle, be evaluat-
ed."? Such “minimal theories” (in the terminology of Ref.
1) correspond to Virasoro central charge,

c=c,=1—6/(m+2)(m+3), (1.1)
with rational m, and an associated finite set of minimal
weights derived from Kac’s determinant formula.’ It was

conjectured® and later proved®® that the subset of values
(1.1) for positive integer m’s and lowest weights (LW’s),

A, (m)={[r(m+3) —tim+2)]*— 1}
x[4(m+2)(m+ 317,

I<r<m+1, I<esm+2 (m=12,.),
(1.2)
satisfying the symmetry condition
Ar,t(rn)zAm+2—r,m+3—vt (13)

(already singled out in Ref. 1), correspond to unitary LW
representations of the Virasoro algebra Vir.

Recently, modular invariant partition functions were
constructed for these models’ in terms of Feigin and Fuchs
character formulas.

In the framework of a field theoretic approach®® (in
which the problem has been reduced to studying conformal
quantum fields on the circle) composite quasiprimary fields
have been constructed and conformal OPE’s have been writ-
ten down for a wide range of models.'® (We recall that a field
& (z) of dimension A is called quasiprimary, if it transforms
homogeneously under the projective conformal group SU
(1,1); in an infinitesimal form its transformation law reads

[L..$(2)] =2{z8'(z) + (n + DAS()}, (1.4)

* Permanent address.
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for n =0, + 1. The field ¢ is called primary if it satisfies
(1.4) for all integer n’s. We say that the quasiprimary fields
&4, of dimension A + n, n =0,1,2,..., belong to the con-
Jformal family of the primary field ¢,, if they appear in
OPE’s of expressions of the type T(z,) -+ T(z, ) (z). Here
T(z) is the stress-energy tensor

T(z)y=3YL,z7""* (L¥=L_,), (1.5)

neZ

where L, satisfy the commutation relations of Vir,

[L,Li]=(n—KkL,, ,+ (c/12)n(n* —1)8, .
(1.6)

One advantage of using quasiprimary fields stems from the
fact that they provide an orthogonal basis for OPE’s: if ¢,
and ¢, are quasiprimary fields of different dimensions, then
(¢1(21)¢2(22)) =0)

It was pointed out in Ref. 11 that the minimal unitary
models [correspondingto (1.1) and (1.2) form = 1,2,...] —
the ¢,, models, for short—provide, for each m, representa-
tions of an associative algebra %, which includes the enve-
loping of the Virasoro algebra. Here %[, can be defined as the
OPE algebra generated by the stress energy tensor 7(z) and
by the primary field F(z) [ = F(z,m)] of (half-) integer
dimension

A, (m)=A,,  ,(m) =im(m+4 1)=s, (1.7)

(which can also be viewed as “spin”). The fusion rules of
Ref. 1 guarantee that the conformal family of F(z) is only
coupled to the family of the unit operator. Since T(z,)F(z,)
belongs by definition to the family of F, whatever the pri-
mary field F, the preceding statement just says that F(z + ¢/
2) F(z — €/2) is expanded in quasiprimary fields 7% (z),
n=0,1,2,...,, of the family of the unit operator, so that
T, =1, T, = T (we shall display in Sec. II the proof of this
result for the simplest special case of the Ising model,
m=1).

The main purpose of this paper is to develop a technique
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for making efficient use of (global) OPE’s in the ¢,, models.
Computing normalization factors from known four-point
functions, we are able to compare in particular the quasipri-
mary fields 7%, , which appear in the OPE of two F fields,
with the composite fields 72, made in a similar fashion out
of two T’s. They have identical conformal properties; how-
ever, in general, they do not coincide, since the quasiprimary
states have a finite multiplicity (Sec. IT). Only levels 2 and 4
are multiplicity-free for an arbitrary central change ¢. (In
fact, 77 = T5 = T, while T'] is a multiple of T'%.) The pres-
ence of a null vector at level (m + 1) (m + 2) reduces the
number of independent quasiprimary fields in the ¢,, model
at this level. In the case of the (¢, ) Ising model we deduce (in
Sec. IT) that level 6 is also multiplicity-free. An explicit com-
putation, involving the canonical Majorana-Weyl field
F(z,1)=1(z),shows that,infact, T'7 = 8T ¢ (Sec.1V). The
presence of null vectors in the conformal family of ¥ (dis-
cussed in Sec. II) leads to the vanishing of the composite
quasiprimary fields of dimensions §, 7, and 4! appearing in the
OPE of T(z + €) ¥(z) (Sec. IV). Similar results are ob-
tained for the composite fields G, _ 5,, (2) in the ¢, model.
The computations of Sec. IV are preceded by a general dis-
cussion of the 2, algebra in Sec. III where the normalization
of T'T is derived from the four-point function of T for any
value of ¢, while the normalizations of 7%, and of F, , , (a
composite of F and T') are related to the four-point function
(TTFF ) for the c,, models. The new point in the set of prop-
ositions of Sec. I1I is precisely these numerical coefficients.
Their knowledge is essential for exhibiting the relations
between composite quasiprimary fields at levels involving a
null vector and for computing higher correlation functions.
The rather lengthy computations of these constant factors
are summarized in the Appendix. (Only the first such factor,
the one that multiplies the normalized primary field in each
conformal family appearing in an OPE, has been evaluated
previously, see Ref. 2.)

Il. NULL VECTORS, FUSION RULES, AND
DEGENERACIES: THE (TRI) CRITICAL ISING MODEL

A. Null vectors and quasiprimary states

For each LW vector |A,,) = |c,.,4,,(m)) (1.2) such
that

LA =0, n=12,., (Lo—A,)|A,,)=0,

(2.1)

there exist homogeneous “polynomials” of the type Py
=al_y+al,_yL_,, .. of “degree” N=rt and
N=(m+2—~ry(im+3—1t) such that the vectors
Py|A,,) are null vectors. They are characterized by the
property LnPN|Ar,t) =0 [(LO - Ar,t —-N) |Ar,t> = O] for
n>1, which implies that they are orthogonal to all vectors of
the Verma module 7”, .  and can, therefore, be set consis-
tently equal to zero.

In the family {1} of the unit operator the null vectors
appear at level 1—as L _,|0) = 0— and (m + 1) (m + 2).
One can derive from here the absence of quasiprimary fields
at odd levels (for n<7) and a linear dependence among such
fields at level (m 4+ 1) (m + 2).

In order to clarify the last statement we shall estimate
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the number of quasiprimary fields T,, (z)e{1} for small n’s.
To each T,,(z) corresponds a quasiprimary state (short-
hand for a lowest weight quasiprimary state) T, (0)|0) sat-
isfying

(Lo — 2n) T, (0)[0) =0 = L,T,, (0)|0). (2.2)

There are unique quasiprimary states at levels 2 and 4 (pro-
portional to L _,|0) and to (L, — 3L _,)|0)). For higher
n’s we expect that the number of independent 73, s does not
exceed'? p(n) — 2p(n — 1) + p(n — 2), where p(n) is the
“partition function”—i.e., the number of ways in which the
positive integer 7 can be presented as a sum of positive inte-
gers (see Table I). Indeed, if we only have a null vector
(L_,|0)) atlevel 1, then the number of independent vectors
at level # will be M " = p(n) — p(n — 1). If, on the other
hand, M  is the multiplicity of all states at level #, then the
multiplicity of quasiprimary states at level n will be M ¥
_ M (n— 1)'

We see, in particular, that the first quasiprimary state of
odd dimension in the family of {1} may appear at level 9.
[Quasiprimary composite fields of the type T,,, .. , , contrib-
uting to the OPE of a primary field ¢(z) with itself, would
not appear in the symmetric expansion ¢(z + €/2)¢(z — €/
2).] (Indeed, the vector

{5L* ,—8L _4+6L_,L_,—12L_(L_,
+8L_,L*, ~12L_,L_,L_,}|0)

is annihilated by L,.) We also find exactly two independent
quasiprimary vectors at level 6 [say, (L* , —8§L_,L_,
—4L_¢)|0)and (L* , —9L_,L_,—¢L_,)|0)]. For the
¢;-Ising model a linear combination of these two vectors
should be a null vector. Thus, for ¢ = | any two quasipri-
mary fields (of the family {1}) of dimension 6 should be
proportional to each other. We shall display an implication
of this statement—concerning composite quasiprimary
fields—in Sec. IV.

B. Null vectors and fusion rules in the ¢, model

Animportant application of the presence of null vectors
in the ¢,, models is the derivation of the fusion rules' for
OPE’s involving primary fields. We shall reproduce this der-
ivation for the simple case of the product of the canonical
Fermi field ¢(z) of weight A,; = A, ; =1 in the ¢, model,
since some of the intermediate formulas will be also useful
for the interpretation of our results in Sec. IV (concerning
the vanishing of certain quasiprimary composite fields).

The general L,-invariant vector at level 2 in the Verma
module 7, is proportional to

le,A+2) = ([(2A+1)/3]L_, —4L> |)|c.A).

(2.3)
Indeed, we have (for any A and c¢) L,|c,A+2)
={QRA+1)L_, —L,L_, —L_,Ly}|c,A) =0. In order
to secure also L,|c, A + 2) = 0 (which is equivalent to de-
manding that |¢, A + 2) is a null vector—given that L,|c,
A + 2) = 0) we must set

c=18A(1+2A)"'—8A

or
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TABLE 1. Values of the partition function p(n) and its first two finite differences for 0<n<15.

n 0 1 2 3 4
p(n) 1 1 2 3 5
pn) —pn—1) 0 1 1 2
p(n) —2p(n—1) + p(n—2) 1 0 1

11 15 22 30 42 56 77 101 135 176

4 4 7 8 12 14 21 24 34 41

16A =5 —c+(25—¢c)(1 —¢). 2.4)
For the ¢, series (1.1) Eq. (2.4) gives
=1 2),
44, , (m) +3/(m+2) (2.5)

4A, ,(m)=1-3/(m+3)
in accord with (1.2). For m = 1 we find A, , = I. Similarly,
the general L-invariant vector at level 3 is a multiple of

le, A+3)=UAA+1DL_;—(A+1DL_,L_,

+1L2  Ye,A). (2.6)

The requirement L,|c, A+ 3) =0 is only satisfied for
¢=12A(A +1)7' — 3A — 2, which, for A = }, again gives
¢ = 1. We shall now demonstrate that the null vector condi-
tions
(%L 2= 'L 2 1 )|2’z

=0=(L_,—L_,L_,+iL’> )|}
imply the fusion rule for two ¥ fields.

The conformal family of the primary field ¢(z) (of di-
mension A) appears in the OPE of ¥(z + €/2)¢¥(z — €/2)iff
¢ has a nonvanishing three point function with a pair of ¥’s,
consistent with the null vector conditions. For such a ¢ we
have (L,i|¢(2)|3,1) =A4z* (4 #0). The first equation
(2.7) then implies

1 1§/2 1
R CA
272 I\37F 2 $(2) 272

2 d l(d )
_, 28— 122 oA
{3dz 2ZdJr +

(z— + 2A>

AG— (A+1)/2)=0

(2.7)

(2.8)

Both roots of (2.8) can be presented in the form (1.2): A, ,
=0, A, =3, butforthesecond oner ( = 3) liesbeyond the
allowed range. The same function should, however, also sat-
isfy the second equation (2.7),

(GAGLs — LiLy + i D¢ (2) [34) =0

or

; [iz;,d;—i- A (z:i‘.’; +3A + 1) (25;+ 2A)
e
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x(z—d—+2A+ 1) (zi+2A)]Z’“=0, (2.92)
dz dz

ie.,

ABA+1)(A+2) —28—1) =0
or (2.9b)

A1,1 =0, A1,3 = %’ A1,5 =%-

The only common root of (2.8) and (2.9) is A, ; = 0. Thus,
only the family of ¢ (z) = 1 should appear in the OPE of two
P's.

We now proceed to spell out the implications of this
analysis for the degeneracy of composite quasiprimary fields
in the OPE of T'(z,)¥(z,) (see Sec. IV).

First of all, we note that if |[A) is a LW vector then, for
positive A, there is no quasiprimary state |A + 1) in the fam-
ily of |A). Indeed, any vector of dimension A + 1 in the
Verma module 7”, , should be proportional to L _,|A). But

_1|A) could only be quasiprimary for A =0, since
L\L_,jA) =2A|A).

There could be no more than one quasiprimary state at
level 2 and 3, proportional to (2,3) and to (2.6). If these are
null vectors—as in the case of the Ising model for A = 1—we
expect to find no quasiprimary fields of dimension A -+ 2 and
A + 3 (in the family of |A) ) Moreover, the existence of null
vectors at levels 2 and 3 also implies the presence of such a
vector at level 5,

L—5|C’A> = [L—2, L_3] ‘C!A>

2 1
=L (0 L, ———~ |3 )
{ Z(A A+ !
3
2 5 .rL? ] JA). 2.10
2026+ 1) 3l lc ) ( )

No independent null vectors can be obtained at higher levels
in this fashion. (We owe the last remark—explaining the
absence of a quasiprimary field of dimension {! =1+ 5 in
the Ising model-—to Trifonov.)

C. Superquasiprimary states in the ¢c; model

For m = 2 the fields T(z) and G(z) = F(z,2) acting on
the vacuum generate the Neveu—Schwarz (NS) superalge-
ra.'> If we set (for the NS sector)

G(Z)ZZGM+1/2Z_'I—_21 (2-11)
neZ
then the super-Virasoro commutation relations are
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[G,.G, ], =2L, ,+(¢/3)(p*—1)6, _,,  (2.12a)
[G,.L,]=(p—n/2)G,,, (peL+}). (2.12b)
[The Virasoro commutation relations (1.6) follow from
(2.12) and from the super Jacobi identiy. ]

A NS superfield ¢, (2,0) =@, (2) + 0@y, 1,,(2),
where @is a Grassmann variable (82 = 0), is said to be super-
quasiprimary if for any choice of the anticommuting param-
eter €,

[€Gi s 1204 (2,0)]
— e [z(i — (ﬁ) — 20k + 1)AO }¢A (2,6),
ae az

(2.13a)
[Ln Ba (2,0) ]

d 1.0
=zMz— DA 4+ —6— ,0), (2.1
z[zaz+(n+ )( + 80>]¢A(z ), (2.13b)

fork=0, —1and n =0, + 1 [which span the osp(2/1)
Lie superalgebral; ¢, is called superprimary if (2.13) is val-
id for all k,neZ. If ¢, (2,0) is a superquasiprimary field, then
|A) = @, (0)]|0) is a superquasiprimary state in the sense
that

Gl/21A> =0 [ =L1|A> =(L0_A)|A)]- (2.14)

An example of a superquasiprimary field is given by the odd
supercurrent (with A =3)

W(z,0) =1G(z) + 6T(2). (2.15)

We are interested in the question of whether supersym-
metry gives additional relations between quasiprimary fields
and states. The answer is no. What it does say on the level of
quadratic functions of 7" and G, of dimension 2#, is to orga-
nize the quasiprimary fields into parts of two superfields;
one—odd—of dimension 2n-} and another—even—of di-
mension 2n. They provide two orthogonal linear combina-
tions of 5, and 7'}, . We shall illustrate here the situation in
terms of quasiprimary states at the lowest nontrivial level,
2n = 6. (For 2n = 2 and 4 the quasiprimary states are multi-
plicity-free.)

The two quasiprimary states, proportional to 7'7 (0) |0)
and T£(0)|0), are
|6)7 = (20L _¢ + 56L _,L_, —35L% ,)|0), (2.16a)
|6>G = (20L_4 + 21G’V9/2G- 32 7 35G~7/2 G5/2 ) IO>

(2.16b)

(The term involving L _¢ in |6) ; can be though as coming
from the anticommutators [G_,,,G_5,]+ =2L_4
=[G _32,G_s,2] 4 -) One readily verifies that |6) - and
|6) ¢ are indeed lowest weight quasiprimary states,

L)|6)r =0=L,[6);. (2.17)
On the other hand,
G/2|6)r =28(5G_,,,, +3L_,G_;,,
—5L_,G_s5,, +5G_,,L_5)|0)
=2G,,,16)c=28|1) . (2.18)

The common state |4}, obtained in this manner is a
superquasiprimary state, i.e., it satisfies

G1/2|1‘ZI>W=O (2.19)
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and its superpartner
G — 172 |'12'l> w
={2(5L_¢+8L_,L_,—5L2,)

+303G_y,G 35, — 5G—7/2G—5/2)}|0>E|6>W
(2.20)

is, by construction, orthogonal to the superquasiprimary
state

|6)s =2|6)g — |6)7 = (20L_s — 56L_,L_,+ 35L2 ,

+42G—9/ZG—3/2 _7OG—-7/2G—5/2)‘0> (:Iéo))
(2.21)
which satisfies, in view of (2.18),
G,,|6)s=0. (2.22)

(Note that we have been using non-normalized quasipri-
mary states throughout.)

As a corollary of the absence of quasiprimary states at
level 5 and 7-—see Table I—it follows that

9 =0=1%)w (2.23)
(otherwise we would have had, eg, G_,,|¥),

=|T)w#0). On the other hand, {1}, =(3G_,,
—4L_,G _,,,)|0)#0, since there is a nonvanishing |4) ,,

=G_ 172 |%>W

11l. THE OPE ALGEBRA %,

A. OPE for the stress-energy tensor. Normalization of
T
As demonstrated in Refs. 9 and 10 the bilocal vector-
valued function T, (z + €/2,z — €/2)|Q), where |Q) is a
finite energy state and
Tr(2,,2,) = 2L {T(2))T(2,) — (¢/2)z;3*}
is analytic in € ( = z,,) and gives rise to the OPE

€ €
T (z —z— —-—)
|z + 2 5

3.1

3 €
30 aa—az T( ,1~)
4J—1 ( W\z+ 2

o 1
+ Zc’z"f d/1p2n+2(/1)T{n+2(z+,1-§—) (3.2a)
— 1

n=1

2

™ T (2k) 2k
=T(2)+ ¥ 3 ) (6)
“h12k+3 2k+ 1)!

+ iez"{T;H(z)

n=1
= (2k+ Dian — DI T35 (2) (i)”‘]
1 (An+ 2k — DN (2k) 2 ’

(3.2b)
where p, (A1) are the normalized weights
2k — DN

i =
P (4) Pk = D)1

1
(l_}'z)k_l, J d/lpk(i)=1
—1
(3.3)
Conversely, the quasiprimary fields 7, are expressed in
terms of the bilocal field (3.1) as
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(2n — 2)!T2Tn (z) = lim Déi’zjz (81,0:)T1(2,,2,),
122 (3.4)

where D (4+%2 (a,) is a homogeneous polynomial in (a,53)
(related to a Jacobi polynomial),

(2n+5,+52—2
n

)Df,‘s"sz’(aﬁ)
i (n+51——1)(n+62——1

=3 )a""‘( —B)* (3.5a)

k=0 n—k k
=(a+B)PL " V(a—B)/(a+p) (3.5b)
We have, in particular,

TIz)= lim T,(z,2,) = T(z), (3.6a)

A 249 39,0

A(z)=2T{(z) = lim [a‘ +9> 172

2,2, -2 10
X(zsz(znT(zz) - )]EN(TZ(z))
22[2

(3.6b)

(the last expression defining the renormalized normal prod-
uct of two 77’s).

We now proceed to determine the normalization of the
two-point function of TJ,. The starting point will be the
four-point function of 7,

(T(zl)T(Zz)T(Z3)T(Z4))
= (¢/2)? ((zh,28) 7" + (21:23) 7' + (2h255) ™)
+{T(2))T(2;) T(25) T(24) )" (3.7
(where the superscript tr stands for “truncated part”); it is
determined by conformal invariance, analyticity, and the
Ward-Takahashi identity (WTI)

[T T, ] =¢/228, +2T(2,) /25, + T'(2,)/2,5,
(3.8)

where T¢ 7 is the negative frequency part® of T,

T’= 3 Lz=""% T (2)[0) =0.
nz —1

We shall give here, for the sake of completeness, this simple
derivation. (A similar argument was used in a slightly more
complicated situation in the proof of Proposition 2.1 of Ref.
11.)

Lemma 3.1: The truncated four-point function in (3.7)
has the form of three one-loop graphs,

<T(Z1 ) T(Zz)T(Z3) T(Z4) )tr

_ 2 2 .2 .2 2 2 2
= 0/2%22232?342%4 +¢/21325, 23,21, + C/Z132232§4zf4-

(3.9

(3.10)
Proof: Consider the auxiliary function
D(z)) = P(2y52,25,24)
= 21,213214{T(2) T(2,) T(2;) T(z,) )™ (3.11)

Conformal invariance fixes the large z behavior of an  point
function of T'(z) at z~* (since T is a quasiprimary field of
dimension 2). The WTI (3.8) combined with a general ana-
lyticity argument [taking into account the fact that we have
subtracted the disconnected part of the four-point function
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(3.7)] tells us that ®(z,) can only have simple poles at the
points z,, z;, and z,. Thus, using known analyticity and
asymptotic behavior we can write

P(z)=A/2,+B/zy5+ C/zyy (3.12)

where the numerators may depend on z,, z;, and z,. Multi-
plying by z,, and applying (3.8) we find

A= lim z,9(z,) = 22,32,,(T(2,) T(25) T(z,))

(3.13a)

(where we have used the expression for the three-point func-
tion of T obtained from conformal invariance and the WTT);
similarly

2
= 2¢/253224%34

B = lim z,,9(z,) = 2¢/2,3224 234,

(3.13b)
C = lim z,,®(z,) = 2¢/73, 73,234

Inserting (3.13) into (3.12) and using (3.11) as well as the
identity
(233234213214223724) ' + (234253 212213224234)
= (2,23, 25420,) ™! (3.14)
we arrive at (3.10).
Proposition 3.2: The three-point function of T}, with
two 7"’s is given by

<T(Z|)T(22)T2Tn (z3)) = K;r: [52%3_4/(213223)2'1]:

(3.15)
where
KT _(@n—1Y?
(4n — 2)!
{__‘_'_(2”—+2)!+2(4nz——2n—1)}. (3.16)
144 (2n — 4)!

The z dependence in (3.15) is a consequence of confor-
mal invariance. The coefficient K 7, is obtained by a compu-
tation summarized in the Appendix.

Corollary 3.3: The two-point function of 7'}, is given by

(TT,(z)T1.(2)) =K1 (c/22%3), (3.17)

with K I, again given by (3.16).
Proof of the Corollary: It follows from (3.5 b) that

(a ;B )" _ D,(,5"52)(a’ﬁ)

n—1

+ 3 bula+B)" " D (a),

k=0

with some real coefficients b, . Because of the orthogonality
property

(n — k)<T2k (z)) T, (22)) =0

(3.18)

(3.19)

(valid for any pair of quasiprimary fields—as noted in the
Introduction) we deduce from (3.4) and (3.18) that

(2n — 2)!<T2Tn (22)T2Tn (z3))

. (3, —d,\n-2z} .
= Jim (‘—2—2) 1) TE TS @),
(3.20)
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which, together with (3.15), implies (3.17).

B. OPE’s involving F(2) in a ¢,,, model
We normalize the two-point function of F by

(F(z)F(z))) =c¢/sz35 [s=5,, =m(m + 1)/4].
(3.21)
Then the counterpart of the bilocal operator (3.1) is the

composite field
Tr(z125) = (1/222,){2%5 F(2,)F(z,) —¢/s}.  (3.22)

Its OPEis again given by (3.2) and (3.3) with 7' substitut-
ed by 75 . In particular, the analog of (3.6a) is still true,

Ti(z) = lim T,(z,z,) = T(z). (3.23)

21222

Indeed, using the WTI we find the conformal three-point
function

(F(z))F(2,)T(23)) = (521, /213253 )(F(2,)F(2,))
(3.24)

From (3.22)-(3.24) we reproduce the correct two-point
function of T'(z). To prove (3.23) it remains to use the
uniqueness (up to normalization) of the field of dimension 2
in the family of the unit operator (see the last line of Table I).
The properties of T'£, can be read from the four-point
functions of F. One of them is easy to find for arbitrary m.
Lemma 3.4.: The four-point function of two Fand two T’

225,02 2
= czy; "2

is
<T(21 YT (z,)F(z3)F(z,) )

=2z}, 25 + (T(z)T(2,)F(z;)F(z))",  (3.25)
where
<T(21)T(Z2)F(ZB)F(Z4)>"
22 2 2
- CZ3y ( SZ12234 " 2>. (3.26)
2122132242 14223 \ 243224223Z14

Proof: The argument proving Lemma 3.1 applies if we
supplement the WTT (3.8) by

(T (2)),F(2))] =5F(2,)/27, + F'(2,) /2y, (3.27)

Proposition 3.5: The three-point function of £, with
two T’s is

(T(ZI)T(Z2)T§n (z3)) = KzFZ[czfgi“/(ZBZzs)zn]

(3.28a)
with
KEr=2[((2n— 1)/ (4n —2)11[sQ2n + 1)(n — 1) + 1].
(3.28b)

The necessary steps in the calculation of K £7 are again
presented in the Appendix.

Corollary 3.6: The mixed two-point function of T2, and
T¥, is given by

(T3, (2)T3,(2,)) = K3, (c/221).

The proof'is the same as for Corollary 3.3.

Corollary 3.7: The field T'3, (z) defined by

[((2n — DY)/ (4n — 2N T4, (2)
=K5'T] (2) —K],T%,(2)

(3.29)

(3.30)
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is orthogonal to T';,. The uniqueness of T, (see Table 1)
implies that

T;=0 [=A(T:z)Ti(z))]. (3.31)
This will be verified in Sec. IV for the cases in which the four-
point function of four F’s is also computed.

Lemma 3.4 also allows to evaluate the two- and three-
point functions of the quasiprimary composite fields

F, . (z) = lim (1/5:n)D *~22(3,,0.){z3, T(z))F(z,) },
" (3.32)

which appear in the operator product expansion '’
1

F,,(z+u€)p,” = > (u)du,
(3.33)

ET(z+OF(2) =53 €

n=20 (4]

where
P (u) = [T (2n + 8,4 8,)/T(n+8)T(n +68,)]

X (L —u)® (3.34)
Llpf,‘s"‘sz)(u)du =1;
in particular,
sF.(z) E]Eirrg{ezT(z 4+ €)F(z)} =sF(z). (3.35)

Proposition 3.8: The three-point function (TF,, , .F ) ob-
tained from (3.25) and (3.26) is

<T(zl)Fn+s (22)F(z3)) =B, (cz}; 2/272+ ZZ;3+ B2,
(3.36a)

where

ns

_(—1)25(2s+2n—2>*‘

B =
s n+1

X[( —Ds(n+1)(25+n—2) —2]

2 2 -2
+Snn— 1)( s+n>+2( S )
6 n n+1
+ n+1 } ] .
25 +n—2
The proof uses once again formulas collected in the Appen-
dix as well as the following identity among hypergeometric

functions:
(¢ —a—1),F (abcz) +a,F (a+ l,bcz)

—(c—1),Fi(a,b;c— 1;z) =0

and the well-known integral representation valid for Re ¢
>Re b >0,

Fi(a,bie;z) = T(c)[T(b)T(c—b)] !

X [n (3.36b)

1
dettb”l(l —)T TNl —1z) e
0

Corollary 3.9: Noting that B,, — 1 we verify that
(T(2))F,(2,)F(z3)) = (T(z,)F(2,)F(z3)).

Since, on the other hand, every quasiprimary field of (mini-
mal) weight s in the conformal family of the primary field F
(of the same weight 5) is proportional to F, it follows that
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F, = F, thus proving (3.35). Since B,, = 0, we obtain a di-
rect proof of the statement that there is no quasiprimary field
of dimension s + 1 in the family of F (cf. Sec. II).

IV. THE ¢4 AND ¢, ISING MODELS
A. Degeneracies for m=1

The knowledge of the (free) four-point function of the
Majorana—Weyl field ¢(z) = F(z,1) (of dimension ) in the
¢, model,

(W(z))(2,) (251 (24))
= (212234)—1 - (213224)—1 + (214223)*l

(4.1)

allows us to compute the normalization of T'¥, .
Proposition 4.1: The three-point function of T, and a
pair of ¢¥’s is

CIENTIEAVENENY
=([2n— DI/ (4n = 2))[215 '/ (213223)*"]. (4.2)

The two-point function of 7%, is then obtained as a corol-
lary,

(T4 (z)T%,(22)) =4[ (2n — DY/ (4n — D)) (1/213).
4.3)

The reader will reconstruct the proof using formulas of the
Appendix.

Corollary 4.2: Comparing (3.29) (for s =c =1) with
(4.3) we find that

T =T% —[2/2n* —n+ DT, (4.4)
is orthogonal to 7'%,,
<T!2pnl(zx)T12pn (Zz)> =0, (4.5)

while comparison with (3.16) and (3.17) gives
(T4 (z2)T7,(2,))
_[(2n—1)!]2 {nz_n—l 1

T2 (4n—2)! 2 2P —n+1
1 Qn+2)! 5 ” o
ARl L aan?—2n— 1) |1z
[288 (2n — 4)! ( 2

(4.6)

We see that the quantity in the braces vanishes for
n = 1,2,3. For n = 1 thisjust says that TY = T = T, which
is true for any (quasi)primary field ¥ [cf. (3.6) and (3.23)].
For n = 2 we find

TT=1TY. (4.7)

This confirms the general statement (made in Sec. IT) that
there is just one quasiprimary field of dimension 4 in the
family of the unit operator [and is a special case of (3.31)].
For n = 3, however, the result

T¢=8T¢ forc=1 (=s,) (4.8)

is characteristic for the Ising model. It verifies an implica-
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tion of the degeneracy at level 6 for m = 1 noted in Sec. V1.
Equation (4.6) also shows that, for 2r>8, TY #0. Thus
TY, (forn>1) and T Y (for n>4) form an orthogonal basis
for OPE’sof both ¢y X ¢and T X T Itis interesting to find out
whether one can also expand the product ¢ *@ in this basis,
for the magnetization field ¢ of dimension { in the Ising
model (we are using complex S fields for noninteger 24,
where A is the field’s dimension—see Ref. 11).

Going to the composite fields of the 3 family we first
derive, as a simple corollary of (3.36), the relation

(U 1 1
1<2n—1>"[ nn*—1  n*—1
= — —’1 n _1
4\n+1 ( ) 41 + 4

Xz~ for n=23,...

(4.9)
We see that the two-point function—and hence, also the
field ¢, . ,,»—vanishes for n = 2,3,5 since
(= D'[n® =D/ + (P = 1D/4—1
=1/ [(— D" =2] [(— D"n + 3]
X[(—=1)"n+5],
thus

(¢3/2) :¢5/2=¢7/2:¢11/2=0 (4.10)

as anticipated in Sec. II.

(forc =1),

B. Summing an OPE

The set of global OPE’s for the (quasi)primary fields
completely characterizes a theory. To display the efficiency
of such a characterization we shall reconstruct the (free)
four-point function (4.1) [from the OPE (Ref. 10)]

1 € €
e Mo
262[6¢<Z+ 2)' 2
3 > €
= di(l—A)T|z+A—
4)_, 2
w 1
+ ZEZHJ- d/ip2”+2(/1)Tg'n+2(z—|—/l—§—>,
n=1 —1
(4.11)
where p, (4) is given by (3.3) and from the knowledge of the

three-point function (4.2). Indeed, settingz, , = + €/2, we
find

fessere( 5o -5

- 1
=23 ‘Ji Aoy () (920 TS, (+5)

n ==

=2{I(€;z,,z,) — I( — €2,,2,) }, (4.12)

where / is obtained by summing up the power series in the
integrand
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2ez,(1 =A%)

1
I(ez ,z):f di[
ez ~1 ez, — 42,2, + 2(2, + 2,)eA — €z, + €)A7]?

1

(4.13)

€2y — 42,2, +2(z, + 2,)eA — €(z;, + €)A 7

inserting (4.13) into (4.12) we recover (4.1).

C.Linear independence of 7S, and 77, for n>3inthe ¢,
model. Vanishing of Gs,»(2)

The supersymmetry property (2.13a) applied to the su-
percurrent (2.15) gives, in particular,
[G T (2),6(z)] 4 = (2/2)T(z,) +2¢/3z},.  (4.14)
Since the three-point function {7GG ) is known [it is given
by (3.24) for s = 3] we can compute from (4.14) the four-
point function of G with the result

(G(2,)G(2,)G(25)G(24))"" = 2¢/2122 32142232247 34-

(4.15)

(The most economic derivation of this result that we are
aware of follows the lines of the proof of Lemma 3.1.) We
then have the following.

Proposition 4.3: The three-point function of T§, with a
pair of G’s is

<G(21)G(22)T26n (z)) =K ZGn [CZ%; B 3/(2'13223)2”] s

(4.16a)

where

— N2
K2Gn=[(2n I} [2+i (2n+1)!} (CZL)
(4n —2)! 9 (2n—3) 10

(4.16b)

As a consequence,

(T35, (z2)T5,(2)) =K5,(c/223). (4.17)

Corollary 4.4: 1t follows from (3.28)—(3.30) and (4.17)

that
(T3,(2)TS,(0))
2
:Cu{(6n2_3n_1)2
(4n —2)!
c (n+2) ,
L o AR, YO T, R |
[144 (on —ayr TP
X[2+ c (2n+1)!”. (4.18)
9 (2n — 3)!

For n = 2 the quantity in the braces,
172 — 2(5¢ + 22) (1 + %¢) = 5(4c + 21) (7 — 10c),

vanishes for ¢ =c¢, =7, (and for the nonunitary point
c= —12).

1t follows from (3.36b) that the normalization factor
B, ,,, of the three-point function (7(z,)G, , 5, (2,)G(z3)),

. M (n+ 1)!
M43 2n4 )

Bn3/2 ==
X —3%( —D)n+3)(n+2)(n— n

1605 J. Math. Phys., Vol. 28, No. 7, July 1987

2
}— (22, +€) (22, +€)

+%<n+ 12— 242(—1)"(n+ 1)},

-5

only vanishes for n = 3 (in which case the expression in the
braces reduces to 14 — 20c). This result is again in line with
the general discussion of null vectors in Sec I1, since the field
G is represented by the pair [3,1] (~[1,4]). The degener-
acy at level 4, however, is not felt by (4.19) since, in fact, not
all quasiprimary vectors of dimension 4 ( =4 + 3) have
zero norm.

It would be also interesting to classify the composite
quasiprimary fields according to their supersymmetry prop-
erties. The analysis of Sec. II C indicates that for the class of
the unit operator certain linear combinations of 7'7, and
T ¢, will have simple commutation relations with the super-
charge G _,,,.

(4.19)

ACKNOWLEDGMENTS

Two of us (G. S. and I. T.) would like to thank Profes-
sor P. Budinich for his hospitality at the International
School for Advanced Studies in Trieste where most of this
work was done.

G. S. also acknowledges financial support by I. N. F. N.

APPENDIX: THREE-POINT FUNCTIONS IN TERMS OF
LIMITS OF FOUR-POINT FUNCTIONS

In this Appendix we provide some auxiliary formulas
which we found useful in computing the normalization con-
stants K2 , KT  and B, which summarize the content of
Propositions 3.2, 3.5, and 3.8.

The main tool used in the text is the Leibnitz rule for
evaluating higher derivatives of the product of two func-
tions,

d" - (n)[dkf(z)]d"*"g(z) Al
dz"[f(Z)g(Z)] kZ’ok dz* dz"—* ' (AD

together with the elementary relations

[T(a+ 1)/T(a—k+1)]z%% a>0,
ak (A2a)

_kzil2 = k a—k
az* (—D*[Tk—a)/T(—a)]lz% % a<O0.
(A2b)
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The following formula is also used to get some of the results
of the main text,

8{;(2171 222; 2234)
=Tk+ DO+ Dz3?
k 5
(_1) r—s
XSZ'O Tr+1-9fs+ D
X [(k+1—s)z;,7 K+

C:){:f (z14 2221 2234 )
=(—D'T(k+ Dz5°z 2 %7 Ik + )z,
+ 22,412y — 1215245 + (1<2). (A3b)
In order to show the kind of computations involved in

getting the constants K 1, , K57 and B, , we explicitly derive

in the following the constant F§! appearing in Eq. (3.28a).
The quasiprimary field 7'f, is given by a relation analo-

gous to Eq. (3.4) for T? , ie,

+2z5 'z T+ (1) ] (A3a) (=T, (2)= z,l,ifrizDéﬁ‘zﬁz (01,0:)Tr(z1,2,),  (A4)
with D$2?, (@) and T, (z,,z,) given by Egs. (3.5a) and
(3.22), respectively . Then, taking into account Egs. (3.25)
for k>r it reduces to and (3.26), we have
1
k
- _cr@n+nirem)’ s’ (=D
(T@T@) 1o (2)) = Cn—1) et Tkt DT (21— 1— k)T (21— KTk + 1)
X3 2 520321 %20 "2 e 4 22037205 1205 1203 120 ) (A5)
Let us define
0 — lim 2;122 (— D)* _aZn«»z__kak[ZA—ZZ:22722222§4] (A6a)
T aen ST+ 2)TQ2n— 1 — k)T 2n— KTk + 1) HLTR T e
and
(ID:=1lim 3 (= DF 2RI (203720 2y 21y 25y ] (A6b)
= 2 23 .
sz Zo D(k+2)T2n— 1 —k)TQ2n—k)D(k+1) ° pLoR e
Then, applying (A3) forr=2
a; [zi g 22%4] =225 (8koZ1s — 611 + 84,215 (21, — 42,3)
+ 2Tk + )23 213252, '+ Dk + 2)z25 %202, 7 F + (12), (A7)
we find
M=tm 3 (=D K2z, Ry
sen o D(k+2)T2n—1—k)[(2n — k) 12 2
+ (k+ Dz5%2570 %2557] + (12)
2n -1 t t 4
4 (—1) {2[272,,(223> 2721} 2 1 —2n—1 (223>]
- _ I Sl 2 A L3y +2525 'z t(2n—1t) + (1<2)
Z12 t;l Tnt 1! 23 Z 13 12213 223 L
2n
:4(2”+1)(”_1)z~4( Z,5 ) . (A8)
ren+1) 23223
Similarly we have
(11)22742'1272 (_l)k 72n+1+k__272n+1+k)(sz71_.Z—x—kfl)
12 & Tk + 20021 — k) 23 13 23 13
2 2n
- 21;4( 21z ) . (A9)
'i2zn+1) 213293

Inserting Eqs. (A8) and (A9) into (AS5), we obtain the result (3.28).
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This work is concerned with the characterization of field supermultiplets on four-dimensional
Minkowski space that are stable under the action of subgroups of the superconformal group
SU(2,2/1). The most general scalar and vector superfields whose Lie derivative with respect to
a fermionic tangent vector vanishes are determined. Invariance under subgroups of SU(2,2/1)

with more than one odd generator is also discussed.

I. INTRODUCTION

The methods for characterizing tensor fields of various
types' and connection one-forms? that are stable under ordi-
nary space-time transformations are by now well under-
stood. The same situation does not prevail, however, when
supergroups are considered. In this paper, we initiate a study
of superfields invariant under supersymmetry transforma-
tions. For definiteness, we shall consider field supermulti-
plets on four-dimensional Minkowski space and as a first
step, we shall determine the most general chiral and vector
superfields that are invariant under the transformations gen-
erated by the odd elements of the superconformal algebra
SU(2,2/1).

The usefulness of ordinary invariant fields has long been
recognized. They have been used in particular to obtain solu-
tions to nonlinear field equations like the Einstein or Yang-
Mills equations.” They are also instrumental in performing
the dimensional reduction of theories formulated in higher
dimensions.* Clearly, superinvariant fields should have sim-
ilar applications.

Global, as well as infinitesimal, techniques for obtaining
scalar densities, vector fields, and metrics that are invariant
under (bosonic) subgroups of the conformal group are dis-
cussed in detail in Ref. 1. Spinor fields are studied in Ref. 5.
Here, we therefore need to concentrate only on the transfor-
mations generated by the fermionic charges. As a rule, in
characterizing invariant fields, global methods tend to be
simpler when the invariance group is large, while infinitesi-
mal techniques are to be preferred in the opposite case. We
have found that supersymmetry imposes severe constraints
and that nontrivial fields can rarely admit invariance sub-
groups with many odd generators; because of that (and for
simplicity), we elected to use the infinitesimal approach.
The most general fields whose Lie derivative with respect to
a single ferionic generator vanishes will be made explicit first
and the solution of the invariance conditions that result if
two or more such derivatives are set to zero will be examined
subsequently.

This paper is organized as follows. In Sec. II, we present
some introductory material, establish the notation, and re-
view the field representations of the superconformal algebra
SU(2,2/1). Superinvariant chiral and vector fields are pre-
sented in Secs. Il and IV, respectively. Concluding remarks
will be found in Sec. V.
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Il. THE SUPERCONFORMAL ALGEBRA AND ITS FIELD
REPRESENTATIONS

Supersymmetric massless field theories in Minkowski
space are usually invariant under the superconformal group.
Hence we have the motivation for looking for fields invariant
under subgroups of this supergroup of space-time transfor-
mations. We shall give in this section a short but self-con-
tained review of the N = 1 superconformal algebra and of its
action on superfields. Unless stated otherwise, we shall stick
with the conventions of Wess and Bagger.® We shall there-
fore use the metric 8w = diag( — 1,1,1,1) and work with
Weyl spinors in the Van der Waerden notation.

We shall, respectively, denote by M,,,, P, D, and K,
(u =0,1,2,3) the generators of infinitesimal homogeneous
Lorentz transformations, translations, dilatations, and spe-
cial conformal transformations. Together they close under
the ordinary Lie bracket to form an algebra isomorphic to
0(4,2), or equivalently SU(2,2)."” As shown by Haag et
al.,? this algebra can be extended to a superalgebra by adding
two spinor charges Q, and S, (a = 1,2) and their Hermi-
tian conjugates Q,, and S,,. We shall refer to Q,, as the super-
translations generator and to S, as the superconformal gen-
erator. To achieve closure under the graded Lie product, one
further needs to introduce an additional bosonic generator I1
which we shall call the chiral charge. The structure relations
of the N = 1 conformal superalgebra read as follows:

{Qa !éd} = 20‘2‘“.11)#, {Sai—S_d} = - 20“;[11{#,
{Qa ’Ed} = 0’ {Q[z )Sa} = O;
{0..8%} = —2[0*"M,, + D — 21],7,

(2.1a)

{045} =2[6""M,,, + D + 2T1]%;
[Qa.D ] = (i/2)Q,,
[S..D] =(—i/2)8,,

[Qs:D ] = (i/2)Q,,
[S:D ] = (—i/2)S,,

[QurPu] = [CorPu] =0, [SeK,]=[5.K,] =0,

[QuK*] = —i0h,S% [Q%K,] =i5iS.,
[S..P*] =iot, Q% [S%P,] = —io2*Q,,
(2.1b)
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[Qa’r[] =%Qa» [Q-z,n] = 3@
[S.M] = —3S,, [S.0]=3S.,

[M*,0,] =i(c*Q),, [M™,Q%]=i(a"0)%
[M””,Sa] =1(0""S),, [M’”§ ]—z(o“”S)"‘

[P.,P,]=0, [K,K,]=0,

[P,K,] = —2M,, +2ig,D,
(PP ] =P, [K,D]= —iK,, [M,,D]=0,
90,] = 8P i a0
[ ,uV’K 1= —ig,.K +ig,K,

[ ;w’ ] =i(M, vw8uo _M#pgw
+M0'Vg}tp _Maygvp)7
[ILP,] = [IK,] =[ILM,,]=[ID]=0.
The matrices 0%, and *“* are defined by
-1 0 (0 1)
0 _ 1
"_(0 —1)’ = o)
(0 —i) _(1 0)
=) o=(; °) (2.2)
5.() — 0.0, 5.1,2,3 —_ 0,1.2,3'

We also used, for the generators of the Lorentz group in the
spinor representation,

(0"),P =1 (0%,0" — 0),,5"F),

(5#1/)('13 =£ (a#daa.;B - a,vdaaﬁB ).
Useful identities involving these matrices can be found in
Appendix A of Ref. 6. The above superalgebra is identified
as SU(2,2/1), with SU(2,2) & U(1) as its bosonic subalge-
bra [see Egs. (2.1c)]. It possesses an important subalgebra,
namely, the 14-dimensional Poincaré superalgebra genera-
tedby P,,M,,, Q,,and [

Minkowskx superspace M can be defined as the coset
super-Poincaré group/Lorentz group. The elements of this
coset can be parametrized as

G(x,0,6) = exp[i( —x*P, +0°Q, —6%Q,)]. (2.3)
Points of M are therefore labeled by the four space-time co-

(2.2b)

ordinates x* and four anticommuting spinor coordinates 8,
and @,,. (Implicit in the definition of these coordinates is the
existence of an underlying Grassmann algebra .#. The co-
ordinates x take their values in the even part of # and 6 and
0 belong to the odd part of .#.°) The action of the transla-
tions and supertranslations on superspace is defined by left
multiplication. One finds that P,, Q,,, and Q, are represent-
ed by the following vector fields:

Q= aza — i0448%3,,
9 (2.4a)
_a = ——=—+1i0%%, 9,;
Q ag“ #
P, =id,. (2.4b)

We shall also need subsequently the right translation vector
fields; they are given by

7}

D, =————+za";a0 d,
a6° (2.5)
D= -2 _ipeor, 3,
90 °

and satisfy the following anticommutation relations:

{D,.D,}= —2i0%; d,,
- — (2.6a)
{Da’Dﬁ} - {Da,Dﬁ} = O,

{0,.0:}=1{D,,0:} ={D,,0.} ={D,,0;} =0.
(2.6b)

Superfields are multispinor functions ¢.4...;... (x,6,0)
on superspace which transform under supersymmetry as co-
ordinate scalars and Lorentz multispinors. They should be
understood in terms of their power series expansions in & and
6. In order to obtain their transformation properties under
the action of the superconformal generators, we have used
the method of induced representations. Here, the isotropy or
little algebra has for its basis M,,,, D, IL, K, S,,, and S,.Of
these elements, only the first three can be nontnv1a11y repre-
sented at the origin. Given the expressions (2.4) for P, @,,,
and Q, , we arrived at the following realization of SU(2 2/1)
in terms of differential operators acting on superfields:

|
Su= —x,08,0% — 2i00 -2 — 26,67 - 4 64,0900 3, +20°(0™3,, — d + 2m)za,
96« 36°*
(2.7)
S, =x,€,50'7Q, — 2i60 % +2i,0° 5‘;7 — ;500,60 9, — 28, (5%, —d — 2m)? ;
M, =ix,d,—x,3d,)+i0%0,, )BL—FH(UV),, 9 +32,.,
. “ 6% #7760, #
j 3 i 24 O
D=ixtd, + 02+ L5+ 2 Lgq
2 g8 2 98¢
x2 3, + 2ix,x” 9, + 2x,d + 2x*Z 059 4 ix 5522500 9 2ix( 05, -2 2.8
K,=—ix"d, +2ix,x"0, +2x,d + v T IX, 5(9_“+1x” :9—@-;— ix o;w% — 2ix 0’“’% (2.8)
+ 66 (00” 350-) + 66 (éau %) — 10698 3, — 47 (85,0) + i0(5%%,,)5,6 + i05, (07°=,,)6,
H=10"‘——a—-—iéd ? +
4 90« 4 96¢
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We have introduced above the SL(2,C) invariant antisym-
metric symbols

01
—10
which define a metric on the space of spinors and are used to
raise and lower indices. The following summation conven-
tion is also understood:

¢§ = aBW # = ¢a§a’ l/fg = 6dﬁ¢d§ﬁ = ¢d§a‘
In Eqgs. (2.7) and (2.8), le, d, and 7 are, respectively, the
matrix pieces of the generators M,,,,, D, and I1. The eigenval-
ue d is the canonical dimension of the superfield. It is
straightforward to check that the vector fields (2.4), (2.7),
and (2.8) indeed satisfy the structure relations (2.2).

eaf*:e,g,,:( ) € = e,

lil. INVARIANT CHIRAL SUPERFIELDS

We shall consider in this section the invariance of chiral
superfields under symmetry transformations. A superfield
@4...5... is said to be chiral if it satisfies the constraint

D,$s. .. =0, (3.1)

which amounts to the requirement that ¢ only depend on the
variables y* and 8 * with

P = x* + i60"0. (3.2)

The most general (conformal) supertransformation can be
specified by two anticommuting Weyl spinors £ and £ which
represent a total of eight odd parameters. Let us denote by

Secd=(5Q+EQ+LS+E5)¢ (3.3)
the corresponding transformation of a generic superfield.
The chirality condition provides field multiplets that are ir-
reducible'® under (3.3) up to possible separation of real and
imaginary parts (see Sec. IV). Since Q, and Q, anticom-
mute with D, , supertranslations manifestly transform chiral
fields into chiral fields. Now, we also have

{S,.Dz} =4i6,D;, (3.42)
{S,.D3} = 4i0,D,, + 265, (52, +d + 2im)7,.
(3.4b)
Clearly, the second term on the rhs of (3.4b) must vanish
when acting on ¢ for superconformal transformations to pre-
serve condition (3.1). This proves to be the case for all
known theories.

The representations (2.4a) and (2.7) of the supersym-
metry generators take a simpler form when they act on chiral
superfields. Indeed, in terms of the variables y and 6, one
finds

d
. = ; 3.5
Q 20 (3.5a)
- e O
Q. =20, —, (3.5b)
W
S, = 2iy,0%,50, 9 _ 2i99 2
ay” aee
+ 207 (™%, —d + 2im) 4, (3.5¢)
S, =y, €50 % — 265 (5"%,, —d —2im)?,.
(3.5d)
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We shall now concentrate more specifically on scalar
fields. In this case the chirality condition entails the follow-
ing decomposition for ¢:

$(,0) = A() +\200(p) + O6F(p)
= A(x) + 000 3, A(x) + 16606 04 (x)

+ 261 (x) — (i/32)66 3, ¢ (x)0"0 + OOF(x).
(3.6)

Scalar fields have canonical dimension — 1. In our notation
it means that d = i. According to the previous discussion,
this in turn imposes that 7 = — 4. The condition 6, .¢ =0
that ¢ must satisfy in order to be invariant under the super-
transformation parametrized by £ and { can now easily be
made explicit. Using Egs. (3.5), one finds

Secth= ((g + Eo*y, — 2i06¢) %

. v s=ug O .
2i(¢& — Covy,)o"0 3 21§0>¢ 0, (3.7
which can be resolved into components. One finds, in agree-
ment with Wess and Zumino,'' the following invariance
conditions:

8ecA =V2(£% + £,5"°y, )Y, =0, (3.8a)
8ty =V2(£, — P, 08 L F
— . . J
- zd;d a+ v veb _A
+ K208, (£ +9,5"5) pw
- 21'\/§§‘IA = O’ (38b)

8eeF = —202(6, — §0%ay, )54“3"3:;9? ¥ =0. (3.8¢)

We shall now proceed to solve Egs. (3.8). To this end, we
need to specify further the nature of the parameters £ and .
We shall take them both proportional to a single real Grass-
mann parameter a; as will be discussed in Sec. V, superfields
invariant under transformations associated to such param-
eters are the building blocks for the most general superinvar-
iant fields. Factoring this generator & out of Egs. (3.8) we
can then consider parameters £ and { as commuting Weyl
spinors. In particular, we have £ “£, = 0. Condition (3.8a),

.being purely algebraic, is immediately solved. One finds

Yo = € (2 + 8501, = (60 — 2,088 D, (39)
with g a scalar function. Upon substituting (3.9) into (3.8c)
one obtains

(£~ £0*p, )0 (& — ,0°C) 5;77 q+4(€— Loy, )Cq=0

(3.10)
using 0%, 5’35 = —28,78",. The solution to Eq. (3.10) can
be obtained by the method of the characteristics.

Define the variables
# = (€ —0’y,)5(§ — y,0°C). (3.11)

The first step is to determine the integral curves y*(s) of the
vector field 7 3 /dy*. This is done by solving
LAy

s (3.12)
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Equations (3.11) and (3.12) are decoupled by going to
the variables

$6°6y,, $o0*y,, £0'Ey,,

and (3.13)
o =EC + §& — 260"y,

which satisfy the following differential equations:
99 _ 2 (e, (3.142)
ds
g; (£6"€y,) = (£o“Ey,) (o + EC — £8), (3.14b)
% (£0*8y.) = (§0*Ep,) (o + (€ — ED), (3.14c)
f—s- (£0"8y,) = —2(£0°8y,) (G0 8y, ). (3.14d)

The integration of Egs. (3.14) yields

0= — (& — £&)coth(EC — £&)s, (3.152)

oy, = — 2ic,/{1 —exp[ — 2( — ¢£)s1},  (3.15b)

$otéy, = —2ict/{1 —exp[ — 2(EL — £E)s1},  (3.15¢)

£0tEy, = ¢, — 2c,cto/ (EL — £E)?, (3.15d)

with ¢, cf, and ¢, integration constants. (The special case
¢&€ = 0 will be treated separately.) Eliminating the param-
eter s, we thus find that the following functions are constant
along the curves generated by #(d /dy*):

¢1 = [i55"y, / (EC — §& — 0) | (€€ — £6), (3.16a)
o= —io*Ey,/(EE — LE+ a) | (EE —6E),  (3.16b)
= 2005646y, (LoE)y,
= EgtEy — 20 . 3.16¢)
G o e
Now we see that Eq. (3.10) can be written as
%+2(E§—§§+0)q=0, (3.17)

which is easily integrated. After elimination of s, one finds
g = [1/(&6 — € — 0)?1Q(c eter), (3.18)

where Q is an arbitrary complex function of ¢;, ¢}, and c,.
From (3.9), we see that this completely determines #, which
is thus found to be

¥ =[(£ —y,0"0)/(EC — L& — )] Qe ety
(3.19)

Now orlly (3.8b) remains to be solved. By contracting with
(£ + £,0%*°y, ) we obtain the following for 4:
= < —ppy 04 =
(§+88%y,)0"(& +3,0°0) v 2(66 + 5646y, )A =0.
(3.20)

It is not difficult to see that (3.20) can be rewritten in the

form
M o+ EFE—to)4 (3.21)
ds

using the same variables as before.
The solution is simply
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A=[1/(0+EL — L)) (c1,ct.r), (3.22)
with & an arbitrary function of its arguments. In order to
obtain F, one contracts Eq. (3.8b) with £ “ to find that

F= ___—’_

§(&—y,0%)
Substituting the expression (3.21) for 4, one arrives at the
following formula for F:

_ —2§§ = i _ *i
=& —z—or (@~ ae, Y T 5, i)ﬁ)

The superinvariant chiral multiplet (4,4,F ) thus obtained
can be written in a compact way by returning to the super-
field formalism. Observe that 4A(y) + 00F(y) can be ex-
pressed as A (z) with
2 =y — 00ifo* (£ +y,0°0)/6(6 —p,00).
Then,
¢ (3,0) = AY) +264(y) + 66F(y)
=A(2) +\26¢(2)
1
= [ c,(2),c¥(2),c,(2)
oo+ g L@ am]
—z oM
7 (€ —2,0") :
(0(2) — €0+ ¢6)
XQ [c1(2),c¥(2),0,(2) ]

E o) o
(?0*‘(5 +5.0%) ayﬂA ) (3.23)

(3.25)

= m o [e1(2),cF(2),6,(2),7(2) ],
where (3.26)
7(2) =20(£ —2,0"C)(0(2) + EC — £E)
X(o(z) — EC +¢E) 2 (3.27)

Thus we see that ¢ initially defined on chiral superspace with
four bosonic and two fermionic coordinates has been con-
strained by the invariance condition (3.7) to a superspace
with three bosonic and one fermionic coordinates. Note that
these three bosonic variables have a nontrivial ¢ dependence
in contradistinction with what occurred in standard dimen-
sional reductions of supersymmetric theories.

We now consider the case where {§ = 0. This situation
occurs when we consider invariance under a pure super-
translation (§ = 0), a pure superconformal transformation
(& = 0), or atransformation with § = m&, meC50. In these
instances, it is obvious that the set of variables (3.13) is no
longer adequate to decouple the characteristic equations
since it then consists of a single variable. A special treatment
is thus necessary. We shall first take { = m&, m#0. In this
case, the characteristic equations dy“/ds = r* can be decou-
pled by adjoining to the variable

o= —2|m[*c*Ey, (3.28)
the following spinorial variable:
¥ =& — méoty,. (3.29)
We already have
do
=L = (3.30a)
ds
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and it is not difficult to check that y satisfies

X _ o3 (3.30b)
ds

Integration of Egs. (3.30) is immediate and yields
o= —1/s, ¥=(1/5)¥0 (3.31)

with ¥, a constant Weyl spinor. To eliminate the parameter s
we make use of the fact that when § = mé,
d 2 1 2,2
—y =%, = — —— (1 — |m|*y)o.
Y=y, il Im|%y
[In deriving (3.32) we have used the identities
(o*0" + o'o*) P = —2¢*5,%,
(#0¥ 4 oVot)%; = — 2g"*8%,

(3.32)

and

ag'ot'o” + ofotor = 2(got — gfo¥ — g*vo”). ]
Equation (3.32) can be integrated using (3.31); we thus find
that

c=[s(1—|m»H]~! (3.33)

is invariant along an integral curve of our generator. This
allows us to take as characteristic variables the functions

- o _2|m|2§0*‘§y# (3.34
c__l— 2,27 T _ 2.2 -34a)
mP? 1= mPy
— I é__mgaﬂy‘u
Y = = (3.34b)
B P

While this apparently gives five real variables, it should ob-
serve that only three are independent (as it should be) in
view of the linear relation
_z §o%sy, 1

ok ” 1 — |m|%»? m
From here the solution of the invariance equation (3.8),
specialized to the case § = m¢, proceeds exactly as in the
generic situation. We thus obtain

¥ = [(£ —m*o*Ey,)/(1 — |m|»*)?]Q(c,co)

(3.35)

(3.36a)

A=[(1—|m|»*)] " (c,c¥o), (3.36b)

F= ——2-—”1i[§aﬂ§+§a#&vgyv] 9 4 (3.36¢)
o ayﬂ

where Q and ./ are arbitrary functions of their arguments.
The cases £ = 0 and § = O are treated analogously. When
¢ = 0,1i.e., when we look for invariance under a supertransla-
tion, the following functions may serve as characteristic
variables:

Pa =805, (3.37)
Note again that together these functions represent a set of
three linearly independent real variables. The invariant
chiral multiplet is given by

Yv=£60(p,), (3.382)

A= (p,), (3.38b)
. potE 3

F= ;%75 2 4 (3.38¢)
p5 W
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where Q and ./ are arbitrary functions and ¢ is an arbitrary
constant spinor such that ¥£ #0.

When invariance under a pure superconformal transfor-
mation is considered, i.e., when § = 0, we can take as charac-
teristic variables

/_)d = (;‘d‘)ay#/yz

and the invariant fields take the form, in analogy with
(3.38),

(3.39)

Y= — [0,/ ")?]Q(PBs), (3.40a)
A= (1/y") o (ps), (3.40b)
F= —| aﬁ? iA‘ (3.40¢c)

7
This concludes the characterization of scalar superfields
whose Lie derivative with respect to a single fermionic tan-
gent vector vanishes. We shall now examine the constraints
that result when we require these fields to possess further
supersymmetries. Let the Weylspinors§ ‘and { ' parametrize
another superconformal transformation in addition to the
one considered until now. Remember that the invariance
conditions for the fermionic field ¥ were of the form

= suas 9

¢)aa a y‘u l/’B 0’
with @ “=£“+£,5"*y,. From the first of these equa-
tions we had ¢, proportional to ¢, . Requiring ¢, to satisfy
similar equations, with & and { replaced by £ "and & ', forces ¢
to vanish, unless ¢ ‘@ = 0, that is, unless ¢ ' = a@, with @ a
complex function. We see indeed that if ¢ satisfies the above
equations for some given £ and ¢, it also automatically veri-
fies the invariance condition associated to the supertransfor-
mation with parameters

§'=1i, §'=—i. (3.42)
Any other supersymmetry, however, requires ¢ to be trivial.

The origin of the fact that 6,, _ .4 =8, _, . F =0if 5, A4
= 8. .F = 0is easily found. Note that with §_¢ = IIg,

[8ec:8,]1 = [£Q + EQ +£S + £ S.HT]
=3 (§Q_E§_§S_E_S—) = _%i6i§,‘i§'

(3.41)

(3.43)
Now when acting on chiral superfields IT takes the form
H:i()"—a —i. (3.44)
4 a6 2

From 8,,¢ = I1¢ we then get the following chirality transfor-
mation for the component fields:

6,A= —14, 6, y=1y, 6, F=F. (3.45)

Since 6. .4 and 8., F are linear expressions in  only, it is
then obvious that the invariance conditions [6 0, ](4 or
F) =0 are identical to (3.8a) and (3.8b). Requiring that
i, - ¢ = Oin addition to §; . ¢ = 0 imposes constraints on
A4 and F which are easily solved. For instance, in the generic
case £§ #0, it implies that F = 0, and from (3.24) we then
see that the function ./ of (3.22) must now only depend on
c¥ and ¢, + 2¢,,¢t/ (E€ — £E).

Consider now an additional supersymmetry other than
[8¢¢:0, . Let us then examine for simplicity invariance un-
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der two supertranslations with parameters £ and £ ' such that
&'& #£0. Weknow thaty = 0. The only remaininginvariance
equations are

= 0 =, d
FiiotE L 4=0 ¢F+ioE L A4=0, 3.46
§F+i é’ayﬂ E'F+io%E £ (3.46)

which imply that 4 has vanishing Lie derivative with respect
to the following three vector fields:

y .3 .29

, I I s ! d[ r .
§0#§_—6y“ E'oHE —ay“ (E'0"E + & g)—ay“34
(3.47)

When £ '§ #0, itis not difficult to check that these are linear-
ly independent. The invariant 4 will thus be an arbitrary
function of a single variable, namely,

A= A((&'"E — Ea"E")y,) (3.48)
and the corresponding F will be
F= —2ifE'a’, (3.49)

where &’ denotes the derivative of &/. We may add that
invariance under three supertranslations can only be
achieved for a trivial constant field 4, as the reader will easily
convince himself.

As a final example we shall determine the most general
scalar supermultiplet which is invariant under the full de
Sitter supergroup.'? This subgroup of SU(2,2/1) has for fer-
mionic generators the following four elements: @, + mS,,
0., + m*S,. We want to require the invariance under the
transformations generated by these operators. This amounts
to setting £ = m¢ in (3.8) and considering simultaneously
the invariance conditions associated to the parameters &, i€,
£’ and i£’, with £ '€ #0. Once again ¢ = 0. From the invar-
iance condition (3.8b) associated to the parameters £ and i€

we find the following equations:
J

§B(F5aﬂ + imd;dyVEVdﬁiA - 2im6aEA ) = O’
e
5 (3.50a)
£ — mty, ot Fviot, 2 4 ) —o0, (3.50b)
go(—mm, g

Separating out the independent parts we obtain, for 4 and F,
the equations

Jl
F—2imA) —imp*— A4 =0, 3.51
( ) tmy“ayﬂ (3.51a)
d
0" —— A4 =0, 3.51b
y P ( )
i—f?—-A —m*y F=0, (3.51¢)
W #

which are independent of £. Solution of (3.51) will therefore
give the super de Sitter invariant multiplet. In fact it is found
to be

A=c/(1 —|m|»?),

F=2imc/(1 — |m|%?)?,
with ¢ an arbitrary complex constant. In superfield notation
we may also write this chiral multiplet in the form

d(1,0) =c/(1 — |m|*p* — 2im0?). (3.53)
This concludes our discussion of superinvariant scalar
superfields. In Sec. IV, we shall study the case of vector su-
perfields.
IV. INVARIANT VECTOR SUPERFIELDS

In the context of supersymmetric theories, gauge fields
can be described by Hermitian superfields V(x“,é?,é),
V1 = ¥, taking values in the algebra of the gauge group. In
the present investigation, we will restrict our attention to the
Abelian case.

In terms of its components, one writes V(x+,0,8) as

(3.52)

V(x+,6,8) = C(x) + iy (x) — iBy(x) + (i/2)00 (M(x) + iN(x)) — (i/2)60 (M(x) — iN(x)) — 60“6v, (x)

+ 808 (A (x) + (i/2)5" 3,y (%)) + 1006 (A (x) + (i/2)0" 3,¥(x)) + 16666 (D(x) + JOC(x)),

where, for Hermiticity, the functions C, D, M, N, and v, are
real. Acting on ¥(x*,6,0), the superconformal generators
again take the form (2.4), (2.7),and (2.8),with 2, = 0.In
addition, to preserve Hermiticity, we require that

[(ES+EHVT=(ES +EHY, (4.2)

which sets Re(d) = Re(w#) =0. Another consideration
which further restricts the values of canonical dimension
and chirality to d = 7 = 0 is that of gauge invariance.

A (super) gauge transformation effected by

V-V+¢+¢', Dp=0, (4.3)

with ¢ and arbitrary scalar superfield as in Eq. (3.6), leaves
invariant the component D and the photino field A, while it
changes the photon field v, by an ordinary gauge transfor-
mation

v, —V, —10,(4—A4%), (4.4)
so that the field strength v,, = d, v, — d,v, is gauge invar-
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4.1)

|

iant. Now, for gauge invariance to be compatible with super-
conformal symmetry, it must be that a superconformal
transformation gives no gauge-dependent contributions to
the gauge invariant fields. To illustrate this, consider the
superconformal variation of the photon field:

8¢ (— 60#6v,)
=(EQ—-EQ+4S+EHV|w
= (—60"0) [i(£ — 0"x,)5,A + i(§ — §5"x,)0, A
+3,((€ — fo*x, )Y + (£ + 5%, )x)
—i( —d +2im)o, ¥ — i(d + 2im)E0,x],
implying
8esVun =0, [i(E — $0°%,)5,A + i(§ + §5°x,)0,A
—i(—d+2m)o,y —i(d + 2im) {5, x]
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The part of 8v,,, coming from y, being gauge dependent and
at the same time not removable by a gauge transformation on

v,,, cannot be tolerated; we therefore must require that

d = 7 = 0. As for the chiral scalar field, we thus recover the
correct canonical dimension and chirality for the photon
field.

Having fixed the action of S and S on ¥, we now present
it in component notation:

8¢, C=i(& + Lo*x, )y — i(E — {o"x,)Ts
Beex = (& —x,0"C) (M +iN) + id” (€ + x,5")v,
+0"(§ +x,56)9,C,
e (M + iN) = 2(€ — fotx,)A
+ 2i(€ — Co*x,)3" I,y — 4ily,
Oesv, = i(€ - so'x,)a, A +i(§+ Z‘&”xv)aux—l
+3,[ (& —ox)x + (§ +Eo"x,)x],
8e A =i(§ —x,0°C)D '
— 105" (& — x,0"E) (3,0, —d,v,),
8¢ D = (€ — (o*x,)0" 3,4 — (£ + £¥x,)0” 3,A.

We observe that indeed all the gauge invariant components
Vuys A, and D transform among themselves only. To study
these components one introduces a superfield W, given by

W,= —1DDD,V. (4.7)

a— T 4

(4.6)

By construction this field obeys
DyW,=0, D,W*=DW,. (4.8)
Being chiral, W, can be expressed as a function of the chiral

superspace coordinates (3,8, ), yielding the following com-
ponent expansion:

W,= —il,(») + D)6,
— (i/2)(0,v, (y) — d,v, (¥))(0*5"8),
+60(0* 3,A()),- (4.9)

We see that W, precisely contains all the gauge invariant
components of ¥ it becomes particularly useful in its gener-
alization for non-Abelian gauge groups. In our case, work-
ing with fields defined over chiral superspace is a further
advantage, since the problem of finding superconformally
invariant configurations entails computing characteristic
curves inside a more economical superspace, as in Sec. IIL
Again one must find the _constants E#V, 7, d and _2_/“,, 7, d
appropriate to W, and W Requiring compatibility with
constraints (4.8),

Ds[(US+ES).W,]) =0,
Dy[(ES+ESH) WP =0,
D({S+E8),"Ws] =D, [({S+ES)% WP ]

(4.10)

[the additional indices on £S + £ 'S come from nonzero val-
ues of (2,,),7, (2,,)% when acting on W,, W, respec-
tively] completely fixes these constants to

2, = —io,,

d=3i/2, 7= —7= —1}.

—i0,,,

2y 4.11)
d=
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Thus the action of S and S on W, is given by

¥

_ 3 .. 3
S,),"W :(21' o50)., ——2109—————6i9a>W
(S )g (oo Yu 3" 90 B

+ 2z, OTW, + 2i0, W,
J
a0«
We want to study the invariance equation,

(EQ +EQ+(S+E8)." W, =0,

(4.12)

§, W, =5

w,.

ie.,

- J = —p O
[((§ +B0,) = 2 E— (0,170 2

v

_ 2i60§—(%- — 6i¢6 )aaﬁ +2IE,0° + 2iCP,, | W, =0,
(4.13)
In terms of the components (4.9), Eq. (4.13) becomes
8¢ Wealo= (€ —9,0°0),D
— /) [0*5"(§ —y,0°0)4 ]
X (d,v, —d,v,) =0,
55,; W, |eﬁ = (£ —YPUPE)B(U” ayz)a
+ [0 +5,5°0) |5 IuAa
—20ph, — 20,45 =0,
5§.g W, les = [UV(E +.Vp5'0§) ]a a,D
+i[0*(E+,570) ]a
X3%(,v, —d,0,) — 4, D=0,  (4.14c)
together with the requirement that D and v, be real. With
this requirement, (4.14c) follows automatically from
(4.14a).

We now proceed to solve Egs. (4.14a) and (4.14b). As
in Sec. I1], invariance under just one generator means setting
& and ¢ proportional to one real Grassman variable £ = &,
¢ =a¢’, with £ and £ commuting spinors. Integrating out
the « variable leaves Egs. (4.14) unchanged. We thus work
with the spinors £ “and £ * for the rest of this section, omitting
the primes to avoid cumbersome notation.

We solve (4.14a) first for the fields D and v, ; this equa-
tion is equivalent to the following set of equations:

(4.14a)

(4.14b)

(E~£o%9,)50(& ~ ,0°0) (3,0, —3,v,) =0,  (4.152)
D (€ —y,0"8) — (i/2)0°5”
X (€ —y,0'€)(d,v, —3,,) =0. (4.15b)

Equation (4.15a) represents a set of real-valued differential
equations for Vs given a solution to this set, (4.15b) serves
to define D in terms of v, . One can also check that D thus
defined will be real valued by virtue of (4.15a). We find it
convenient to choose for v, the following gauge:

£5#¢v, =0, (4.16)
which is an axial gauge (along a null axis) that permits a
residual gauge fixing which in fact will allow us to set a sec-

ond component of v, to zero. To see this, consider (4.15a);
defining
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= (& — {0y, )3"(€ — ya0°D),
we have

(£o°6)r(d,v, — 3,0,) = — (£5°C) d,v, =0,

(4.17a)
from where we find
(£56)3, (Mv,) = (§5°E)v, 9,7
= U# (Z'&vg) [ - ;ava#(g _ypapz)
— (£ —¢o*y,)5"0,8 ] =0,

ie.,

v, = @36y, $5°Ep,, €57Cy. ).
Thus in this gauge #‘v, depends only on the variables trans-

verse to the chosen axis; we now show that #v,, can be set to
zero using the residual gauge freedom:

Uy =0, + auQ’ Q= Q(Z-avgyv,z-avgyv’—avg vl

(4.18)
Under this gauge transformation, we have
rp=r“vu—>r“8yﬂ+<p
= —2(£ — (0,056 — y,0°D) Q"
+2( — 0%y, )8 £0"Ey, Q%
+ 2608y, $ (& — 2,0V + g, (4.19)

where Q° denotes derivative of (1 with respect to its ith
argument. We see that expression (4.19) depends only on
the transverse variables; setting it to zero gives an equation
for @ which can be solved for an arbitrary function @ of these
variables. In this way, we have the simultaneous gauge con-
ditions

&o*v, =0, rv, =0. (4.20)
As the two remaining components of v, we can choose
v=£0*£v, and v*. From (4.15) and (4.20) they will obey

rav= E‘E“é‘rv a,v, = Z&“é‘rv av, = — Ea#g(aumuv
= — ("6 [ — 0,87 (& ~ y,0C)
~ (£~ $0%9,)0°0,§ v,
= [ - 2£0°6 5 (& —p,.0°C) — 205°C Loy, v,
= —2(£—y. o). (4.21)

Equation (4.21) is of the same type as that encountered in
Sec. I1I; its solution is given by

v=[(& =o)L ]~ (c1,ct,c) (4.22)

in terms of an arbitrary function 7~ of the characteristic
variables ¢, c¥, and ¢, defined in (3.16). From (4.20) and
(4.22) the four components of v, can be reconstructed and
we find after some linear algebra,

__ Gt
2O [(E~ Loy IS ]

£o"(& — »,0°C)

2D [ —y0D]?
For the field D, we obtain from (4.15b),

T*, (4.23a)
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D=L TR
2 LEH[E-5av08 ]
£5° (¢ —3,0D)9, %]_
ED[EE —~yoD]?

Equation (4.23a) is the most general expression for a photon
field invariant under the action of an odd superconformal
generator. Before looking at examples and limiting cases let

us first also solve (4.14b) for invariant photino fields.

The main difficulty encountered in (4.14b) is that it
involves both the photino A, and its complex conjugate 4,
while at the same time separating this field into its real and
imaginary parts would not be a Lorentz invariant operation.
To proceed then, we project A, along two independent direc-
tions:

Aa = [§(6 =3, 0D ][ = Su(E + L0*9,)A
+ (£ = 2,00 (GD)]. (4.24)
We will solve (4.14b) in terms of the two projections
(£ + 60"y, )A and £A. These, being Lorentz scalars, can be

separated in real and imaginary parts when necessary.
To begin, we project (4.14b) onto (£ + g‘EPyP )8, giving

P 3,A, — 206 +E0°9,)8A, — 2(€ + L0°9,)AL, =0,
(4.25)

with 7 defined as before. In this projected equation 4, has
dropped out. To decouple the two components of 1, we
project (4.25) onto £ “ and (§ + £5*y, )™

38, [(€+ 6,2 ]

+ (28€ — 466 — 28074y, ) (£ + Lo*y,)A =0,
(4.26a)

(4.26b)

(4.23b)

73, (EA) — 2(& + £5°9,) 6 (LA) = 0.

The solutions to Egs. (4.26) are

(& +55"9,)4 = {8(& =y, 00/ [ (€ — S0y, 1730,
(4.27a)

S =[(E— Loy )E ] e, (4.27b)

where  and Q' are arbitrary complex functions of the char-

acteristic variables c¢,c¥, and ¢, defined previously. From
(4.24) and (4.27) we have for A,

£, Q
[ =¢8]
(€ =900V
(E =80V )5 EE =908
We must still inject this expression into the unprojected
equation (4.14b). The resulting equations for {2 and )’ are

2 + Q*) (§E — ED) + {[E(E 9,040/ (E — Loy, )E |
X 0" (€ +y.5%)3,Q
— [E—50",)8 /6 —3,0°D)]

a =

(4.28)

XE&V(f _yxo_xz—)avﬂ*} — O, (4.29)
§0°5 3,Q* — [§(£ —,0"8)/ (&~ §0°v,)¢ ]
XEo (€ + y.5€)8, (' — Q*) =0.
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The derivation of Eqs. (4.29) and their solution are rather
longwinded and we summarize them in the Appendix. Here
we present the most general solution, given in terms of two
real arbitrary functions y and y’ of the characteristic vari-
ables:

Q=[-8 /(& —y,00)]
X 6" (£ — 9.0"E)d, X
OV =1L0"Ca,x +iy.
Thus, finally, from (4.28) we write for the photino,
Ao =[E—0*,)58E—»,00D ]!
X[ = £.E6°(& —y, D), x + (£ —,0'D).,
X(36a’¢d.x +ix)]- (4.30b)
Let us now check for simultaneous invariance under
more than one odd generator. We first observe that Egs.

(4.14a) and (4.14c) remain unchanged under £-if,

§— — i§ so that aset of fieldsv,,, D invariant under a gener-
ator G will also be automatically invariant under [G,II].
This is not true for the photino A,, as is evident from
(4.14b). At the same time, invariance of (4.14a) under any

additional generator (£',{’) is impossible:

(&' +§’5pyp )a'ag,g Wolo— (& + Z-apyp )a"sg',g' We.lo
=2(¢"'+§'5%,) (¢ —»0DD=0

implies that
D=0

(4.30a)

and
0" (& — y°0,8)(d,v, —d,v,) =0,
(€ —y,0° ') 8,0, —O,v,) =0
imply that
a,v, —d,v, =0. (4.31)

For the photino field, simultaneous invariance under more
than one generator is still possible, but very difficult to com-
pute in the general case. We note in passing that many of the
properties of the photino are the same as those of the bosonic
fields in the scalar multiplet discussed in Sec. IIL. This can be
traced back to the fact that A and A represent the lowest
component in the superfield W, and ¢. Similarly, the invar-
iance properties of the photon resemble those of the fermion
in ¢. A dissimilarity between the two superfields, however, is
that A, in fact cannot be made super-de Sitter invariant,
unlike (A4,F).

To conclude, we present the limiting case of a super-
Poincaré generator £ =0. We also take, for definiteness
(and without loss of generality),

£, = ((1)) , M=EtE=(—1,00,—1). (4.32a)
Equation (4.15a) becomes
(Bov, — d,v9) + (Fzv, — 3,v3) =0. (4.32b)

Choosing the gauge v, = 0, we find from (4.32b) that
B3 =0, (4.32¢)
which allows us to use the residual gauge freedom to set also
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v; = 0. For the remaining two components of v, (4.31a)
gives

(3y + 33)v, = (8 + F3)v, =0, (4.32d)
yielding
v, = v, (x% — x*x",x?), (4.32¢)

vy = 0, (x% — x*x1,x?).
As expected from the general case, this solution is expressed
in terms of two arbitrary real functions of the three charac-
teristic variables x° — x?, x!, and x°.

For the field D, we get

D =0, —dw,, (4.32f)
while for the photino, solving (4.14b) we find
3,0 + i) )
= , 4.32
@ ((a, +id)0 (4-32¢)

with Q and Q' real arbitrary functions of (x° — x*x',x%).

V. CONCLUDING REMARKS

Let us summarize our findings. We have obtained the
most general scalar superfields ¢ (y,0) and vector superfields
W, (»,0) that are invariant under one-parameter fermionic
subgroups of the superconformal group. We observed that
the invariance requirement restricts the arbitrary functions
involved in the definition of these fields to depend on three
bosonic and one fermionic variables. We then examined the
constraints resulting from additional supersymmetries. The
result of this analysis was that generically, stability under
two (or more) supersymmetries forces ¢|, =0=W,_|,.
The only case where higher supersymmetry does not require
these components to be trivial occurs for simultaneous in-
variance under the transformations generated by the follow-
ing pair of vector fields: G = 6., and [7,G]. We also noted
the existence of a nontrivial scalar multiplet which is invar-
iant under the full super-de Sitter group and the absence of a
vector superfield with analogous invariance. Finally, we spe-
cialized our results to the super-Poincaré group.

We would now like to expand on the following impor-
tant point concerning the Grassmann structure of the trans-
formation parameters. In presenting our solutions we have
taken the odd parameters £ and § both proportional to a
single real Grassmann generator «. In other words, we con-
sidered spinors £ and § of theform & = af ', = al ', with &’
and ¢’ elements of the even part of the underlying Grass-
mann algebra with nonzero bodies.® With X a generic super-
field, the invariance condition §,,X = 0 became a8, .. X
= 0 under this assumption. It allowed us to factor out @ and
to consider the transformation parameters as commuting
spinors. We should point out here that given a solution X ® to
8¢ ¢ X = 0,thesuperfield X = X © 4 XV (withX Vanar-
bitrary superfield of grading opposite to that of X) satisfies
the invariance condition §,,X = 0. Now factoring a single
Grassman generator out of the transformation parameters is
certainly not the only possibility; rather, it presents a proto-
type for the solution of more complicated invariance condi-
tions, to which we come next.

To illustrate what these more complicated invariance
conditions might be, let us suppose that the parameters £ and
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& can be decomposed in terms of two independent real
Grassmann generators @, and a,; ie., & =a,&; + a,,
§=a,8, + a8, with &, &, (i = 1,2) four commuting Weyl
spinors. The invariance condition §,,X = 0 then becomes

@:8; X + a8, X =0. (5.1)
Now expanding X in «;,
X=X(O)+a1X§”+a2X;1) +a1a2X(2) (5'2)

and resolving (5.1) into independent components, one finds
the following invariance conditions for the superfields X {
(chosen with appropriate gradings):

o _ © _
g6 X" =86, X7 =0,
8e 5 X3V — 6., X" =0,
X'?@ arbitrary.

(5.3)

Since &;, §; are commuting spinors the above variations can
be treated exactly as in Secs. III and I'V. On the one hand, we
note that X should be simultaneously invariant under the
supertransformations associated to the parameters (£,,5,)
and (£,,5,). We therefore see that the solutions of the invar-
iance conditions stemming from the factorization of a single
Grassmann generator out of the transformation parameters
are prerequisite to solving cases where the parameters in-
volve more than one Grassman generator. On the other
hand, we observe that the invariance conditions for X (!’
(i = 1,2) are milder than the conditions that we have solved
in Secs. IIT and IV. Clearly, however, using the solutions
that we have obtained in Secs. III and IV, that is, setting
Bg e X =6, . X{" =0, will give a particular solution to
(5.1). All these considerations obviously generalize to situa-
tions where the transformation parameters are expressible in
terms of an arbitrary number of independent Grassmann
generators.

To conclude, let us point out some directions for future
research. We have considered superinvariant scalar and
U(1)-vector superfields. It would evidently be desirable to
examine other sets of fields like gravity supermultiplets or
non-Abelian vector superfields. In the latter case the exis-
tence of gauge transformations which can accompany the
supersymmetry transformations® might open interesting
new possibilities. Another natural extension of the present
work would be to consider the invariance of superfields de-
fined over extended superspace, the relevant transformation
supergroup then being SU(2,2/N), N> 1. With the enlarge-
ment of the underlying supermanifold, it is clear that invar-
iance under subgroups with fairly large numbers of fer-
mionic generators should be possible. Inasmuch as
applications are concerned, we envisage to use these superin-
variant fields as Ansatze to obtain solutions to the equations
of motion of supersymmetric field theories. We would also
like to investigate what types of dimensional reductions can
be achieved using supersymmetries. We hope to report on
some of these questions in forthcoming publications.
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APPENDIX
We are after the most general solution to
(& —5,005(0* 3, 0) e + [0“(E +,5°) |5 A

— 25, — 25,45 =0. (A1)
Asseenin Sfc. IV, by considering Eontractions clf Eq. (A1),
with (§ +£6%y,)°6 % and (£ + £6%9,)°(€ + §ofy, ), we
find that A, must be in the form,
Ao = —EaW[(E— Loy, )E ]

+ (€ = 3,00 Q/(E — Loy, )EL(E — y,04D),
(A2)

with ) and €)' arbitrary complex functions of the character-
istic variables. To see what further restrictions Q! and )’
must obey, we inject (A2) back to (A1). Now, the full equa-
tion (A1) is equivalent to the set of its contraction with €°*
and with €*7(0*"),#, Yu,v. Contracting with € gives
200 + Q'*) (L€ — ED)

+{[§ —y.0"5)/ (& — E0*y,)C ]

X oV (& +,546)3,Q

— [(E—$0*,)8 /(£ —3,0¢D) ]

X Eo* (€ —y,0"0)d,0%} =0, (A3a)
while the contractions with €*”(0**),” all lead to the follow-
ing equation, irrespective of the values of z [using also
(A3a) to simplify]:

§0°83,Q% — [£(£ —y,0"0)/ (& — Loy, )E ]

XE0* (€ +9,540)0, (' + Q%) =0. (A3b)
At this stage, it is very convenient to rewrite Eqs. (A3a) and
(A3b) in terms of the characteristic variables and of deriva-

tives with respect to them. We work with the real character-
istic variables

S i P .t s
&=y, 0"0)  (E—So*y,)¢
PR L O i

$(&—y.0%0) (£—Coy,)E

23 =§0"Ep, + J(EE + £ — 2 0*Ey,)
X§5°69,60° €,/ (€ — §0'9, ) EE (& — y,.0*D).
Thus Q = Q(z,,25,25), Q' = Q'(z,,2,,2;), and the above
equations become

2(EE — EE)(Q + Q'*) + 2LE(D, +iD,)Q
— 28E(D, — iD,)Q* =0, (Ada)

EED,O* + (i/2) (E€ — EE)(Dy + iDy) (' + Q%) =0,
(A4b)
with
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D, =93" — (iz,/4) (5 — £6)3,

D, =3 + (iz,/4) ((€ — ED)I®,

Dy = (i/2) (L€ — E6)d® = [D,D,],
and

gw=9_

dz;

Now given an arbitrary complex function {2, one can always
find another complex function X such that

Q =28E(D, — iDy)X. (A5a)
With this, (A4a) becomes
286 — ED)(Q 4+ Q%)
= —40EECT (D, +iDy) (D, —iD))X
— (D) —iD;) (D, +iDy) X *] (A5b)

= 8ilEEL[Dy(Re X) — (D} +D3)(ImX)].
Substituting for ' 4+ Q* in (A4b), we find that (Im X)
must satisfy

(D, + iD,) (D, + iD,) (D, — iD,) Im X) =0, (A5c)
while there are no constraints on Re X. We will now show
that the unique solution to this equation is Im X = 0 up to
functions whose contributions to the values of Q and Q' can
be reproduced by an opportune redefinition of Re X.

Now, Since (D, + iD,) (D, — iD,)Im X is annihilated
by D, + iD,, we can again apply the method of characteristic
curves to find that

(D, + iD,)(D, — iD,)Im X
=@ (2, + 2523 + L(CE — EE) (22 + 22)), (A6a)

with @ an arbitrary complex function of its two variables. It
follows that

Dy(Im X) =i(D, +iD,)(D, —iD,)Im X
— (D, —iD,))(D, +iD,)Im X
=ip () + iz + J(£E — ED) (21 + 23))
— ip*z) — izpz3 — {(E€ — &0 (2} +23))
(A6b)
Integrating, we find
ImX =i[{(z, + iz225 + }(56 — E6) (7 +23))
— @2y — izpz3 — {5 — EE) (21 +23))]
+ a(ZUZZ)
in terms of an arbitrary function ¢ and a real function . To

see what further conditions, if any,  and @ must satisfy, we
reinject (A6b) into (AS5c):

3,31 +93)p=03,02 +3p=0, (A7a)
with the solution
=@z, +iz;) + @ F(z, —iz;) + (Zf +Z§)C (A7b)
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(c is a real constant and ¢, is an arbitrary function of
z, +iz,). We see that ¢, can be absorbed inside @. This
solves completely the equations (ASb), so that we may write
Q =266(D, —iD,)[Re X +i(i(§ — @ *) +c(z} +23))]
= —28C(D, — iD){ReX — (¢ +@*)
+ Biczy/ (§€ — ED)) + ili(@ — ¢ *) + ez +23))]
O* =206(D, + D) [Re X — i{i(§ — ¢ *) +c(21 +23))]
=208(D, + iD))[Re X — (§+@¥*)

+ 8iczy/ (56 — £, (A8)
and we find that nonzero solutions of (A5c) for Im X can be
absorbed in Re X by shifting (AS5c) by the real quantity

— (@ +@*) + [Bic/(LE — ED) 1z,

To recapitulate, we have found that the most general
solution to the invariance equation for the photino (A1) is
given in terms of two real arbitrary functions of the charac-
teristic variables Im )’ [which was not constrained by
(A1)] and Re X. In terms of these functions, we have

QO = 2££(D, — iD,) (Re X),

O* = 28E(D, + iD,)(Re X),

O + Q% = [4i£EL /(56 — ED)1D5(Re X),
and, going back to Minkowski variables, we write for the
photino,

Ao = [(E—£0*9,)5 6~y D]
X[ = £a80°(£ — ,0"5)3, (Re X)

+ (£ =3,00), 10T 3, (Re X) +iIm Q)]
(A10)

(A9)
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A Green’s function is defined for nonlinear Klein—Gordon theories in terms of the solutions to
the eigenvalue equation obtained by linearizing the nonlinear wave equation about a static kink
waveform. Analytic forms in terms of “modified” Lommel functions of two variables are
derived for the sine-Gordon, phi-4, and double quadratic potentials. Asymptotic forms for the
Green’s functions are obtained by investigating the asymptotic behavior of the modified
Lommel functions. Methods for calculating the Lommel functions are also outlined.

I. INTRODUCTION

The influence of perturbations on the dynamics of kink
solutions of nonlinear Klein—-Gordon (NKG) models in
1 + 1 dimensions is a subject of particular importance in
condensed matter contexts,! where many different types of
internal and/or external agents are responsible for spoiling
the otherwise perfect (and boring!) propagation of kinks
through the system of interest. Examples include impurities
or other physical imperfections in the system,? dissipative
forces®* and coupling to other degrees of freedom,” external
driving forces such as electric* or magnetic fields, stress
fields,’ etc. In most cases of interest, the kinks involved carry
some physically significant signature such as electric charge
or spin, and hence can carry currents of various kinds which
are important for the behavior of the system as a whole (e.g.,
conductivity**). Many of the physical systems of interest
are modeled (sometimes justifiably) by nonlinear Klein-
Gordon (NKG) Lagrangians such as the sine-Gordon
(SG), ¢* or double-quadratic (DQ) cases,’ among many
others.

As a consequence of the importance of being able to
determine the motion of kinks under perturbing influences
such as those above, there have been several investigations
over the last few years of either a general nature or having
limited application to rather specific perturbations. One of
the more useful approaches® has been to regard the kink of
interest as an extended ‘“‘particle” which obeys Newtonian
dynamics at the classical level. Although there has been
some controversy®™ regarding whether in fact the kink be-
haves as a Newtonian particle, this question has largely been
resolved and one can adopt this Newtonian picture if care is
taken to properly treat the behavior of the regions of the
system far from the position of the kink. '

The modern approach!®'? based on these ideas is to
regard the kink position as a collective coordinate and to
perform a canonical transformation'*'? to new coordinates,
one of which is the kink “center-of-mass” position. The devi-
ation of the full field from the pure kink profile is regarded as
small (if the perturbing influence is small) and a systematic
perturbation theory is employed in which successively high-
er powers of this deviation are included. The actual deviation

® Present address: Center for Nonlinear Studies, Los Alamos National Lab-
oratory, Los Alamos, New Mexico 87545.
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of the kink position from its unperturbed value is not re-
quired to be small in this collective coordinate method, thus
removing some secularities which occur in early versions® of
this particlelike approach.

In the perturbation expansion method, it is convenient
to employ a Green’s function technique'"*? based on knowl-
edge of the exact solutions for the small oscillations about
the kink in an unperturbed system.'* Until now this ap-
proach has been hindered by the lack of an analytic form for
such Green’s functions since they involve integrals not found
in the tables. In this paper we remedy this situation by re-
porting our closed-form evaluation of the Green’s functions
for the three example systems mentioned above, namely SG,
¢°, and DQ. These forms involve modified Lommel func-
tions of two variables'* and since many of their properties
have not to our knowledge been discussed in the literature,
we examine some of the more useful of these, such as asymp-
totic expansions, in the present paper.

The remainder of the paper is organized as follows. Sec-
tion II contains an introduction to the NKG models of inter-
est, their kink solutions, and the nature of small oscillations
about the kinks in the pure system. The small oscillation
solutions are then used in Sec. III to construct explicit,
closed-form expressions for the Green’s functions of the
three example systems in turn. In Sec. IV we discuss the
asymptotic behavior of the Green’s functions by first investi-
gating the asymptotic properties of the Lommel functions of
two variables. Some of these results are new and are present-
ed for the first time, to our knowledge, in this paper. In Sec.
V we display and discuss some representative plots of the SG
Green’s function as an example. Appendix A contains our
evaluation of a generalized form of Hardy’s integral for
Lommel functions. Appendix B collects some of the proper-
ties of the modified Lommel functions of two variables while
Appendix C describes some aspects of the numerical evalua-
tion of modified Lommel functions and their asymptotic
forms.

Il. NONLINEAR KLEIN-GORDON KINKS AND THEIR
SMALL OSCILLATIONS

In this section we briefly review the main features of
solutions to the nonlinear Klein—-Gordon class of field theor-
ies. The single-kink solutions to the wave equations along
with small oscillations about these kinks will be described.
The various quantities described in this section are collected
in Table I for the sine-Gordon, ¢*, and double-quadratic
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TABLE 1. Various quantities for the ¢*, SG, and DQ systems. Here F(@) is the nonlinear potential, ¢, (x) is the kink ( + ) or antikink ( — ) solution,
V" [#.(x)] is the potential which enters in the Schrédinger-like phonon equation [see Eq. (2.8)], and f,, (x) and f; (x) are the bound and scattering states
of V" [ (x)] (w,, = O for all three cases; w,, = y/3/2 for the ¢* potential).

& SG DQ

Vi) i — 177 1 — cos(d) ilgl —11°
by (x) tanh[ + x/2] 4tan~"!(e*™) +sgn(x)[1 —e~ ]
V' [ée(x)] 1 — 3 sech®[x/2] 1 — 2 sech®(x) 1 —28(x)

Soa (%) = [T sech®[x/2]
Jon (X) Sor (x) = [T sech(x) for (x) =~

Jo2(x) =[] sech{x/2]tanh[x/2]
v sin(kx) /27, k<0

£ **[3 tanh?(x/2) — 6ik tanh(x/2) — (1 + 4k?2)] e[k 4 i tanh(x)]

Br(1+ k%) (T+4k% 2T+ k%

k cos(kx) — sgn(x)sin(kx) k>0
Vir(1+ &%

potentials [this table corrects some errors in Table 1 of Ref. V" [ (x)] | ;—+ 1. (2.9)

15 and a similar error in Eq. (4.16b) in Ref. 1].
The general nonlinear Klein—-Gordon Lagrangian we
consider has the form

« 1 1
L= dx{— P —gl ¥V },
[ al s a v
where x and ¢ are dimensionless space and time variables and
V(¢) is the nonlinear potential. The nonlinear wave equa-
tion satisfied by @(x,t) is
¢tt _—¢xx + V’(¢) = 0) (22)

where the prime on V(¢) denotes a derivative with respect to
¢. Static single-kink solutions, ¢, (x), of Eq. (2.2) may be
obtained by direct integration with the boundary conditions

deé, (x
M =0. (2.3)
dx xX= 4+ oo
The static kink ( + ) and antikink ( — ) solutions are given
by

(2.1)

Py (x)

T2 Yo T(4)
Moving solutions can be obtained by a Lorentz boost.
The equation governing the small oscillations about the
static kink waveform is obtained by substituting

(2.4)

P(x,) = ¢ (x) + P(x,0), (2.5)
into Eq. (2.2) and linearizing in ¢:
Yo =t + V" [ (x)]¥=0. (2.6)

Here V' " [¢, (x) ] denotes the second derivative of V() with
respect to ¢ evaluated for ¢ = @, (x). Writing ¢ as

P(x,t) = flx)e ™™, (2.7)
leads to the following eigenvalue equation:
—fox V" [ (X) [f=07f. (2.8)

Due to the localized nature of the kink waveform ¢, (x), the
function V" [#, (x) ] varies mainly in the region of the kink
center (assumed to be at x = 0) and approaches a constant
(taken to be unity) far from the kink center:
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Moreover, the function V" [¢,(x)] has a minimum at
x = 0O such that

V"[$:(0)] <O. (2.10)

From these properties, we see that there exists a close analo-
gy between Eq. (2.8) and the Schrodinger equation for a
particle moving in a one-dimensional “potential well,”
Vi[ige(x)]. The “bound state(s)”’ and “continuum’’ states
for this potential are of fundamental importance for statisti-
cal mechanics phenomenologies,'® perturbation theories for
kink dynamics,> and quantization procedures for kink
states. 10,12,13,16-19

Since the Lagrangian (2.1) possesses translational in-
variance, the spectrum of the small oscillations about the
single kink must contain a zero-frequency (w = 0) “transla-
tion” mode (Goldstone mode) which restores the transla-
tional invariance broken by the introduction of the kink. In
addition to this translation mode there may be other discrete
eigenvalues (“bound states”) with frequencies between O
and 1. These solutions correspond to “internal” oscillation
modes in which the kink undergoes a harmonically varying
shape change localized about the kink center. We denote
these bound-state eigenfrequencies by @, * * '@, 5, Where N
is the total number of bound states. The lowest of theseis w, |
= Osince all other w},; must be non-negative in order for the
kink to be stable against small oscillations.

In addition to the bound states, there exist continuum
states (“phonons”) which are labeled by a wave vector k.
These states have eigenvalues w; given by

o =14+k3, (2.11)
which is precisely the dispersion relation for small oscilla-
tions in the absence of kinks.

The continuum states together with the bound states
form a complete set and satisfy the completeness relation,

N ©
S+ [ dkf A6 = 80—,
i=1 —
(2.12)
and the following orthogonality relations:
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f dx fon (X)fyom (X) =6,,,, (2.13a)
Jw dx f¥(x)f, (x) =6(k—k"), (2.13b)
f dx f, (x)f, . (x) =0. (2.13¢)

Table I lists the nonlinear potentials, kink waveforms, small
oscillation potentials, bound and scattering states for the SG,
#*, and DQ potentials.

lll. ANALYTIC EVALUATION OF THE GREEN’S
FUNCTIONS

For the set { £, (x), fi (x)} of solutions satisfying the
“phonon” equation (2.8), we define the full Green’s func-
tion as

G(x,x',1)

= 2

bound states

f;)k.i (x)f5: (x") J do e

-« 2m(@},; — 0*)

iwT

“ " w7 dw e

[ aksronon | e

(3.1)

where 7=t —t’. Using the completeness relation (2.12),

and the fact that the set { f,; (x), fx (x)} satisfy Eq. (2.8),

one can show that the full Green’s function satisfies the usual
equation

{00 — 0 + V" [ (X)]}G(x,x",7) = 8(x — x")6(7).

(3.2)

Once a set of boundary conditions is chosen the w inte-
gral in Eq. (3.1) may be evaluated without choosing a par-
ticular set of { f,, (x), i (x)}. In this paper we choose re-
tarded boundary conditions obtained by moving both of the
poles in the w integral above the real w axis. Carrying out the
o integral yields

G(x,xl,T) = Gb (x’x’)T) '+' Gp (x’x,sT)9 (3'3)

where G, (x,x',7) and G, (x,x',r) are the bound state and
phonon contributions given by

G, (x,x',7) = 0(1) [Tff,l (x)fp1 (x)

© S 2D ] (3.42)
i=2 WDy ;
G, ) =0r) [ dk s TR
* (3.4b)

with N the number of bound states [if n = 1, the second term
is omitted from Eq. (3.4a)] and 6(r) is the Heaviside step
function,

0(r) = {O, — w0 <7<0,
1, 0<r< .

In order to obtain explicit forms for these contributions to

the Green’s function, one must insert the appropriate set of

linearized solutions into Eqs. (3.4a) and (3.4b). As exam-

(3.5)
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ples, we evaluate the phonon contribution for the SG, ¢, and
DQ potentials.

A. The SG Potential

Since the bound state contribution (3.4a) is already ex-
pressed in terms of known functions, we turn to the evalua-
tion of the phonon contribution given in Eq. (3.4b). Insert-
ing the functions f; (x) from the SG column of Table I into
Eq. (3.4b) we have, after collecting common terms,

G3o(xx',7) = 0(r){I, + BoI, + By sgn(2);},  (3.6)
where
——f ————— cos(|z|k)sin(my/1 + k£ ?), (3.7a)

1 .
2=;L mcos(|z|k)sm(r\/l+k2), (3.7b)

1~ dk . .
=_ﬂ.'_ X Wksm(]z|k)sm(r\ll+k2), (3.7¢)
with the definitions
=t—1t', z=x—x', B,=tanh(x)tanh(x') — 1,

B;=tanh(x’) — tanh(x). (3.8)
Since I, is uniformly convergent for all |z| and 7, we may
differentiate with respect to |z| to obtain

dI
L= -2 (3.9)
T dl]
Therefore only I, and I, need to be evaluated. These inte-
grals may be evaluated by considering the integral /( p) giv-

en by
LJ“” dk
T Jo ,Ilu,2+k2

= [6(7 — |2]) /21 ( w7 = 2°), (3.11)
where the integral is found in the tables.?® The special case
1(1) is precisely the integral I,. Since the derivative of the
integrand of Eq. {3.10) is a continuous function of both
and k, we may differentiate J( ) with respect to g to obtain

[ dl(pu) TI“’ dk
du 277' Ce pr K

cos(|z|k)sin(ru® + k?),
(3.10)

I(p) =

I, =lim
w1

(3.12)

X cos(|z|k)cos(mu® + k 2)} ;
_ 9(T; lz]) P21 (PP
cos(|z|k)cos(m1 + k2).

T (= dk
+z7f_w e
(3.13)

In the integral remaining in Eq. (3.13) we substitute
k = sinh(u), which gives us

ZL i—%cos(lzlk)cos(ﬁll +k%)
Tr - o0

o

7
27 J_ ., cosh(u)

cos[|z|sinh(«) ]cos[7 cosh(u)],

(3.14)
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{cos[|z|sinh(u) + 7 cosh(u)]

__'f_f du
47 J_  cosh(u)

+ cos[7 cosh(u) — |z|sinh(u)]}, (3.15)
=1 due {cos[ae* + be —*]

2 J_w e+ 1

+ cos[ae* + be*]}, (3.16)
=T dt {cos[at+~b—] +cos[i+bt” ,

20 Jo 741 t t

(3.17)

=1—f 2dt cos[at+£] s (3.18)

TmJo t°+1 t

where in passing from Eq. (3.17) to Eq. (3.18) we have let
t— 1/t in the second cosine term and in Eq. (3.16) we have
introduced the quantities

a=(7+|2|)/2, (3.19a)
b=(r—|z|)/2. (3.19b)
Forb <0the integral in Eq. (3.18) is found in the tables®' to

—f cos[ I] e b,
241

For b> 0, the integral in Eq. (3.18) may be expressed in
terms of “modified” Lommel functions of two variables.'*
The modified functions, namely Lommel functions in which
the first argument is pure imaginary, have not been found in
the literature. Hence we introduce the notation A, (w,s) and
=, (w,s) for the modified Lommel functions and give their
series representations in terms of Bessel functions:

(3.20)

© w 2m+n
Ao =i, s = (L),

m=20 s
(3.21a)
_ oo w —2m—n
E, (ws)=i""V, (iws) = 3 (?) I _am—n($).
m=0
(3.21b)

With these definitions, we write for 5> 0

1 dt [ |b|] |
— ——cosjat+—|=—e" " — A(w,s),
7TJo 241 t 2 1(ws)

(3.22)

where
s=r? — 2, (3.23a)
w=r—|z|. (3.23b)

Combining Egs. (3.20) and (3.22) we have for 7,

I =lre ¥ 4 6(r — |z){sJ,(5)/2 — 7A (w,5) }.
(3.24)

Using Eq. (B6) from Appendix B we differentiate Eq.
(3.24) with respect to |z| which results in

dr, 1
—L = ——7e
d || 2 2

X{ = (7 + |2)Jo(s) + 27A,(w,s)}. (3.25)
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In Egs. (3.24) and (3.25), I, and its derivative appear to
have terms which grow linearly in = which is impossible in
view of the integral representations in Egs. (3.7). Using
asymptotic expressions for the modified Lommel functions,
we shall show in Sec. IV that the large 7 dependence is actu-
ally an inverse square root.

Writing the phonon contribution as

dr.
GO (xx',1) = 9(7)[11 + BoI, — B, dlzzl}’
(3.26)
we notice that with I}, I,, and dI,/d |z| given by Egs. (3.11),
(3.24), and (3.25), there is a term which does not vanish

outside of the “light cone” [i.e., a term which does not have
6(7 — |z|) as a prefactor], namely

6(ryre—"/2{ B, + sgn(z2)B;}. (3.27)
One can show that this term may be rewritten as
— (D) 7fE1 (X)fpr (X1). (3.28)

Hence when the bound state contribution is added to Eq.
(3.26) to obtain the full Green’s function, we are left with an
expression which vanishes identically outside of the light
cone,

G5%(x,x',7)
= [6(1 — |2])/21{J,(s) + Byl (s) — 27A,(w,s)]
—Bysgn(z) [ — (7 + |z])Jo(s) + 27Ax(w,s) 1},
(3.29)

explicitly demonstrating the retarded boundary conditions
which have been applied.

B. The ¢4 potential

With a slight generalization, the techniques used to
evaluate the SG Green’s function may be applied to the ¢*
potential. Proceeding along the same lines, we write the
phonon contribution as

9(7) [

dl,
Yolo — 7, sgn(z) =2
d|z|

).

where I, and dI,/d |z| are given in Egs. (3.24), (3.25), and

Gl (xx'r)=

+ vols +v;

(3.30)

1 cos([z]k)sm(r\/l + k%)
I,=— , 3.
o= ), A+ kv akn 0 OO
14_—f dk
(1 + 4k ?)cos(|z|k)sin(r1 + £ 7) . (331b)
(1+k )3/2
=20(r — |z|)Jy(s) — 3L, (3.32)

Yo=9{tanh?(p)tanh?(y’)
7,=18{tanh(y)tanh?(y")
¥,=9 tanh(y)tanh(y’)

— tanh(y)tanh(y') },
— tanh’(y)tanh(y")},
— 3 tanh®(y) — 3 tanh?(y’),

¥3=6tanh(y) — 6 tanh(y’), (3.33)
y=x/2,
y=x1/2,

R. J. Flesch and S. E. Trullinger 1622



where Eq. (3.11) has been used to simplify Eq. (3.31b). The
remaining integral, I, may be reduced by partial fractions to

Io=~4—f i SosUzlR)sin (T k7) _L 334
37 Jo THE(1+4k%) 3
ey, (3.35)
with 1, defined by
_ 1 f i SosUzlkysin(/T +k?) (3.36)
JT+ k(1 +4k?)

To evaluate I, we again substitute k = sinh(«) which gives

m____J' du cos[|z|smh(u)]'smz[rcosh(u)] (337
1 4 4 sinh*(u)
® tdt . b
= — t+—1, 3.38
zer t? —t2+lsm[a+t] (3-38)

where in going from Eq. (3.37) to Eq. (3.38) substitutions
similar to those made in Egs. (3.14)-(3.18) have been
made. Factoring the denominator of Eq. (3.38), we define

B = —t% = —BL =(—1FiB3)/2 (339
where 7%, are the roots of #* — ¢ + 1. Using partial frac-
tions, we may write Eq. (3.38) as

I, = 1 [f 2tdt2 sin[at—}—i]
23 Yo 74+ 67, t

—Lwﬁé——sm[at—{——” (3.40)
21( [J(B2 ) —=J*(B2)], (3.41)
=T“B_Im[J(B{ )] (3.42)

where
J(B?) = —%f;%sm{awé]. (3.43)

The integral defined in Eq. (3.43) is a slight generalization
of Hardy’s integrals for Lommel functions.'*?? The evalua-
tion of J( 32) follows Hardy’s with a few modifications and
is presented in Appendix A for completeness. From Eq.
(A21) in Appendix A we have

— 6(b)A,[26/8_,2Jab ],

J( ﬁlﬂ ) =%e~(aﬁf—b/B,)

(3.44)
= %e— (/22| + W37y __ O(r — |Zl)A2( B+LU,S).
(3.45)
Therefore we have for I,
I, = (1/23)e = '*"*sin(w,, 7)
+ [0(r — 1zDABIm[A( B, ws)],  (3.46)
where
@, =\3/2, (3.47)

and we have used
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Im[A,( B, ws)] =Im[Ay( B, w,s) + Jo(s)]
=Im[Ay(BLws)]. (3.48)

From Eq. (3.30) we see that we need a derivative of I, and
hence I,,;, with respect to |z|. Using Egs. (B6) and (B16)
from Appendix B we have

dIon _ -1 — 2172 o
dlzl —4\/5 e sin(w,,,T)
‘H(T——-lf'D—Im[AI(B+w,S)]’ (349)
2y3
where
(B* +1)/B,=1, (3.50)

has also been used. Collecting all of the pieces, we write for
the phonon contribution

G¥(xx,1)
0(47-) { Yolo1 — 7’1 sgn(z) , l
dr
+[7/2—7? 3]Iz+sgn(z)[ 7/3]{”;
+20(r — |z|)JO(s)] i (3.51)

As in the sine-Gordon case one may show that when we
combine the “nonretarded” pieces of the phonon contribu-
tion, we obtain exactly the negative of the bound state contri-
bution; specifically we have

—fo__ e — 1272 __ Sgn(z) [ ] —~ /2
r} [72 ]7' 3 + ¥

8
= - be,l (x)fb,l (x'), (3.52a)
1 . 1 .
ﬁ e 2 sin(w,,T) Vo + E\/% e~ 1172 sin(w,,7)sgn(z)y,
o S@0T) o n ). (3.52b)

Wp,2

With the nonretarded portion cancelled by the bound state
contribution, we have for the full Green’s function

G*¥(xx',7)
= 0(7 — [zD{(1/3V3) Im[yoAo( B, w,s)
+ iy sgn(2)A (B ws) ]
+ 172 — 7o/3 = 3118/, (s) — 27A, (w,5) ]
+ [sgn(2)/81[%1/3 + ¥31[ — (7 + |2])Jo(s)

+ 27A,(w,s) ] + Mo()} . (3.53)

C. The DQ potential

As a final example, we evaluate the DQ Green’s func-
tion. The phonon contribution in this case is

GD%Uxx',7) =6(r — |z§){11 — [Iz(z+) — M]} ,
dz_,
(3.54)
where I, is given in Eq. (3.11) (with u = 1) and I,(z, ) is
given in Eq. (3.24) with |z| replaced by z, =|x| + |x'|. Fac-
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toring out the nonretarded piece we have
GP(x,x',7)
= [0(7 — |2])/2H{Jo(s) — s, T (s,) + 27A (w,,5.)

+ (T+Z+)Jo(s+) +2TA()(w+,S+)}, (355)
with

w,=T—2,, S, =\1T"—-2%.

(3.56)

All three of the Green’s functions derived above have
been checked against numerical integration. Over a large
range of values for x, x’, and 7, we find agreement to eight
significant digits, which is presently the accuracy of our rou-
tines which compute the modified Lommel functions. In ad-
dition we have applied the small oscillation operator [see
Eq. (3.2)] to each of the analytic expressions which, after
some tedious algebra, yield the appropriate delta functions.
To obtain a final check, we note that by using the orthogona-
lity relation in Eq. (2.13c) and linear superposition, we see
that the phonon contribution to the Green’s functions must
be orthogonal to the bound state(s). Numerical integrations
confirm this property for all three Green’s functions.

z,=|x| + |¥'],

IV. ASYMPTOTIC BEHAVIOR

To obtain asymptotic expressions (7— ) for the
Green'’s functions, we must first find the appropriate limits
of the modified Lommel functions. In Appendix C we exam-
ine Ao(w,s) and A, (w,s) in the limit as s — o0 while w/s—1,
which, when w and s are related to 7 and z by Eqs. (3.23),
corresponds to 7> |z|. This limit is interesting because the
expressions for the phonon contributions to the Green’s
functions have a term linear in 7 which, in view of the inte-
gral expressions, must be cancelled by the other terms.

Since all of the Green’s functions are expressible in
terms of the integrals I,,, I, and their derivatives with re-
spect to |z|, we consider the asymptotic expressions for these
quantities first and then combine them to obtain the limits
for the Green’s functions.

To apply the results of Appendix C we must first recast
these results in terms of the variables 7 and z which are relat-
ed to w and s by

wZB(T—'Zl), S=vi —Z,

where B is either unity or 5, . From Egs. (C31) and (C32)
of Appendix C, we have for =1,

4.1

2]
Ao(ws )NJO(S) —2__+|2L7|-J%[COS(S-——%)+Sin(S—-—}) Ezé(sl’_k‘)] +0(T—-7/2)’ (42)
~ Izl _
A (w,s) =~ ¢ LE 2 {cos(s )[M—l-’—’(—)—z—]—]
2 27' 4 8s
—sin(s — ) [1 + 2R (o) + lfRz(l”‘)]” +0(r=), (4.3)
(8s)
where k=w/s, R,, and R, are defined in Eqs. (C29) and (C30), and we have used [see Egs. (C13)]
6(1,/():]2'/3, Ul(l’K):T/zsy UZ(I)K)=7/2|2|3
U](l,K)/\)l"‘E (lK , 6(1,/(')0'2(1,1(')/[1+62(1,K)]=s/27'_ (44)

Inserting the expression for A,(w,s) given by Eq. (4.3) into Eq. (3.24), we see that the linear 7 dependence exactly cancels
[for large 7 and 7> |z|, both 8(7 — |z|) and 6(7) are unity], leaving us with

Loshi) | s _2_[COS(S_1)[2[R2(1,K) —2] _40R4’(1,K)]
=T T A\ 4 8s (8s)*
. T 2{R, (1) + 12R2(1,K)]” /2
—sin(s— T} |1 0 .
sm(s 4)[ + TEE + O(7772) (4.5)

In Eq. (4.5), I, now seems to have a s and therefore = dependence; however, this again exactly cancels when J,(s) is

expanded in its asymptotic series resulting in

Lol [Z {sin(s_i) [15 — 4[R,(1x) + 12R2<1,K>1]
2 s 4 16(8s)
_ 2R,(1,k) —1 | 5[21/16 — R,(1,x)] ” —
+cos(s 4)[ g + &) + O(r ). (4.6)
Similarly, we have
ar, _|z| _2_[ ( )[9+4R(1K)] ( )[ZR(I,K) —
dlz] 2 \/;s RV T R T” O &7

Next we turn to the /,, expression which involves modified Lommel functions evaluated at 3 swands. Withf =0 _,e( Bx),

o,( B,x), and o,( B,x) become

e(B,k) = (z| + W37)/2s, 0,(B,.x) =
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(1 + iV3|2|) /4ws,

K (r+i3lz]) (7 + |2)
2s |z| + 37

02 Byi) = (4.8)
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Inserting Eqgs. (4.8) into Eqgs. (C31) and (C32), we have

|z|/2eiﬂ)b.zt 4+ = 1 1

A(BLws) = 1 e~
2 2 J14—3(ﬂ+,

- -2

4 (8s)?

; 77' 2R2(ﬁ+”‘)} —7/2
—— | == }+ 0 , .
+sm<s 4) &) + 0077 (4.9)
Ay( B+w,s)z—1—e_‘z‘/ze_iw”'2' L S 1 {cos(s ) [Z[Rz( By —2]
2 2 i+ 62( B 4 8s
R (B :K)] : ( 77-)[ [R4(B ,K)+12R2(ﬁ+,K)]]] —9/2
40 Ao ——] |1 + 0 , .10
5k sin| s 2 + e + 0(r77"%) (4.10)
where we have used
o (B k) /1 +E(B k) = 1, e(Bok)o(BLx)/ N+ E(B k) = i (4.11)
When Eq. (4.9) is inserted into the expression for I, the oscillatory term in 7 cancels leaving
Iy = 1 Im{ 1 i [cos(s —£> (1 +M:’—K))
23 1+ € (1) s 4 (8s)
i
and
dly 1 { [COS )( [Ry( B4 k) —2])
dlz| 23 JIF €2(3+, s 8s
—sin( ———> (1 + 2R:(Bo) + 12R, (B, 1)] )” O, (4.13)
4 (8s)

Now all of the contributions are at hand to obtain, through O(7

—7/2) | the asymptotic forms for the Green’s functions.

However, since the expressions are lengthy and not particularly illuminating, we list only the leading terms. Due to the simple
analytic form of the bound state contribution, we list only the phonon portions,

2 T 1 .
G5O (x,x",7) = —{cos(s——)+——sm( ——)} o(r—%?
p (BX5T) \/;s 7)) T T o

70 Im( 1

4 2
Gy (X,x',T)zI [cos(s —-—)
= o3

— sin( 2 ) [7/‘ sgn(z) Im

(sl o
1243 (Bx)

where in Eq. (4.16),x,. =w_/s,.

One may notice that although we have shown that there
is no linear 7 term in the phonon contributions to the Green’s
functions, the full Green’s functions have a linear 7 term due
to the first bound state, namely,

H(T)szl (x)f;“ (X’).

This term may be understood by realizing that when com-
puting the response of a soliton to a perturbation, the effect
of this term is to produce a coefficient of the translation
mode f, ; (x) which increases with time. Therefore the soli-
ton will move from its initial position as time progresses.
Hence in this case, the linear term is associated with the
translation of the soliton.

The secularity referred to in the Introduction is made

(4.17)
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(4.14)
1( Yo )(ZR(I,K)—I) ]
yo—Le ) (T ) 4
mm) A ¥
(4.15)
T) [2R2(1,/;+)—1]+0(7.—3/2), (4.16)

-
evident by the linear 7 behavior in the coefficient of the trans-
lation-mode contribution to the full Green’s function. In-
deed, the use of the full Green’s function in a perturbation
theory of kink dynamics in the presence of external in-
fluences is equivalent to the procedure introduced by Fogel
et al.” The use of the collective-coordinate method'®"?
avoids the secularity associated with the translation mode
since only the phonon part of the Green’s function is em-
ployed'®'?® [together with the contribution from other
bound states, if any (N>2)].

Note added in proof: Recently we have been able to ob-
tain analytic expressions for the Laplace transform of the
product of the Lommel function A, (w,s) and the step func-
tion 8(7 — |z|), with w and s related to ~ and z by Eqgs.
(3.23). Specifically we have
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f dre ¥0(r — |z|) A, (w,s)
0

ziexp(—|z|\/§2+1) [ 1 ]"—’
2s V5?41 VsZ+1 45
where 5 is the Laplace transform variable. This leads to the

remarkably simple expression for the Laplace transform of
the sine—-Gordon Green’s function

G5O (x,x';3) Ef dr GSC(x,x',T)e "
0

|z|\/E2 +1)
2

_exp(—

x[ 1 B B Sgn(Z)]
VST+1 53457+ 1 5*

with similar expressions for the ¢* and the DQ Green’s func-
tions.

V. REPRESENTATIVE PLOTS

To illustrate the behavior of the Green’s functions, we
present several plots of the phonon part of the SG Green’s
function [plots for the other Green’s functions derived look
very similar] in the x-x plane for different values of 7. The
numerical values for these plots are easily obtained from the
formulas in Appendix C.

Since the Green’s functions depend only on 7 = ¢ — ¢/,
weare free to choose t and let t be fixed by rand ¢ '. Choosing
t’' =0, Fig. 1 shows the evolution for the phonon contribu-
tion as time progresses. To interpret these plots, recall that
G(x,x',t,t’') may be viewed as the response of the system at
(x,2) due to a delta function source at (x',z"). Fixing x' = 8
in Fig. 1(a), we move in the direction of increasing x, start-
ing at x = 0. Until x is on the order of 2, G(x,x’,7) is zero,
meaning that the disturbance has not yet had enough time to
propagate from x = 8 to x <2 (or x> 14). For 7 = 4, time
has progressed (recall we have fixed ¢ ' = 0) and the distur-
bance has propagated out further. At r = 8 the pulse reaches
x = 8. In Fig. 1(e)-1(h) the pulse has propagated off the
scales, leaving behind *‘ripples.” As 7 further increases the
amplitude continues to decrease in accord with the asympto-
tic behavior derived in Sec. IV,

If one were to follow the procedure outlined in the pre-
ceding paragraph with x’ = 3, one would note that before
the pulse arrives at a particular position, the Green’s func-
tion is not zero. This is because we have plotted the phonon
contribution, which has a nonretarded part which exactly
cancels the bound state contribution. It is this nonretarded
part which gives a nonzero value for the phonon contribu-
tion to the Green’s function “before the pulse arrives.” We
see this only near x = x" = 0 because the bound state contri-
bution is proportional to e ~ * (SG), sech(x)sech(x') [¢*],
ore~ Ple= ¥ (DQ).
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APPENDIX A: EVALUATION OF THE INTEGRAL J( 82

The integral J( %) [Eq. (Al)] differs from Hardy’s
integral for Lommel functions'#** only in that in the de-
nominator¢ 2 + lisreplacedby¢? + B2 Theonly restriction
placed on 3 is that Re( ) > 0. We first consider the case in
which b <0 for which we have from the tables?

ﬂﬁ)=~f

=—e
2

where the restriction Re( £) > 0 is required.
For b >0 we distinguish between b <a and b>a. The
latter may be reduced to the b < a case by using the relation®*

L mpwﬁ]
11

”%Q(U_“J.ziﬁw

sm [at -+ —]

— (a3 — b/B)

(A1)

sm[% + bt } .
(A2)

Therefore we need only consider b < a. We may further re-
strict ourselves to |8 | = 1 by writing 8 = || ¢ which al-

lows us to write
J(B?) =—1—J Ldi sin[at—{—i],
T Jo t
(A3)

Iﬂ|2[t2/|ﬂ|2_+_ezi<p]

=——f Ldt sm[a’t+£],
FE t

where @’ and b’ are ¢ and b scaled by 1/|3 |. Therefore with
b<aand || =1, wedefine

x=2Jab, c=(1/B)Vb/a,

in terms of which we may write J( £?) as

lwtdt.
s =L
(B)ﬁot—{—ﬁz \/— \/—

(A4)

(AS5)

(A6)
e du
=._J- ———————sin[x cosh(u)], (A7)
« ce* + 1/ce"
=iJ. du{ e’ + < ]
7 Jo ce Y+ (ce ™) ce* + (ce*) !
xsin[x cosh{u)], (A8)
o0 2
=Lf a7 1427 Goen),  (A9)
2r o JE_Z1 @+

2 12
gzi(c__l_)zﬂi [C —1
2 ¢ 2 e+ 1
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FIG. 1. The time evolution of the phonon contribution to the SG Green’s function G(x,x',t — t ') in the xx’ plane. Here we have chosen ¢’

In Figs. 1(a)-1(d) we see a disturbance *‘propagating outward,” 1(a) and 1(b) show the nonretarded portion near x = x’

moved off of our scales, leaving behind undulations which decrease with increasing time.

=

0, therefore 7 = ¢.
0.In 1(e)-1(h) the pulse has
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FIG. 2. The contour I" for the evaluation of the integral J( §2).

¢'=4b/a. (A11)

Since Re( 8) >0and ¢’ < 1, @is never pure imaginary; there-
fore 62 does not lie on the negative real axis and the only
poles of the integrand in Eq. (A9) areat = + 1. Weevalu-
ate Eq. (A9) by considering the contour integral I'( £?)
given by

r(gYH= \/‘f_"i"z;”f‘zz (A12)
r+zc—1 +z

With the branch cuts chosen as in Fig. 2, I'( £?) becomes
“drsin(xr) ¢ — 1+ 27

(B =2
(8°) i = ER

1 ixrT 2 2
—2if dre™ ¢ —21+27 (A1)
_1 /1_? 9 +7'2
Therefore we have for J( 82),
1 T(B?% 1
J(BH=—"r L —
(B9 2 2 2
1 2 2
X-J‘ dTCOS(XT) [ —21+2T , (A14)
) (1._:,-:2 6 +7’2

_Res[fz);—i0] 1
N 2 Ry

2 — 14 2cos’(@)
0%+ cos’ (@)

(A15)
where Res[ f(z); — i8] is the residue of f(z) evaluated at
— i@ with f(z) given by the integrand of Eq. (A 12). In writ-
ing Eq. (A14) we have used the fact the contributions to
['(B?) from the large and small semicircles vanish when
R - o and § -0, respectively. Evaluating the residue at the
simple pole — i6 we have

Res[ f(z); — i@ ] = e~ P—2/B, (A16)

The remaining integral in Eq. (A15) may be evaluated by
noting that

/2
xj dg cos[x cos(g)] ¢
0

& —1+42cos’(@) = 122k
= —4 2ke).
07 + cos* (@) kgx (ie)™ cos(2ip)
(A17)
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Since ¢ < 1, the sum in Eq. (A17) is uniformly convergent
and we may insert it into Eq. (A15) and integrate term by
term. We also make the substitution

cos[x cos(@)] =Jy(x) + 2 i (— 1", (x)cos(2ng).
n=1
(A18)

The double sum resulting from substitution of Egs. (A17)
and (A18) into Eq. (A15) is reduced to a single sum by
orthogonality of the functions {cos(2r¢) } on [0,7/2], leav-
ing

1 (% drcos(xt) ¢*—1+27

27 Jo N 047
= = 3 A, 0, (A19)
k=1
= —A,[26/82Jab ] . (A20)

Finally collecting Egs. (A1), (A16), and (A20) we have

J(B =Le “@Pb® _0(b)A,[2b/B\2ab ] .
(A21)

APPENDIX B: PROPERTIES OF LOMMEL FUNCTIONS
OF TWO VARIABLES

In this Appendix we review some of the properties of the
Lommel functions U, (w,s) and derive additional relations
and limiting forms for the special case in which the argu-
ments are of the form

w=p(r—|z|),

s= — 2z,

(Bla)
(B1b)

with 2 a complex constant independent of 7 and z. Below we
list some properties which we shall use to derive additional
relations. We restrict ourselves to the U, (w,s) Lommel
functions although similar relations exist for the V, (w,s)
functions and may be found in the literature'**>" along
with many other properties not listed here. Using the recur-
rence relation for Bessel functions,?® and the defining series
for Lommel functions,

©

2m+n
Uy = 3 (=072 L, e

m=0

one may derive the following:

U, (ws) = (w/s)"J,(s) — U, ,(w,s), (B3)
Vs 5y (e, (B4)
Jds
au,(ws) 1 1 :
T = T U @)+ () U ).
(BS)
For the variables (w,s) as defined in Eq. (B1) we have
aUu, ( Pw,s)
d 2|
1 1
= _?I:/-?Unfl(ﬂwas)+'B—Un+l(ﬁw’s)]’ (B6)
U, ( Pw,s)
or
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1 1
= _T[BUnfl(Bwys)_E n+1(ﬁwys)]’ (B7)

92U ( Buw,
9"V, (Bws) 1 [BzUn_z(/)’w,s) 42U, ( Buwys)

aziz!z T
+'B1—2Un+2(ﬁw’s)j| y (B8)
39U, ( Bw,
—Qi—fﬁ‘)‘z% [BzUnvsz’s) —2U, ( Bwss)
+'/J,1—2Un+z(/3w,s)]. (B9)

Subtracting Eq. (B8) from Eq. (B9) we have

42U, (Pws) 32U, ( Bw,s)

ar d%z)?

Therefore U, ( Sw,s) is a solution of the “massive” Klein—
Gordon equation (at least in the positive half-space, since
|z| > 0).

The above properties hold for arbitrary complex w and
5. We now focus on the modified functions in which w is pure
imaginary (w - iw). Introducing the notation

A, (w,s) =i~ "U, (iw,s), (B11)

with w and s given by Eq. (B1), we consider the limit z—0
for which

= —U,(Bws). (B10)

w/s = [(r— [z)/(r+ |2D]'? > 1. (B12)
For n even we have
n—1 __
Ap(rr) = =S S+ 1220 (B13)
m=1
For odd n we use an integral representation
n—1 1 ©
A2n+1(T,7-) == - z J2m+1(T) +*2_ dXJO(x),
m=20 (4]
(B14)

or in terms of Struve functions,?’

A2n +1 (T’T)
n—1 1

= Z Som 1 (T) +—
m=20 2
x{rJo(r) +f2f— [/, (1)Ho(7) —JomH,(r)]}.
(B15)
Finally we consider the limiting case of 7 = |z|, i.e, s=w
= 0. Since for all n>1 J,(0) = 0, we have
Ay(0,0) =1, (Bl16a)
A, (0,0) =0, (B16b)

While some of the properties (especially B10) derived above
are useful for the actual derivation of the Green’s functions,
they are most useful when checking the analytic expressions
by operating on them with the differential operator

atl _axx + V”[¢k (x)]

APPENDIX C: NUMERICAL EVALUATION AND
ASYMPTOTIC FORMS FOR MODIFIED LOMMEL
FUNCTIONS OF TWO VARIABLES

Numerical evaluation of the Green’s functions derived
in Sec. III requires an evaluation of the modified Lommel

n>1.

(B17)
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functions. Although Lommel functions of two real vari-
ables® and two purely imaginary variables*! have been stud-
ied, to our knowledge no one has yet considered the modified
functions. Below we present methods which are valid for w
complex and s real (since we start by considering the modi-
fied functions and w may be complex, our methods also in-
clude the case of two real variables). Representing the first
argument as Sw, where || = 1 and w and s are real, we have
for the defining series

o 2m <4 n
Aws = 3 (B0, L0, (cn
m=0
from which we deduce the symmetries
A, (—=pws) = (—1"A, (Bws), (C2a)
A, (Bw, —s) = A, (Pw,s). (C2b)

From Eqgs. (C2) we see that we need only investigate the first
quadrant of the s-w plane. Another relationship exists which
allows us to further restrict our attention to the angular re-
gion (0,7/4), i.e, the first octant. We obtain this property by
recalling the generating function for Bessel functions*?

oS/ Br — 1/Bx) i (Bx)"T,, (5), (C3)

m= — co
where «=w/s. Using the symmetry of the Bessel functions
about the origin we have,

cosh[%( K—FIK—)] = mj:_m ( Br)*"J,,, (5),

. 1 ed
smh[—s—- ( K — —)} =
2 ¢ Pk m :Z, w
Next we note that

S2 © s 2m+4n
M) = Z.(G) et
m=0

which leads us to

sinh[% (/3’ — —B-I;)] = A,( Pw,s) — A, (ﬁs; ,s), (C6a)

ooz ()

2
— _T(5) + Aol Bws) + Ag (S— ,s) .
Pw

(C4a)

(B g0 41 (5).
(C4b)

(C5)

(C6b)

From Egs. (C6) we see that we have a relationship which
allows us to consider only the region of the first quadrant of
the s-w plane in which w/s < 1, namely the first octant. In
this region the series definition converges uniformly; how-
ever, that rate of convergence is very slow when w/s ap-
proaches 1. By comparison with the geometric series we see
that since J, (s) <1 Vn, we have as an error estimate for
truncation after N terms

Ry <™ /(1 = K%). (CT)
We note that the error estimate in Eq. (C7) is a very crude
one as it does not take into account the decaying nature of
the Bessel functions; however, it suffices for our calcula-
tions.

As w/s— 1, the number of terms in the series needed to
attain a given accuracy becomes unreasonably large. For
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values of kK = w/s larger than some «,,, we turn to an asymp-
totic expansion®® of the modified Lommel functions. We be-
gin by following Mayall’s** procedure for obtaining an inte-
gral representation for the Lommel functions by substitution
of an integral representation for the Bessel functions into the
series and summing the series explicitly. We restrict our-
selves to deriving expressions for A, and A ;. For small n the
asymptotic expansion for A, may be obtained from the re-
currence relation for Lommel functions. The large » limit
has not yet been examined.

Starting with the integral representation for Bessel func-
tions

o (8) = —(;l)—mf df <> cos(2m8), (C8)
T o
we have
AO( ﬁwys)
= i ( Brc)*™( — l)”’if dB " Pcos(2mb),
m=0 T Jo
(C9)
- LJ’”dB 1 + (ﬁK)z 008(29) iscos(@)’
T Jo 1 + 2( Br)* cos(20) + ( fr)*
(C10)
_ Jo(s) 4 1— (Bx)?
2 2
T eucos(ﬁ)
XJ dé ) (C11)
o 1 4+ 2( Bx)? cos(20) + ( Br)*
I gy LB e(BK)
ﬂ'dg encos(e) Clz)
XL €2 ( Bk) + cos*(8) (
where
e(Bx)=[1— (Br)*1/2Bk, (C13a)
o (Bx)=[1+ (Br)*1/4Bxk, (C13b)

and uniform convergence of the sum has been used. Similar-
ly we may write

A (Bws) = —o,( Br) ——— €(Br) d
T ds
" is cos( @
de@ e
o € ( Bx) + cos*(8)
with
2 2
s ( Ba) = 1+ (fx) B[l +e(Bu)] . (C15)

4 2e( Bx)
At this point, Mayall’s method no longer applies (unless
= + i) and we turn to an alternate derivation.
The integral

7 -
(&5) f €2 + cos (9)

which occurs in Eqgs. (C12) and (C14), is a strong function
of € since in the limit as e ~0 (w/s— 1), we obtain a delta
function. Other major contributions occur at the stationary
points & = 0,77. To evaluate I(¢,s), we substitute = cos(8),
deform the contour and represent the integrals as a residue
which captures the strong € behavior, plus two integrals for

m cos(8)

(C16)
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FIG. 3. The contour for the computation of the asymptotic expression for
the modified Lommel function.

which asymptotic expansions are easily derived. Substitut-
ing we have

1 ist

1(€,5) :if dt ¢ , (C17)

71 (E4+1tHJ1 17
=€ {2771' Res[ f(z2),i€] —j dz e
T € (62 +22)\/1 —2Z
_J' dz e ] (C18)
€3 (62 +22)\/1 —Z
where f(z) is given by
fiz) = e (C19)

@+ -2
and the contours are shown in Fig. 3. We have used the fact
that as 6 - 0and y,— o0, the contributions from the contours
¢s1» Cs2, and ¢, vanish by Jordon’s lemma. Evaluating the
residue and shifting the variables, we have

— €5

I(e,s) =
J1 + €
_if dz ee’
7 Jo [€+ (z+ 1)W1~ (z+1)?
__f dz i ,
TJiw  [€4 (z— DW= (z—1)
(C20)
= EUyur, (C21)
Ji+e 7
where
® e~
Jsie’sf dy , (C22)
0 [€+ (p+ D1 -Gy + 1)?
=2ie“f dx e : (C23)
[€2 4+ (ix?+ 1)) — 20
As written in Eq. (C23), J is in one of Dingle’s* standard

integral forms which has as an asymptotic expansion
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Carrying out the derivatives, we have, including up to Q,

Jzdiet [ e ™S Q, (C24)
2F, =0 . 2 2 7\[1 R,(Bxk)
where JHTt= - 14+ € s {COS(S_Z) [§+ (8s5)?
QOZGO! +Sin(s_1) [RZ(B’K):” +0(s~7/2)’
Q= (—\2/37F*)[ - 3GF,), O (C28)
0, = (1/24F3)[12G,F3 ], (C25)  where
0y = ( —VZ/135J7F¥?) [ — 45G,F3 ], Ry(Bk) = [9+€(Bx)1/2[1+ E( )], (C29)
0, = (1/1152F§) [ 184G F ], Ru(Br) = — > 2 _ 96 ,
' d\" i v (50 4 * 1+ (Br)  (1+E(BK))
F, = (d_) 5x?, (C26) (C30)
x ) With Eq. (C28) we now have an asymptotic expansion for
G, = (i) 1 . (C27) I(e,s), which leads to the following expressions for
dx/ [e+ (ix* + 1)?]x* —2i Ao( Bw,s) and A, ( fw,s):
|
Jo(s) e~ S Pxs 2 e(Bx) s 2R, (B,x)
B0 0 gy [T (oo 71 Ml
ol h y T VI + € (Bx) ERANaaeY b Y7 e Y LT
+Sin(s——l) [2R2(B’K)]] + Ul(B,K) 0(S~7/2)’ (C31)
4 8s V1 + € (Bx)

Ayl Buw.s) = EBKT (B [e—ew,x)s___l_ _Z_[COS(S_1> (Z[Rz( Br) —2] _ 40 Rl [J’,;())
VI+ € (Bx) J1+€(Bx) ™ 4 8s (8s)

(C32)

_ Sin(s . %) (1 + 2[R4( ﬁyK) + 12R2( B’K)] )]} 6( BrK)02( B’K) 0(5_9/2).

(8s)?
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Chiral gauge theories are studied with a special emphasis on the treatment of gauge degrees of
freedom so as to obtain a gauge-invariant effective action from which current commutators can
be evaluated. It is explicitly shown in a simple example that these commutators are those to be

expected in a gauge-invariant theory.

I. INTRODUCTION

It is well known that theories where Weyl fermions in-
teract with gauge fields can be inconsistent due to the exis-
tence of anomalies’ which usually manifest through noncon-
servation of the fermion current. Quantization of such
models recently received renewed interest after the proposal
of Faddeev and Shatashvilli’ concerning the construction of
a sensible quantum theory by introducing a new physical
(chiral) field with a Wess—Zumino action, this leading to a
gauge-invariant theory. There has been also progress in the
comprehension of how chiral theories can be consistent and
unitary although non-gauge-invariant after the works of
Jackiw and Rajaraman® and others* on two-dimensional
chiral models.

More recently, it has been shown by Babelon, Schapos-
nik, and Viallet’ that a proper treatment of the gauge degrees
of freedom in chiral theories uncovers the presence of the
Wess—Zumino action: the group of gauge transformations ac-
quires the status of a physical field and the anomaly is ab-
sorbed. This phenomenon, which also happens with the
Liouville action in the quantization of strings, as first shown
by Polyakov,® causes the Wess—Zumino action to naturally
emerge in the process of quantization without ad hoc intro-
duction of additional fields. On the contrary, a group-valued
field, which at the classical level was “lost” due to gauge
invariance, naturally reappears after quantization. Similar
ideas were independently developed by Harada and Tsut-
sui.’

Following this approach in the present work we give an
analysis leading to the current algebra of chiral gauge theor-
ies. Although the current commutators we explicitly evalu-
ate correspond to a simple (two-dimensional) model, the
scheme we develop, based in the definition of an effective
gauge-invariant action from which current—current correla-
tion functions can be computed, is applicable to realistic
four-dimensional theories. Some of the results in this paper
have been already discussed in previous works.>~” We think,
however, that it is worthwhile to present them in light of the
framework established in Ref. 5 with the aim of clarifying
some obscure points concerning quantization of chiral gauge
theories, in particular, in connection with current algebra.

® Postal address: Departamento de Fisica. UNLP, Casilla de Correos No.
67, 1900 La Plata, Argentina.
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. THE GENERAL TREATMENT

The developments in Ref. 5 start from the observation
that, when quantizing a gauge theory in the path-integral
approach, the generating functional should be considered as
an integral over the whole space of connections rather than
as an integral over the orbit space. This distinction causes no
harm when Dirac fermions are present (no axial couplings)
since, as first shown by Faddeev and Popov? for pure Yang—
Mills theories, an integration over the gauge group factor-
izes. On the contrary, when Weyl fermions are present, the
Faddeev—Popov procedure has to be revised and a trivial
factorization is no more valid. Instead, a Fujikawa Jacobian®
arises leading to an effective theory which contains the gauge
group as a physical field and which is, remarkably, gauge
invariant.

Let us start by briefly describing this facts by using the
original Faddeev—Popov approach (a more formal presenta-
tion can be found in Ref. 5). The generating functional for a
gauge theory with chiral (left handed for definiteness) fer-
mions is

sz@A# DY DY ST (1)
with

S= —IF, F* +¥ D)V, (2)

DA)=(d + (1 —y5)/2, (3)

where the left-handed projector ensures that fermions have
only one chirality. As stressed in Ref. 10, Z should be consid-
ered as an integral over the whole space of connections 4,,
rather than as an integral over the orbit space. Usually, in the
gauge fixing procedure, one passes from the former to the
latter by factorizing a gauge-group integration; however,
when Weyl fermions are present the standard procedure has
to be reconsidered. Indeed, let us write

1= 80 () | DgoF 4]} )
where the Faddeev—Popov determinant A, (4 ) is obviously
gauge invariant,

AFP [4]=Ap [Ag] (5)
with

A =g~ 4, g+ (1/D)g7'd, ¢ (6)
and &g an appropriate measure over the gauge group. After

insertion of identity (4) in (1) we get

© 1987 American Institute of Physics 1632



Z= J DA, DV DY Dg S WIVSF (49]]Ap (4).
(7

In trying to factorize the group integration one usually ex-
ploits gauge invariance of the action S, of Agp and of Zg.
Also

DA, = DAE. (8)

Now, when writing a relation of the kind (8) for the Weyl
fermion measure, one has to include a Fujikawa Jacobian® in
the form

DY DY =J(g,A) DV DV, (9)

since it is not possible to define in this case a gauge invariant
measure (see below).'"'> We have explicitly indicated the
A,, dependence of the Jacobian so as to stress its appearance
due to the regularization procedure.

After relabeling variables one finally has

Z= f DA, S[FIA119Y 2V Dg

XJ(g,A% YeSHIYIA L (4). (10)

As explained above, the presence of the Jacobian pre-
vents the factorization of the gauge group integration and so
the g field has acquired the status of a physical field. Also, as it
was shown in Ref. 5 the effective action defined by integra-
tion over fermions and the g field,

Sz, 0 = J DYV DY Dg

Xexp(if‘f’D(A)‘l’ dx) J(gd) (11)

is gauge invariant, i.e., it depends on the gauge equivalence
class of 4, and not on the particular choice of a representa-
tive on the orbit. This independence on the gauge condition
choice then translates into BRS invariance.?

Let us now discuss with more detail the evaluation of the
Jacobian defined by relation (9). The natural measure for
fermions, ZV DY exp(if VD (A4)V¥ dx), once integrated de-
fines the fermion determinant. Hence one gets from (9):

J(g,A) = det D(A)/det D(A%). (12)

Now, as it is well known, the definition of Weyl fermion
determinants is problematic since the corresponding Dirac
operator maps negative chirality spinors into positive chira-
lity ones and, consequently, it does not have a well-defined
eigenvalue problem.®'"!? Precisely this problem is at the
root of the anomalous behavior of chiral gauge theories. To
handle this, one can define'? an operator D(A) acting on
Dirac fermions,

D(A) =D(A) +id(1 +y5)/2=id + A1 —y5)/2, (13)
which then leads to a well-defined eigenvalue problem. [ As
explained in Ref. 12 the doubling in the number of degrees of
freedom implied by (13) affects only the overall normaliza-
tion of the fermion integral since the positive chirality pieces

do not couple to the gauge field.] One then defines
det D(4) =det D(4) |geg» (14)

with the rhs appropriately regularized since the product of
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eigenvalues of the Dirac operator (13) grows without
bound. The crucial point in this scheme is that the D(4)’s
eigenvalues are not gauge invariant, this being at the origin
of the nontriviality of J. Concerning the regularization pre-
scription, the guiding precept is usually gauge invariance. In
the present case, however, once definition (14) has been
adopted there is no more gauge invariance principle to in-
voke and, if one uses, for example, the heat-kernel regular-
ization technique, more general regulators than D(4) canbe
used. As we shall see below, this fact can be exploited to
render the resulting theory not only gauge invariant but also
unitary.

It is important to note that the Jacobian (12) can be
identified with a one cocycle' w, (4;g):

J(g,A) =e 24, (15)
which satisfies the condition
wy(4"%h "'g) =w,(gA4) —w,(hA4), (16)

this being at the origin of the explicit gauge invariance in the
generating functional (11).

The Jacobian can be computed by integration of the axi-
al anomaly. Indeed, consider an infinitesimal transforma-
tion

g=1+1i56, (17)
whose corresponding Jacobian is®

J(68) =exp(z‘trJ.rz/(A)59dx) (18)
which . the consistent anomaly,

Dy Py =L () =2 J604).  (19)

The finite transformation Jacobian is gotten just by iteration
of infinitesimal transformations. The simplest way to do it is
to introduce a parameter ¢, 0<t<1, to build up the finite
transformation from the infinitesimal one. The answer is'*

det D(4) ( J @ )
T Rl Ul
(20)

where
g(t) = e @3))

Coming back to the effective action (11), note that it is
analogous to that proposed by Faddeev and Shatashvili.” In
the present formulation it is important to note that no chiral
field has to be introduced ad hoc to recover gauge invariance.
It is the gauge group which plays a physical réle solving the
anomaly problem. Of course g(x) became physical after
quantization since it trivially decouples the classical equa-
tions of motion.

From the effective action (11) one can compute v.e.v.’s
of product of currents just by differentiation. For example
the current—current correlation function is given by

8°See (4]

D (22)
SAH(x)84*(y)

G[.L‘V(x’y) = <.],u. (x)’.]v(y)) =

withj, = e\ilyﬂ .
Current commutators can be evaluated from (22) by

Manias et al. 1633



means of the Bjorken-Johnson-Low method.”* We shall
now show, by studying a simple example, how these commu-
tators are those expected in a gauge invariant theory.

Iil. A TWO-DIMENSIONAL EXAMPLE

We shall consider the chiral Schwinger model® (two-
dimensional quantum electrodynamics with Weyl fer-
mions). In order to obtain S, we have to compute the Jaco-
bian from (12) or (20). Since the model is two dimensional,
each determinant in J (and not only its ratio) can be com-
puted exactly. As stated above, thereis a regularizationAfree-
dom associated to the noncovariance of the operator D(A4)
used to define the Weyl-fermion determinant. Following
Ref. 14, the fermion determinant can be written as

det D(4) =det D(A)

1
=/Vexp(—in2xJ detrys(d —7) )
0 Reg
(23)
with
A, = —(1/e)(g,, d"¢ —3d,1), (24)
and Reg meaning some regularization prescription. In two
space-time dimensions determinants can be evaluated exact-
ly since a chiral change transforms the problem to a free one
(see Refs. 14 or 16). In the usual Schwinger model (Dirac
fermions) this fact naturally leads to the following regular-
ization:

det = lim &

M?s o
1
Xexp( - ifdzxf detre® My (¢ — ’7)) ’
o]
(25)
with
Dt = 7= m(ig 4 f)ers+ (26)

This choice ensures gauge invariance (see Ref. 14 for a de-
tailed discyssion) . When Weyl fermions are present, a more
general Dt is acceptable since, as we stated before, D(A4) is
not gauge covariant. Following Refs. 4 we shall choose, in-
stead of (26)

Dt = /DU +v)(n— )t

X [ﬁ(A) + (a/2)A(1 4 y5) Je = DUy = $)1
(27)

with @ a parameter to be determined demanding unitarity
and consistency.? One then finds for the determinant (23),

det D(4) = exp(sifdzx[(l +a)¢0ld
Y

+ (1 —a)'r]Eln—277D¢]>. (28)

Now, the effective action (11) can be written in the form
eSenl 4] — f DgJ(4% \g)det D(A) = f DgdetD(A5 )

(29)
with
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g=é°.
Using (28) with -9 — 6 and explicitly performing the
Gaussian @ integration we finally get
: 2

—i a f 6006 dx,

87 1 —a
which coincides with the normal Schwinger model result for
a = 2. The important point is that (30) is gauge invariant for
arbitrary a. As we shall see, the current commutators are
those expected in a gauge-invariant theory provided a > 1 so
that the Schwinger term has a coefficient with the correct
sign ensuring positivity.'” This condition for @ can be also
derived by noting that the effective action (30) plus the F fw
term corresponds to a ‘“‘photon” with a mass — (1/
47) (e’a®/1 — a) and hence for a < 1 the model would pro-
duce tachyons.® One can explicitly construct the current
commutators from (30) and (22). One gets for G, (x,y):

G, (xyp) = — (ie/4m)[a*/(1 —a)]
X (8,,d505'3,, +d,.d,, 05"

Seﬂ' (A) =

(30)

(31)
with

0, ' = (1/27)log|x — y|. (32)
Following the Bjorken-Johnson-Low method'> one writes

(.7, 00 ]e) = lim [ G, (X1, %001:%0 + €)

— G, (x;,x:01,%0 —€)], (33)

nv

finally getting
Uoiile = (—i/4m)[a*/(a—1)]18 (x —y), (34)
[JorJole =0, (35)

which are the relations expected in a gauge-invariant theory.
Note that with our conventions the Schwinger term coeffi-
cient has to have a negative sign'” this forcing @ > 1.

To conclude, both the general analysis leading to the
effective action (11) and the results for the current commu-
tators in the simple model indicate that gauge invariance is
maintained at the quantum level in chiral models if the gauge
degrees of freedom are properly treated. No extra matter
fields (as can be envisaged following Ref. 18) or chiral fields
(as advocated in Ref. 2) have to be ad hoc introduced. It is
the gauge group which becomes physical, solving the prob-
lem of gauge anomalies. It is interesting to note that, al-
though gauge invariance is maintained, only using the regu-
larization freedom (at least in the two-dimensional
example) ensures a consistent unitary theory. We shall re-
turn to this point thoroughly in a future work.
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Poincaré covariant infraparticle sectors
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Footing on the infraparticle picture of quantum electrodynamics, a Poincaré covariant
description of asymptotic sectors, containing # charged particles (n>1) and the associated
radiation field, is given. The analogy of this method to Wigner’s description of elementary

particles is discussed.

i. INTRODUCTION

The presence of massless particles in quantum field the-
ories causes some complications due to the fact that physical
states, of finite energy and momentum, may contain an infi-
nite number of “soft”” massless particles. A physically mean-
ingful number operator cannot exist then for these particles,
and besides the well-known difficulties encountered in per-
turbation theory this leads to the additional problem of
choosing the correct state space of the theory. One might
hope that some information may be obtained already from
the study of the asymptotic fields, which are much easier to
handle than the interacting fields of the full theory. Previous
attempts to find the correct asymptotic state space for QED
have led to two different directions, which also yield quite
different qualitative features.

One of these proposals is the “infraparticle picture,” as
discussed by Frohlich et al. in Refs. 1 and 2 (for a more
general discussion with respect to full QED see also Ref. 3).
It has the following main feature: the representation of the
(asymptotic) photon field is coupled to the momenta of the
charged particles, with inequivalent representations belong-
ing to different momenta. As an “infraparticle,” the charged
particle is thus always surrounded by a dynamically coupled
“soft photon cloud.” In Refs. 1 and 2 also a definite choice
for the momentum dependent photon representation is
made: it is taken to be a generalized coherent representation,
as suggested by a “correspondence principle” formulated in
these references.

With this choice, however, the Poincaré covariance of
the charged one-particle sector is broken; i.e., Lorentz boosts
are not unitarily implementable in this sector. However, in
view of the importance of relativistic covariance in proving
analyticity properties of Wightman functions, which in turn
are essential for some celebrated theorems of quantum field
theory, one should perhaps look for suitable modifications of
the above picture in order to reestablish relativistic symme-
try in charged particle sectors. This is the aim of the present
paper, which is a shortened version of Ref. 4.

For this purpose we shall use another class of so-called
symplectic representations of the photon field (see Refs. 5
and 6), which are also useful in the alternative “infra-
vacuum” description of asymptotic QED. (A short discus-
sion of the latter may be found in Ref. 7). In these represen-
tations the photon field contains infinitely many soft pho-
tons of finite total energy, but in contrast to coherent
representations not only space and time translations but also
space rotations are unitarily implementable. We construct
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Poincaré covariant asymptotic sectors with a single charged
particle by “boosting” a fixed symplectic representation of
the photon field along the particle momentum. This con-
struction is described in more detail in Sec. III. Crucial for
the resulting Poincaré covariance is the Euclidean and time
translation covariance of the symplectic representations,
which excludes coherent representations from this proce-
dure.® Nevertheless we arrive in this way at an “infraparti-
cle” picture, since again the photon field is dynamically cou-
pled to the particle momentum. This method may be
generalized to asymptotic sectors containing an arbitrary
number of charged particles and antiparticles with arbitrary
spin.

We turn to a short summary of the contents of the sec-
tions. Section II contains preparatory material for the boost-
ing procedure by recalling a general construction of covar-
iant field representations as described in Refs. 9 and 10. In
Sec. III we apply this construction to the free photon field.
This procedure may be interpreted as the “boosting” men-
tioned above, and leads to a relativistically covariant sector
with one charged scalar particle. Some properties of this sec-
tor are discussed. In Sec. IV the generalization to a particle
with arbitrary spin is made. An appealing feature of the re-
sulting description of infraparticles is its close analogy to
Wigner’s description of “ordinary” elementary particles by
induced representations [m,s] of the Poincaré group. Sec-
tion V contains the construction of covariant charged n-par-
ticle sectors (n#>1) with r identical (infra)particles and
n — ridentical antiparticles. The nonuniqueness of the Poin-
caré group representation in infraparticle sectors (asimplied
by the reducibility of the photon field) is discussed in Sec.
VI. Physical arguments for choosing the “correct” represen-
tation are given. Some material concerning unitary represen-
tations of symmetry groups in reducible covariant represen-
tations of C *-algebras is collected in the Appendix.

Two additional remarks might be appropriate.

(1) In this paper we are dealing exclusively with sectors
containing charged particles. The existence of a vacuum
state is therefore not touched by our considerations.

(2) It is not yet known whether the representations de-
scribed here indeed appear as—say LSZ-type—limits in full
QED.

We close this introduction with some technical state-
ments, mainly in order to fix the notation.

We shall assume that there exists a C *-algebra 9, asso-
ciated with the free asymptotic electromagnetic field, on
which the Poincaré group P', acts as a symmetry group.
The automorphism corresponding to the group element
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geP', isdenoted by 7,. The map g— 7, forms a representa-
tion of the Poincaré group. If in a representation 7 of %I,
acting on a Hilbert space 7, these automorphisms are im-
plemented by a unitary group representation [i.e., if
7(r, (4)) = U(g)m(4)U(g) ~ ' for all 4], we call it a co-
variant representation of % and denote it by (7, U,%°).

Usingstandard results of C *-algebra representation the-
ory (see Refs. 11 and 12), it is shown in Ref. 1 that any
representation 7 of % in the charged asymptotic one-particle
sector may be decomposed into a direct integral over the
particle momenta:

R —

If the “component representations” 1, are mutually in-
equivalent for different momenta, we have the above-men-
tioned coupling of the photon field to the particle momen-
tum characteristic for the infraparticle situation. Instead of
using coherent representations for 3, as in Refs. 1 and 2, we
shall use the “symplectic” representations (#,,57°,) de-
scribed in Sec. III. These representations have been intro-
duced in Ref. 5, where the Coulomb gauge was used; in Ref.
6 they were translated into the Gupta—Bleuler gauge. Since
here we require a positive Hilbert space metric, our represen-
ation space #°, has to be identified either with the physical
state space of an indefinite metric version of QED (Ref. 6),
or with the state space of the Coulomb gauge.’

(1.1)

1. REDUCIBLE G-COVARIANT REPRESENTATIONS

Throughout this section A denotes an arbitrary C *-alge-
bra. We shall recall a method of obtaining G-covariant repre-
sentations (7,U,7#°) from K-covariant representations
(¥, W, %), where K is a suitable subgroup of G. (For more
details see Ref. 10).

Let the topological group G act as a symmetry group of a
C *-algebra % and assume the following.

(1) There exist a subgroup K and a subset T of G, such
that every group element may be decomposed uniquely in
the form

g=k't, kekK, (T, (2.1)
with both k and ¢ depending continuously on g. Then for any
fixed g the relation

t'g=k't' (2.2)

defines continuous maps a,: T— T and 5,: T-K by
B, (t")=k', a,(t")=t" (2.3)
The uniqueness of the decomposition (2.1) also implies
Bee. (1) =By, (1), (a,, (1)), (2.4)
a, . (1) =a, (a, (). (2.5)

(2) There exists a measure dv on T which is invariant
under a,, i.e.,

jf(t)dv(t) ——-Jf(ag(t))dv(t)
T T

for arbitrary integrable functions f on T.
Starting from a K-covariant representation (¢, W,.%")
(with continuous K-representation W) we obtain a G-covar-

(2.6)
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iant representation (7, U,5#”) (with continuous G-represen-
tation U) as follows:

H =L*(X;Tdv),
(m(A)@)(2) = Y(1,(A))$(2),
(Ug)d) (1) = WBx(t) ¢(ag(t))'

The space Z° consists of all % -valued v-measurable and v-
square integrable functions ¢ on 7. In terms of direct inte-
grals (see, e.g., Ref. 11), the representation (7,57) of % may
be written as

2.7)

=f ¥, dv(1), (2.8)
T
acting on

2f=f 7, dv(t), (2.9)

T

where

¥, (4) =d(r,(4)) (2.10)
and

= (2.11)

for (almost) all 7.

Under rather general assumptions, which are fulfilled in
the case of the Poincaré group, one may show the unitary
equivalence of the “group theoretic part” (U,7) of (2.7) to
the G-representations (U ¥,#°%) induced by the represen-
tation (W, %) of K. (For details see Ref. 13, for the theory
ofinduced representations see Refs. 14 and 15.) One can also
prove the equivalence of (7,U,7°) as given by (2.7) to the
G-covariant representation constructed in Ref. 9 (see Ref.
13).

Ili. THE SCALAR ONE-PARTICLE SECTOR

In order to fix the notation, we recall some properties of
the Poincaré group P ', and the Euclidean group with time
translations, which is a subgroup of P, (& denotes the
semidirect product, L ', the proper orthochronous Lorentz
group, and R* the real four-translations).

We have

P', =L" GR*={(Ad)|AcL ", ,deR*}. (3.1
The group multiplication law in P',_ is
(A,d)) (Ady) = (AMALd + Ady). (3.2)

The Euclidean group together with time translations is the
semidirect product of the rotations with R* and will be de-
noted by K from now on:

K=0(3)"&«R*={(R,d)|ReO(3) *,deR*}.  (3.3)

We shall now show how the above construction leads
from a given (irreducible) K-covariant representation
W, W,0) of the photon algebra % to a (reducible)
P’ -covariant representation (7, U,7°). In particular, we
shall see that the resulting field representation is of the form
(1.1), and hence is adapted to the case of a spinless infrapar-
ticle. We emphasize again that, as stated in the Introduction,
an essential ingredient is the assumed K-covariance of
(¢, W, %), which excludes coherent representations of the
photon field® and favors symplectic representations.’
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We first determine the subset TCP ' “complemen-
tary” to K. Here the mass m of the infraparticle enters in a
natural way. Its mass shell

A ={p'= P p°>0, p*= ()’ —p*=m’}

3.4)
may be converted into a standard transitive G-space (G
being the Poincaré group) by defining the action of
g= (Ad) on.#™ by

PEMT >p, = AN"'pe ™. (3.5)
In particular,

Lo, = (Pg, ), - (3.6)
Introducing the reference momentum

PR =(m0), (3.7)

K may be characterized alternatively as the little group of p*:

K ={geP", [p* =p™}. (3.8)
Exploiting the transitivity of .# ™, boosts b(p) eL ', may be
defined by the equation

Phpy =b(P) PR =p. (3.9)

[For notational convenience, the symbol b(p) will also be
used for the element (b(p),0)of P', .]

It is possible to fix the boosts b(p) uniquely, such that
the map p—b(p) is (piecewise) analytic. (For several
choices of boosts see, e.g., Ref. 16.) For definiteness, we take
b(p) to be pure Lorentz transformations. Now 7 may be
identified with the set of all boosts:

T={b(p)lpest™}. (3.10)

To justify (3.10), one has to verify the existence of the
unique decomposition (2.1). Writing

g =kb(pX)
we obtain

(3.11)

R _ LR — R — R
Pk =Py = (pg)b(p,‘;)-' =pr

where we have used (3.6) and (3.9); hence keK. Assume
k'b(p') =kb(p). Then b(p') =k "b(p), where k "eK, and
therefore Pipy =P = P8 vy =Pbpy =D ie.,
b(p’) = b(p) and thus k' =k. Thus the decomposition
(3.11) is unique. In order to determine the maps a, and Bg,
consider

b(p)g =b(p)gb(p,) 'b(p,).
Using (3.6) and (3.9) again one has
Pf(p)gb(pgr‘ = (Pg)bo =p~,

ie., b(p)gb(p,) ~'eK. Withg = (A,d) one thus obtains, us-
ing (3.2) and (3.5), the maps B, and e, defined in (2.3):

B (b(p)) = (r(g,p).b(p)d),

(3.12)
a,(b(p))=b(A " 'p),
where
r(g.p) =b(p)Ab(A™'p) ! (3.13)

is the familiar Wigner rotation. Identifying 7 = .#™ = R®
by the one-to-one correspondences b(p)—p
= ((p* + m?)'/?,p)<>p, as done in the rest of this paper, an
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invariant measure on 7 is thus given by

dv(p) =d’p/m*> +p’. (3.14)
Hence (2.7) reads for G=P"_:
HOV = LYK Rdv(p)) = x dv(p),
aR?
(7)) @) (p) = W7y (A)) (D), (3.15)

(U(O,l)(A’d)‘ﬁ)(p) = I4/(r(g,p),b(p)d)¢(lx_lp)‘

(Anticipating the general notation from Sec. V, the first su-
perscript on ##7*", etc. denotes the spin and the second the
number of particles.) In particular, (7%", V) may be
rewritten as

W(0,1)=JR3 ¥, dv(p), ¥, (4) =1, (4)). (3.16)

Comparing with (1.1) we see that (3.15) corresponds to the
infraparticle picture, but in contrast to Ref. 1 we now have a
P', -covariant one-particle sector (7", U@, 7°V). De-
fining the momentum of the charged particle by

a R?

ie.,

(PL)(p) =p (D), (3.17)
one immediately verifies its covariance

UAd)ET UMD =T (3.18)

Denoting by P the total momentum—i.e., the generator of
translations U(1,d)—(3.18) also proves the commutativity
of Pand P,:

Ul d)e™® = e = ™4 U(1,d) = &5 e,
Hence one may introduce the field momentum P, = P — P,

and the corresponding unitary group

eind = ¢'Pdp™ iPcd.

Then, using that the “diagonal”'” operator e

with all 7% (4), one obtains
PO (4)e P = MO (L)e T

Collecting these results we get the following proposition.

Proposition 3. 1: The total momentum P, the particle mo-
mentum P, and the field momentum P are mutually com-
muting operators obeying

P# =Pk 4 pn. (3.19)

The field dynamics is determined by P, and the particle
momentum P, is affiliated to the commutant 7%V (2)".
Lemma 3.2: Let

commutes

= ¥, dv(t)
T

be the direct integral representation (2.8) with ¢, £¢=1,
for all teT, t #e. Then we have ¢, £4,. for t #t', i.e., the
component representations are pairwise inequivalent.
Proof: Suppose there exist t and ¢ "¢ in T and a unitary
W, such that ¥,(4)=d(r,(4))= Wi, (AW !
= Wi(r, (A))W ' V¥4ed. This is equivalent to
V(7 (7, () =7, 1 (4) = WP(A) W ~' VA, ie.,
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7,.-1 is implemented in 9. Let 2’ ~' = k "t " be the unique

decomposition of ## ' ~'. Then ¢ ¢’ implies ¢ ” #e, for other-
wise we would have r = k "t’, i.e., a nonunique decomposi-
tion of z. But then, since ¢ is K covariant and ¢’ ! is imple-
mented,? " = k "~ 'tt'~'eTisimplementableand # e, which
is a contradiction. n

Choosing for (¢, W,.%") irreducible symplectic repre-
sentations of the photon field, it is known that pure Lorentz
transformations are not unitarily implementable in such rep-
resentations.” Hencein (3.16) ¢, &9 for all p5£0, and there-
fore i, 1., if p#p’, by the above lemma. Under these con-
ditions one may show that the infraparticle is not
localizable.'®

IV. GENERALIZATION TO ARBITRARY SPIN

In order to motivate the following construction, we re-
call Wigner’s concept of elementary particles of mass m and
spin s as irreducible representations [m,s] of P', (see Refs.
19 and 16). In the formulas below, r(g,p) and dv(p) denote
the Wigner rotation and the invariant measure, as defined in
(3.13) and (3.14), respectively.

In the case of a spinless elementary particle [7,0] one
has

X =LHRdv(p)),

(T(g)4)(p) = e*'$(A™'p).
The amplitudes ¢ (0) for the particle at rest transform under
rotations according to the trivial representation R—1 of
O(3) ™, which means that the particle is spinless.

In the case of spin s, (U “),#*) is given by

4.1

9 — 2C+ D R3 dv(p)),
(T (@)8)n (B) = €#D 2, (r(8P) )b (A~ '),

where a summation convention is used. Again, the transfor-
mation properties of the amplitudes for the particle at rest
under rotations define the spin: Since 7(R,p®)=R for rota-
tions R and p® as defined in (3.7), one verifies immediately
that the rest amplitudes ¢,,(0) transform according to
R-D@(R).

Now inspection of (3.15) shows that the amplitudes
$(0) (e%") of the spinless infraparticle at rest transform
according to the representation

(RO) =W o (4.3)

of 0(3)™*. This suggests the following generalization: The
rest amplitudes for the infraparticle with spin s should trans-
form under rotations according to

(R,0) = Wigo) ® D ©(R). (4.4)

This may be achieved by a construction analogous to the one
described in the last section, with the representation
(4, W, %) replaced by (", WD, 7 D) where

F D = F @CB L,
'//(S’l)(A) = l/’(14) ® lc(2s+1),
WEh = Wea @D P (R).

The representation properties and the K covariance of
(Y, Wb, F =) follow immediately from the corre-
sponding properties of (¢, W,.%"). Applying (2.7) to (¢*",

(4.2)

(4.5)
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Wb F Dy now leads to the representation (7'%D,
L1 L1
UGSY #Dy where

HD = LK & C*+V;R%dv(p))
+s
=L2( o I ]R3,dv(p)),

m= —

(D () @) (P) = YToqp) () (D),
(USV(Ad)é),, (p)

=D frf:n (r(g’P))uy(r(g,p),b(p)d)qsm’ (A_ lp) .
(The equality sign between Hilbert spaces means isomor-
phism.) Indeed, then, the rest amplitudes

$(0) (e ® W)

m= —35

(4.6)

transform under rotations according to (R,0)

~W o 8D P(R).

Comparing (4.1) with (4.2) and (3.15) with (4.6), we
see that in both cases the transition from the spinless situa-
tion to the one with nonvanishing spin has been made by
“adding Wigner’s rotation in the representation D *.”

The particle momentum is defined as in the spinless
case. Its P',_ covariance is immediately verified.

As noted for the spinless case at the end of Sec. II, the
“group theoretic” part (U ", ") of (4.6) is again
equivalent to the representation (U web % of P ., in-
duced by the representation (W 1, %" 1) of the Euclid-
ean group with time translations K. Comparing this with the
prescription for constructing the representations [m,s] of an
ordinary elementary particle (see, e.g., Ref. 16), the analogy
between Wigner’s concept of elementary particles and our
description of infraparticles may be summarized in Table 1.

V. COVARIANT n-PARTICLE SECTORS

In this section a construction is given which yields a
covariant description of a system consisting of # charged
particles of spin s and the associated radiation field, i.e., of n
infraparticles of spin s. Starting point again is the given, irre-
ducible, K-covariant representation (¥, W,%") of 2. The
method is formulated for the general case of r particles and
n-r antiparticles, with r = 0,1,...,n.

The following requirements have to be met.

(1) The state space is a subspace, to be specified below,
of

ﬁﬁ(s,n)
=L 2(C(2s+ l);jw,dv)
X & @L2(C**V:Tdv)e ¥

=L((C*+ Yy ¥ T dv"), (5.1)

TABLE I. Relativistic transformation laws (preliminary version).

s .
P, representation

Elementary particle induced by Rthe representation
(Rd)—e"“8D(R) of K
induced by the representation

(Rd)—>Wnsy @ D (R) of K

Infraparticle
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where
T"=T®- ®T’ (C(2s+X))n
=C(2s+l)® R ®(c(2s+1)’
dv'=dve - edw

(2) Assume that the indices 1,...,7 label the particle vari-
ables and  + 1,...,n label the antiparticle variables. Then,
according to the spin-statistics theorem, the state space is
given by the subspace of 5>’ consisting of functions which
are symmetric (for integer spin) or antisymmetric (for half-
odd-integer spin) under separate permutations of the indices
(1,...,r) and (7 + 1,..n). The field representation 7"’ and
the P, -representation U " have to leave this subspace
invariant.

(3) (#'™, UM, ") has to be a covariant repre-
sentation of 2.

Definition V.1: Let j be a continuous map from
T X+ XT to T with

(D) j(t2,) =JCpay "t )s (5.3)
where Pis an arbitrary permutation of the numbers (1,...,n);
(2) a (j(t 1)) =Jlag (1) ag(t,)), (5.4)

(5.2)

where a, is defined in (3.12).

In the next step we modify (¢, W,.%") in fashion analo-
gous to (4.5): The K-covariant representation (¢,
W sm - 7 smy i defined as

T = ¥ e (C(2s+ 1))n’
¢(S,")(A) = l/J(A) ® l(c(z:+1))ny
WEn =Wea ® (D)"(R)

[with (D©®)"=D®e:-®D®]. Then (7",
™y may be defined as

(5.5)
U(S,n),

M = L2AF M, T dv')
-~ L 2(2’” ® (C+ 1))n;Tn,d,Vn)’
(U(S‘")(g)¢)(l' . .tn )
=W 5o dlag (1) e, (8,)),
(77(5’")(A)¢)(t1 .. 'tn )
=P UT jr o, (A))B(2, 0 1,).

(5.6)

The above requirements (1) and (2) are fulfilled, as follows
from the permutation invariance (5.3) of j, and the invar-
iance of operators of the type (D )" under permutation of
the » identical factor D . It still remains to show that 7™
indeed is a representation of %, that U ™ is a unitary repre-
sentation of P!, and that 7, is unitarily implemented by
U (s,n) ( g) .

The representation property of 7™ follows trivially
from the corresponding property of ¢. The unitarity of
U “™ (g) follows from the unitarity of the operators W ("
(k€K) in % @ (C* * )" and the invariance of the measure
dv" under (¢,°-1,) —(a,(¢,) " "a,(t,)), which is a conse-
quence of the invariance (2.6) of the factors dv.

To check the representation property of U ™, calculate
first
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Bg,g,(j(tl. ' 'tn ))
=t8g,(j(t1- : .tn ))Bg2 (ag,(j(tl‘ ) 'tn )))
=B, (8 1.))B,, (lag, (1))~ ag (2,))), (5.7)

where in the first step we have used the formula (2.4) and in
the second step (5.4). Hence

(U™ (g )U S (g))(t 1)
= WE:,T}(‘:""")) Wé:z)jlag‘u.y~a,z‘(1n)))
X@(ag, (ag, (1)) a, la, (1,))
=W E" o B, (1) g, (£,))
=(U"" (81 82)4) (1, 1,).

In the second step formula (2.5), the representation proper-
ty of W™ and Eq. (5.7) have been used.

To verify covariance one needs the following relation,
which is a consequence of (5.4), (2.2), and (2.3):

Beli(t -1, j(a, (1), (1,))
=Bt ) )ag(j(ty - 1,))
=jt; - +1,)8.
Thus
(U™ (g)ym ™ (A)g)(t, - t,)
= Wéi’('})(r.-~-u))’r/’(s'")(Tj(ag(x,)---agum (4))
Xplag (1) e, (2,))
=Y Th 00 e A+ age (4))
XW Sl Blag (1) e (1,))
= PO Ty 00 ANU S (8)B) (217 1,)
= (1 (D))U 7 (8)) (11 °1,).

(5.8)

In the second and third step we used the K covariance of
(gism, Wsm 7 emy and Eq. (5.8), respectively.

One also easily verifies—identifying 7 with .#™ as men-
tioned in Sec. III and using (5.6) and (3.12)—that the total
particle momentum P, defined by

(PP (P1se-sbr)

=3 pop,.p,) PF=Gm*+pip))  (59)
i=1
transforms covariantly under U *™:
U™ (Ad)e™ U (Ad) =™ 7 (5.10)

Again, as in the one-particle sector, P, is affiliated to the
commutant 7™ ()",

Thus the construction of the covariant r-particle sector
(5.6) is reduced to the problem of finding a map j with the
properties of definition 5.1.

A possible choice of jis

m n
e N p
(S pipi)'? ,.;1

The map j is well defined, since p; and p, belong to the mass
shell .#™, and thus p,p, > 0. Moreover, clearly, j(p, " p,)
lies on the mass shell .# ™. The required permutation invar-
iance (5.3) is obvious. With a, defined in (3.12), and the
invariance of the four-product under Lorentz transforma-

Jpyp,) = (5.11)
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tions, (5.4) is easily checked. Therefore the construction
(5.6) of the n-particle sector may be carried out with the
map jgivenin (5.11).

The physical picture underlying this model might seem
to be questionable, since the photon cloud is correlated only
to the total particle momentum, and hence the dependence
on the individual particle momenta is of a rather indirect
nature only, in contrast to the case when coherent represen-
tations are used.’ Nevertheless, the sector
(=M, U ™ g7y contains all the necessary degrees of
freedom and is relativistically covariant. One might also
hope that a more satisfactory physical interpretation may be
achieved by choosing a map j which is more sensitive than
(5.11) to the individual particle momenta.

We close this section by noticing that 7> may be re-
written as a direct integral over (7 ",dv"), but now with
component representations which are not pairwise inequiva-
lent. Rather, they are constant on the hyperplanes
Jj(py - 'p,) = const, which just expresses the fact that the
photon clouds are coupled to the total particle momentum
only.

VI. COCYCLES AND SPECTRUM CONDITION

With the total particle momentum P, defined in (5.9)
and an arbitrary real number a, consider the unitary opera-
tor

a __ jaPd
Vi =€ ,

(6.1)

which depends continuously on the group element
g = (A,d) and belongs to the commutant 7™ ()’. Using
(5.10) one easily proves the following theorem.

Theorem VIL.1: For any a€R,

U‘(zs,n)(g) — VtglU(S,n)(g) (62)

defines a unitary representation of P'_ implementing the
P, -automorphisms in 7.

According to the Appendix, (6.1) defines a cocycle; i.e.,
the map

Ve (Ad)-Vi,g

(s,11)

belongs to Z7 ~ (P, ). (The notation is explained in the

Appendix.)

The result of the following analysis is formulated as the
following.

Theorem VI2: Let the n-particle sector

(', USm g™y be given. Let P ™ denote the total
momentum of U *7, and let P, be given by (5.9). Then we
have the following.

(1) P# and P ™" form a set of commuting operators,
and the field dynamics is determined by

PEm —pm _p (6.3)

(2) The momentum of U ™, as defined in (6.2), is

PE™ =aP, + PO",
Assume, moreover, that P ™ satisfies the spectrum condi-
tion. Then we have (3).

(3) Forall @0, P (°™ also satisfies the spectrum condi-
tion. On the other hand, @ may be chosen such that P>
does not satisfy the spectrum condition. Hence the {s,n) co-
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homology of P', (see the Appendix for the terminology) is
nontrivial:

Z7 (P Yy£BT(P,).

Proof: Statement (1) follows from (5.10) and from
ef*"cde,,r(s,n) (%Y

as for the one-particle sector in Sec. III. Statement (2) fol-
lows from

iPt(Is‘")d ixP.d ;p(sn
UL (Ld) =" =V, U (1d) =™,

To prove statement (3), consider the Garding domain D of
P, and P*" (see the Appendix of Refs. 4). Since P is
assumed to satisfy the spectrum condition, we have

(®,Pad)>0 for all gV, and all eD.
Then, for all >0, also
(®,P5™ad) = a(D,P.ad) + (P,P“ad)>0

since P, as a sum of particle momenta, satisfies the spectrum
condition. Since P 5" is essentially self-adjoint on D (see
the Appendix of Ref. 4), the above inequality is valid for all
& in the domain of P ""a. Hence P " satisfies the spec-
trum condition if & >0.

To prove the last part of statement (3), take a fixed ®eD
and a fixedaeV, [e.g.,a = (1,0)], and choose a sufficiently
negative, such that (®,P *ad) < 0. Now, since the corre-
sponding P ™ does not satisfy the spectrum condition
whereas P *" does, the P', -representations U™ and
U *" cannot be unitarily equivalent. Then from Theorem
(A4) it follows that ¥'* cannot be a coboundary. |

Now let P’ denote the four-momentum of the K-repre-
sentation W and P’'** the momentum of W 7. We will
show that the total momentum operator P **”’ in an n-parti-
cle sector satisfies the spectrum condition if P’ does.

Let #(p,--p, ) be an element of ™. For pure trans-
lations (1,d) we obtain

(5,m)

(U™ (1,d)8) (P, 'Pa)
= (?“"%) (0, *D,)

= Wl(‘f:,(';'zp.“'p,.))qﬁ(pl' “*Pn)

P Sb (j(py - py))d
=€ CT(pyBa)-

Here we have used (3.12), (3.13), with g = (1,d), and
(5.6). Thus

P(s,n) = J. ] b (J(P1 “*Pn ))—IP'(s,n) dv(n)(pl. P, )’
T (6.4)
and hence, for all de¥ s
(D,P =" dd)

=j"'f(¢(pl"'pn),P"”"’b{j(px"'pn))
Xde(p,-*p,))dv(p;) - -dv(p,) >0,

since P’'>™ satisfies the spectrum condition if P’ does, as a
consequence of
Wﬁ’;}) = (Ld> R l(c(zs-(» yne
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Choosing for (¢,W,") irreducible symplectic repre-
sentations of the photon field, it is known that the momen-
tum P’ of W may be chosen to satisfy the spectrum condi-
tion.> From the above remarks then follows that P ™
satisfies the spectrum condition when symplectic represen-
tations (¢, W, %) are used; hence the premises of statement
(3) in Theorem 6.2 are fulfilled in this case.

By Theorem 6.2 we now have uncountably many P, -
representations U & corresponding to «>0, all satisfying
the spectrum condition and implementing the Poincaré au-
tomorphisms in 7™,

We propose to choose a = 1 for the “physical” repre-
sentation. By (6.3) and (6.4), then,

Pgs,n) =PC +J-

oT

iy p)) TP A (0D,
(6.5)
with

iB(jp PP A ()
€ =W oo

implementing the translation ., ; in the component fields

’ﬁ(s'")(Tb(j(p. ..... 0 (A)),

as easily checked. Thus the total four-momentum is just the
sum of the particle momenta plus the (generalized) sum of
the momenta of all component fields, and hence the total
energy is bounded below by » times the particle mass.
Another argument in favor of & =1 is the following:
Consider the one-particle sector (s,1). In (4.5) substitute

" N
Wikh —e??eW s @D P (R)=WE),).
Then it is easy to carry out the construction of the (s,1)

sector, now by applying (2.7) to (&0, WD, F by,
Withﬁg defined in (3.12), (3.13) we obtain

(U (Ad)B), ()
= "D O (&P Woter s B (AT'P)
=t Pap @ (r@PNW rigpr.00010) B (A7 'P)
= "D 10 (7(8P))W g bipra) B (A7 7P).

In the last step the boost definition (3.9) was used. Thus
T](:,l)(g) — V; U“'”(g).

Hence, choosing a = 1, the asymmetry in the description of
“ordinary” elementary particles and infraparticles (see Ta-
ble I) is removed, and Table I may be replaced by Table II.

TABLE II. Relativistic transformation laws.

P, representation

Elementary particle induced by the representation

(R,d) —e"" @D (R) of K

Infraparticle induced by the representation
(Rd)=e?" %@ D) (R) @ W, of K
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APPENDIX: G-COVARIANT REPRESENTATIONS

Let (7,U,5%°) be a given G-covariant representation 7 of
a C *-algebra % on a Hilbert space 7, G being a topological
symmetry group of %. Here U denotes the unitary G-repre-
sentation implementing the automorphisms 7, of U, ie,

U(g)U(g,) =U(g\g,) (A1)
and
U(g)m(A)U(g) ! = (1, (4)). (A2)

Since we study arbitrary, in general reducible, representa-
tions 7 of U, the commutant 7(A)’ need not be trivial. We
will first introduce unitary cocycles (see Refs. 3 and 20).

Definition A.1: A unitary cocycle is a map V: g—V,
from G into the unitary operators on & obeying the cocycle
equation

Ve, =V, UV, Ug) ™"

8182

(A3)

The set of all unitary cocycles is denoted by Z(G), the set of
all unitary cocycles with range in 7 (%)’ by Z 7(G). We shall
denote by Z, (G) and Z 7(G), respectively, the correspond-
ing subsets of continuous cocycles. Now any unitary opera-
tor W defines an element of Z(G) by

VY=wU@gW 'Ug) " (A4)

Cocycles of this form are called coboundaries.?® They form
the subsets B(G), B, (G), B™(G), B7(G) of the above intro-
duced sets of cocycles.

DefinitionA.2:Let V', ¥ *beelementsof Z(G). Then V!
is cohomologous to ¥? (V! ~¥2), if there exists a unitary
operator W such that (see Ref. 20)

Vi=wriu@w'Ug) (A5)

As easily shown, this defines an equivalence relation, so we
can form the corresponding quotient spaces H(G), H.(G),
H7(G), H7(G). The elements of these spaces are called co-
homology classes.

Theorem A.3: Let (7,U,7°) be the given G-covariant
representation of %, with a (continuous) unitary representa-
tion U of G implementing 7,. Then U’ is another unitary
(continuous) G-representation implementing 7, if and only
if it may be written as

U'tg)=V,U(g)
with an element ¥V of Z "(G}{Z 7(G)).

Proof: Given an arbitrary VeZ 7, (G), U’ as defined in
(A®6) is easily seen to be a unitary (continuous) G-represen-
tation implementing 7, . Vice versa, given such a representa-
tion U’, define V' by ¥V, = U’'(g)U(g) ~". Then it follows
immediately that V satisfies (A3) and that V,er(%)’. W

Since in applications we shall identify G with the Poin-
caré group P, , we will focus on continuous G-representa-

(A6)
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tions in order to guarantee the existence of observables like
energy, momentum or angular momentum of the system un-
der consideration. Let % be the set of all continuous unitary
G-representations implementing 7, in (7,5%"), % the set of
(unitary) equivalence classes of elements from % . Then we
have the following theorem.

Theorem A.4: Equation (A.6) induces a one-to-one
map from % onto H(G).

Proof: Let = denote unitary equivalence. Then using
Theorem A3 we get for elements U’ and U " from % :

U'=U"-U'(g)
=V, U(g)=WU"(g)W !
= WV U(g)W ~! with a unitary W
V=WV U@w 'Ug ™!
<>V ~V". ]

If 7 (A)' is Abelian, Z "(G) is an Abelian group with the
product cocycle defined by g— (V'oV?), = V1 V2 and the
identity element g— 1. As an example take the quasilocal
algebra U of a physical system (see Ref. 21) and choose the
representation 7 = @ ;7; on & = ®; 5 ,;, where the in-
dices label the superselection sectors of % (i.e., each =, is
irreducible, and 7; % 7, fori#j). Then 7 ()’ is generated by
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Group theoretical aspects of the extended interacting boson model (gIBM) with s, d, and g
bosons are discussed. The basis states and branching rules are given for the seven dynamical
symmetries. Casimir operators and their eigenvalues are obtained and enable one to write

down energy formulas.

I. INTRODUCTION

The interacting boson model (IBM) of nuclei, intro-
duced by Arima and Iachello,’ is extremely successful in
correlating the spectroscopic properties of low lying levels
that contain quadrupole collectivity and pairing effects. This
model treats pairs of valence nucleons (particles/holes) as
bosons and allows the bosons to carry angular momentum
! =10 (s bosons) or / =2 (d bosons). The most important
aspect of IBM is that it contains three dynamical symme-
tries, described by the groups U(5), SU(3), and O(6). The
phenomenal success of this model is well documented.” The
quest for providing an algebraic description of hexadecupole
(I = 4) collectivity, on the one hand, and the microscopic
theories® of IBM, on the other hand, lead one to include g
bosons also in IBM. The interacting boson model with s, d,
and g bosons is referred to as gIBM in Refs. 4 and 5. The
electric hexadecupole (E4) decay properties of L = 4™ lev-
els in nuclei® and also the rotational bands with k = 1%, 3%,
and 4% bandheads”® strongly point out that one should
further explore gIBM. In this paper we discuss some of the
group theoretical aspects of gIBM.

The different ways hexadecupole collectivity manifests
itself in the low-lying levels in nuclei is given by the various
dynamical symmetries of the gIBM Hamiltonian. Moreover
the identification and exploitation of the dynamical symme-
tries make gIBM analytically tractable and thereby allow for
a rapid analysis of experimental data. In a recent letter® we
showed that the gIBM possesses seven dynamical symme-
tries. The purpose of the present paper is to elaborate the
results given there. In Sec. II the generators of the various
groups in the seven dynamical symmetry group chains are
given. In Sec. III the plethysm problem (reduction of a
group representation into that of its subgroups) for the var-
ious group-subgroup chains in gIBM is solved. In Sec. IV we
give the results that enable one to write down energy formu-
las in the symmetry limits. Some concluding remarks are
made in Sec. V.,

Note that throughout the paper we always deal with
classical Lie algebras. Even when we use the symbol of the

® Senior research assistant of the National Fund for Scientific Research
(Belgium).

) Senior research associate of the National Fund for Scientific Research
(Belgium).

1644 J. Math. Phys. 28 (7), July 1987

0022-2488/87/071644-09$02.50

Lie group, we mean the Lie algebra, as is the custom in IBM
literature.

il. THE giBM AND THE GENERATORS OF ITS LIMITING
SYMMETRIES

The symmetry group for gIBM is U(15), the unitary
group in 15 dimensions. The 15 dimensions correspond to
the 15 single particle states, one coming from the s orbit, five
coming from the d orbit, and nine coming from the g orbit.
The 225 generators of U(15) are

b;m bl’m’ ’ (21)
with /,/'€{0,2,4} and b, = 5, b, = d, b, = g. As usual, we let
b = (— 1", _,, . (2.2)

Then the generators (2.1) can be linearly combined into an-
gular momentum tensor operators by

(bIxb ) =Y (ImI'my|Lou)b}, b, . (2.3)

The angular momentum generators of the physical O(3)
subgroup are described by

LY = @' XDD + (g X)L

In order to study the limiting symmetries of gIBM, we
should know all the subgroups in the chain
U(15)DGDG'--- D0(3). This problem has been consid-
ered by several authors.*>® Kota* gave a classification of the
U(15) subgroups, based on physical arguments, and recent-
ly it was shown® that this classification is complete. In this
section, we shall give the generators for the seven chains in
U(15)20(3).

(2.4)

A. The unitary orbit chains

Given the single boson orbits with / =s,d,g, we can
combine them into the orbit combinations (sd,g), (sg.,d),
and (s,dg), leading to the subgroups U(6) & U(9),
U(10) ® U(5),and U(1) ® U(14), respectively. For each of
these subgroups, we shall now describe the generators and
the chain to O(3).

(I) U(6) ® U(9): The subgroup U(6) is generated by
(bxb, )~ with 1,1’€{0,2} and U(9) by (b]xb,)"
(L,=0,12,...,8). Hence U(6) is precisely the usual IMB
group with s and d bosons, and the chains U (6) D0, (3)
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are well known.! The algebra of U(9) contains O(9) as a
subalgebra, spanned by

(bIXb), Lo=1357, (2.5)

and (b xb,){" is the O, (3) subalgebra of O(9). The phys-
ical O(3) group of U(15) is then spanned by the diagonal
O(3) contained in O, (3) ® O, (3). Thus the present chain
can be described as follows:

AUO—0(0)———0,(3)
U(sy X/U(S)\O(S) x |—00)
RN '
veu@y——""02:®
(2.6)

(II) U(5) ® U(10): U(5) is generated by (d *xd)"
(L =0,1,2,3,4), and is the same U(5) as in (2.6); U(10)
has generators (b]xb5,.){" with /I’ = 0,4. The algebra
U(9) in (2.6) is, of course, a subalgebra of U(10), but there
is still another subalgebra spanned by

g'xa)®, L=1357,
GTXBP +a@=xXH?® (a=+).

These are the generators of O(10); we can use either sign for
a. Hence the chains to O(3) are

(2.7

U(5)—0(s 04(3)
U(15) X 0(10) X  |—0(3)
\U(10)< >0(9)-—og (3)
U

(2.8)

(III) U(1) @ U(14): The operator #, = s' s generates a
U(1) algebra; #, counts the number of s bosons. Then
U(14) is generated by (b]xb,. )" with [, 1'e{2,4}. The
reduction of U(14) 1o O(3) goesover O(14) and O(5). The
basis elements of O(14) are given by

@XM, (g"xg) 7,
[@TX8)® + ao( — D*(g'xd) ],
k=23456 (a,= +).
There is still an O(5) subalgebra contained in (2.9),
spanned by the operators L ("’ (2.4) and by the following
rank-3 tensor operator
Q(3) — (dTXa)(?») _ % \/TT (gTXg)(B)
— a3 [dTXg+g' XD (a=+).
(2.10)
The + signin (2.9) and (2.10) may be freely chosen: the

commutation relations of {L {V,0 '} are independent of
this sign. The present chain reads

U(15)——U(14)——0(14)—0(5)—0(3) .
(2.11)

Note that with the O(5) subgroup in (2.11), @, in (2.9) is
constrained to be — 1.

(2.9)

B. The SU(5) and SU(3) limits

One can think of the / values / = 0,2,4 to be those of a
two-boson system with each “pseudo” boson carrying angu-

1645 J. Math. Phys., Vol. 28, No, 7, July 1887

lar momentun 1=2. This gives rise to a subgroup
SU(2/ + 1) = SU(5) of U(15). On the other hand, every
system with / = 0,2,4,....k bosons contains Elliott’s SU(3)
subgroup.'® Note that for sd IBM the pseudoboson subgroup
SU(27 + 1) (I = 1) coincides with SU(3). This is the reason
why SU(5) and SU(3) are discussed in the same subsection.

(IV) SU(5): Here SU(5) contains atensorof rank 1, 2,
3, and 4. The rank-1 tensor is L !, given by (2.4), and the
rank-3 tensor is Q¥ of (2.10). The remaining tensor opera-
tors have the following expression:

0% = (d'xd)? —J22(g"x2)?
—a(4/5)(dXg +gtxd)?
— aB(14/3\5)(d x5 xd)?,
oW = (dTxd)y® + (m/wg}(gfxg)m
+ a(y55/2y2) (d T x g + gt xd)¥
+B(1/25) (5T Xg + gt X5

(a=+, B=1+) (2.12)

As before, the structure constants are independent of the
choice of @ and 8. Obviously, the O(5) algebra of (2.11) is
contained in SU(5). Therefore we are dealing with the chain

U((15)——SU(5) 0(5)—0(3). (2.13)

(V) SU(3): The SU(3) algebra consists of the opera-
tors L ¥ of (2.4) and the rank-2 tensor

T® = (dtxd)® + 32/ 1D (g"x)?
+a(18y2/115)(d T X§ + g xd)?®
+ BU14H2/11{5) (s"xd + d T x5)?

(af= 1)
(2.14)
The SU(3) chain is the “shortest” chain to the physical
O(3) subgroup:
U(15)——SU(3)—0(3) . (2.15)
C. The O(15) and SU(6) limits

An obvious subgroup of U(15) is the generalized se-
niority group O(15), just like O(6) is the seniority group of
U(6) for sd IBM. Finally, one can think of the / values
! = 0,2,4 to be those of two fermions,yvith each “pseudofer-
mion” carrying angular momentum j = , giving rise to the
group chain
U(15)DSU2j + 1)

=SU(6)DSp(2/ + 1) =Sp(6)DO(3) .
Note that for sd IBM } =3, and hence U(6)DSU(4)
DSp(4) DO(3). Since SU(4) ~O(6) and Sp(4) ~0O(3),
this is again the seniority group chain.

(VI) O(15): The generators of O(15) are given by
(dj'xa)(1,3)’(g‘§'><g)(1,3,5.?)’

(s'xd +ad TxX5)?, (s'Xg+Bg'XHY,
[(dTxg)® —aB( — l)k(g“Xfi)”‘)]k =2,3,4,56
(aB= t).

(2.16)
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FIG. 1. Classification of the dynamical symmetry groups in the U(15) ex-
tended IBM and their consecutive decomposition into the physical O(3)
group.

Clearly, O(15) contains O(14) generated by (2.9), and
hence also the O(5) subgroup of (2.11):

U(15) O(15) 0(14) O(5) 0(3). (2.17)

Note that the @, in (2.16), @ in (2.10), and &, in (2.9)
should be chosen consistently.

(VII) SU(6): The SU(6) algebra contains the O(3)
generators P{" =L " and the rank-k tensors P‘® with
k =2,3,4,5. An explicit expression reads

PP = (dtxd)? — (3J11/5y2) (g x§)®
— a(93/10) (d T X g + gt xd)?
—aBistxd +d <52,

PP = (d"Xd)? + (J11/9)(g" X&)
—a(56/9)(d1xg +g"xd)?,

P9 = (dtxd)¥ — (J143/3)5) (g"x &)@
+a(22/33)(d X g + gt X d)
+ B(14/315) (s" X g + g'X5)@,

P = (g"X®)® + a(VIS26) (d X + g' X&)

(af= +).

The Sp(6) subgroup of SU(6) is generated by the odd rank
tensors P'X, k = 1,3,5. Thus the last group chain is given by

U(15) SU(6) Sp(6) 0(3). (2.19)
The seven subgroup chains of U(15) are shown in Fig. 1.

(2.18)

lll. THE BASIS STATES IN THE VARIOUS LIMITS AND
BRANCHING RULES

The basis states of gIBM are classified into totally sym-
metric representations of U(15), labeled'! by the Cartan—
Dynkin numbers (¥,0,0,...) = [N], where N is the total
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number of nucleon pairs (or holes) near a closed shell. In
this section, we shall discuss the reduction of such represen-
tations into the irreducible representations (irreps) of the
various subgroups.

(I) U(6)aU(9): In the reduction U(15)DU(6)
@ U(9), the irreps [N] decompose into [n,]®[n,]
(n44,n,>0), with n, +n, = N, of U(6) @ U(9). The re-
duction of U, (6) DGDO,, (3) is the classical IBM chain'
and is well known. For the chain U, (9) D0(9) D0(3), the
basis states are denoted by

U@9) o 00 2 013
. (3.1)

1y U, a,L,
Herein, v, is the O(9) label, since for the reduction

U(9) D0(9) one finds

ng1=[v] = (,,0,0,0) , (3.2)

v, = ng,n, —2,..,1 or 0.

The reduction O(9) D O(3) is not multiplicity-free: a stands
for the missing labels in this chain. The multiplicity M (L, )
of L, in the decomposition of the irrep [ v, | may be calculat-
ed by means of Littlewood’s rules.'? On the other hand, there
are also tables'? available for the reduction O(9) D0(3).
Since we are dealing with totally symmetric representations
of U(9), there is still an alternative method of obtaining the
L contents of a U(9) irrep [N]. This procedure is powerful
and easy to implement for machine calculations. Consider
thegroupU(n),n = 2*_, (2, + 1), and the decomposition
of the irreps [N] of U(n) into O(3) irreps (L), with the
condition [1] - (/) + (&) + -+ + (I;). To this end, we
first generate the single particle spectrum for the /, operator:
this consists of a number of /, eigenvalues m;, each with
degeneracy d;. Then, distributing the given number of bo-
sons N in the [, orbits in all possible ways, one finds the
degeneracy d(m) of a given total m value. Let (n,,...,n, ) be
a distribution of N bosons so that N=3_, n, and
m = 2*_, n,m,. For this distribution, the degeneracy of the
m value is TI*_  (“*7 ') . Thus the degeneracy of the
kLG elgenvalue mis

k fd, +n, —1
s 7T
(Bt (= 1 n;

where the summation is over all configurations (n,,...,n;)
such that n, + ... + n, = Nand m = 3%_, n,m,. Then the
simple difference formula

(3.3)

Dy(L) =d(m=L) —d(m =L +1) (3.4)

gives the degeneracy of a given L value, and thus, according
to (3.2),

M,(L)=D, _,(L)~D, _, (). (3.5)

For the reduction O(9) DO(3) we shall list the decomposi-
tion of all irreps (v,,0,0,0) for v, <10 in Table I.

(II) U(5) ® U(10): The U(5) algebra is the same as in
sd IBM, and hence also the labeling can be maintained. The
reduction U(15) DU(5) » U(10) is given by

[N]-[0]e [N],[1]e [N—1],..,[N]e[0]. (3.6)

Kota et al. 1646



TABLE L. Reduction of O(9) irreps (v,,0,0,0) for v, <10into O(3) irreps
(L). The multiplicity of (L) is written as an exponent.

,4,6,8
.2,3,4,5,6°,7,8,9,10, 12
22,3,4% 52, 6% 7%, 8%, 9%, 10°%, 11, 123, 13, 14, 16
,1,23,32,4%,54 6%, 74, 85,94, 10°, 114,124, 133, 143, 152, 162, 17, 18,
20
0%, 1,24 3%, 47,55 6%, 77, 8%, 9%, 10°, 117, 12, 13, 147, 15°, 16°, 17°,
184,192, 20% 21, 22,24
7 02’ 12’ 26’ 36’ 410’ 59’ 612’ 7!2, 814’ 9l3’ 1015’ 1113’ 1214y 13[2 1413 1510
16, 17%, 18%, 195, 20%, 21%, 22¢, 23, 242, 25, 26, 28
8 03’ 13, 29, 38’ 4]4, 514’ 6'8, 7]7’ 822, 919’ 1023, 1121’ 1223’ 1320’ 1422 1518
16'°,17'%,18',19'2, 2013, 21°, 22°, 23%, 245, 25*, 26, 272, 282, 29, 30,
32
9 04, 15’ 211’ 313, 419’ 5l9’ 626, 725, 830y 930’ 1033 1131 1235 1332 1433
15°, 16%1, 1777, 1875, 197, 20%, 21'%, 2215, 23'4, 2414, 251°, 26°, 27,
28%,29%, 30%, 317, 322, 33, 34, 36
10 05, 16’ 216, 317’ 426’ 527’ 635, 735’ 842, 941, 1048’ 1145y 1250 1347 1450
15%, 169, 179, 18%, 19%,20%, 212,22, 2377, 24%5, 25%1, 26, 27°5,
28'%,291°, 30'°, 317, 329, 33, 34%, 352, 362, 37, 38,40

[V U N
SCoOoN&

=)}

The remaining reductions are described by
U(10) DO(10):

[ng] - (04,0,00,0), v, =ngn, —2,.,1 or 0;
(3.7)
Uu((10) DU (9):
[nel—=[7], ny =ngne—1,..0; (3.8)
0(10)D0(9):
(v4,0,0,0,0) - (v,,0,0,0), v, =v,,0, — 1,...,0,

(3.9)

and the reductions U(9) D0O(9) and O(9) DO(3) have al-
ready been discussed in the previous chain. Thus the states in
the U(10) chain are labeled by

|7sg Vs Vg L, ) (3.10a)
or

|72ogsPg Vg sl y ) (3.10b)

(III) U(14): In the U(14) chain, the basis states are
given by

U(15)DU(14)D0(14) D> 0O(5) '_‘)0(3)>
N Mg Ve a,(apnay) BLIT

The reductions U(15)DU(14) and U(14)D0(14) are
classical for symmetric irreps, and are determined by

ng =NN-—1,.,1,0,

Vge = Hggsltge — 2,...,1 o1 0.

(3.11)

The reductions O(14) DO(5) and O(5) D0(3) are more
involved. There are several ways to deal with these problems,
but since we are considering the reduction of symmetric rep-
resentations, we shall discuss a method similar to the one in
U(9) DO(3), ie., a method based on weight space tech-
niques. First, consider the decomposition of U(14) irreps
(n44,0,0,...) into irreps of O(35). It is easy to see that in this
reduction the weights of the 14-dimensional standard repre-
sentation (1,0,0,...) are projected into the following weights
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of O(5):

(2, —2),(—2,2),(2,0),( —2,0),(1, — D, (= L1),
(0, —2),(0,2),(2,2),( — 2,2),(L,1),
(—1,-1),(0,0),(0,0) . (3.12)

Then, we consider all totally symmetric tensor products of
(1,0,0,...) with itself. In their projection onto the O(5)
weight space, the weights of these tensor products are gener-
ated by

[l;I(I—Ue")Jl,

where u runs over all values (3.12), and ¢” is the formal
exponential. In the expansion of (3.13), the factor F, of U"
is then the character of the irrep (#,0,0,...) of U(14) project-
ed onto the O(5) weight space. Using Weyl’s character for-
mula'® one knows that F, is of the following form:
Fo=y i,
T A

where the summation is over the highest weights A of the
O(5) irreps in which (#,0,0,...) decomposes. In (3.14), £, is
the characteristic of (1), and A is Weyl’s denominator:

(3.13)

(3.14)

A= I (e —e~ %, (3.15)
acR +

where R * is the set of positive roots of the Lie algebra. For

O(5), R * equals

{(1,1),(2,0),(1, - 1),(0, — 2)}. (3.16)

Hence in order to find the reduction of (#,0,0,...) into O(5)
irreps (a,,2,) we perform the following algorithm: (1) com-
pute F, in (3.13); (2) multiply F, by A, givenin (3.15); (3)
preserve all the terms in the dominant Weyl sector in F, - A,
i.e., preserve all terms e“***2 with 4,<0and 4,> — 4,; (4)
for every such highest weight (4,,4,), the corresponding
Cartan-Dynkin labels are given by (a,,a,) = (4, +4,— 1,
— A, — 1). Note that an irrep with Cartan-Dynkin labels
(a,,a,) has Young labels [7,,7,] = [@,/2 + a5, a,/2]. This
algorithm is easy to program, and is a straightforward exten-
sion of the one given for U(9) DO(3). As soon as we have
the reduction U(14) DO(5), we can use (3.11) in order to
obtain the reduction O(14) DO(5). These results are listed
in Table II for v, <10.

For the reduction of irreps (a,,a,) of O(5) into irreps
(L) of O(3), several solutions have been given in the litera-
ture. Tables of McKay and Patera’® list the reduction for
dim(a,,a,) <5000, and for all other irreps one can easily use
the branching rule generating function (23) of Gaskell ez
al.'® Therefore we shall not give any tables in the present
paper.

(IV) SU(5): This limit has been discussed in some de-
tail by Sun et al.® The decomposition of [N] of U(15) into
irreps (m,,m,mym,) of SU(5) is determined by (see
Thrall'® for a proof)

[N1- Y (2N —4p —6g — 8r — 105,2p,2,2r) .

Pg 1S

(3.17)
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TABLE IL Reduction of O(14) irreps [v,, ] for v, <10 into O(S) irreps (a,, @,); the multiplicity of (a;, a,) is written in front. Note that [r,, 7,]
= [a,/2 + a,, a,/2} are the Young labels.

1 0 2).
2 0 2, 0 4), (4 0).
3 0 0), 0 2), (0 4), 2 2), (4 0), 0 6), 4 2).
4 0 0, 2(0 2), 200 4), 2 2), (4 0), “4 1, (0 6),
(2 4), 2(4 2), (0 8), “4 4, (8 0).
5 0 0), 200 2), 3(0 4), 2(2 2), 2(4 0), 4 1), 2(0 6),
202 4), 34 2), (4 3), (6 1), (0 8), (2 6), 2(4 4),
6 2), (8 0), 0 10, (4 6), (8 2).
6 (0 0), 3(0 2), 4(0 4), 2(2 2), 34 0), 2 3, “4 0,
4(0 6), 3(2 4), 5(4 2), (6 0), 2(4 3), (6 1), 2(0 8),
2(2 6), 4(4 4), 2(6 2), 2(8 0), 4 95, 6 3), 3 1),
0 10, 2 8), 2(4 6), (6 4), 2(8 2), (0 12y, 4 8),
(8 4), (12 0).
7 0 0), 4(0 2), 500 4), 32 2), 3(4 0), 2 3, 24 1),
5(0 6), 502 4), 7(4 2), (6 0), 25, 3(4 3), 2(6 1),
4(0 8), 4(2 6), 7(4 4), 4(6 2), 3(8 0), 2(4 5), 2(6 3),
2(8 1), 2(0 10), 2(2 8), 4(4 6), 3(6 4), 4(8 2), “4 7,
(6 5), (8 3), (10 1), 0 12), (2 10y, 2(4 8), (6 6),
2(8 4), (10 2), (12 0y, (0 14), (4 10, (8 6, (12 2).
8 2(0 0), 4(0 2), 7(0 4), 42 2), 4(4 0), 2 3, 34 1),
70 6), 7(2 4), 9(4 2), 6 0), 2(2 5), 5(4 3), 3(6 1),
6(0 8), 6(2 6), 9(4 4), 6(6 2), 5(8 0), @2 7N, 4(4 5),
4(6 3), 3(8 1), 4(0 10), 4(2 8), 8(4 6), 6(6 4), 7(8 2),
(10 0), 24 7, 2(6 5), 3(8 3y, 2(10 1), 2(0 12), 2(2 10),
4(4 8), 3(6 6), 5(8 4), 2(10 2), 2(12 0), 4 9), 6 7,
(8 5), (10 3), (12 1), (0 14), 2 12), 2(4 10), 6 8),
2(8 6), (10 4), 2012 2), (0 16), (4 12), (8 8), (12 4),
(16 0).
9 2(0 0y, 5(0 2), 8(0 4), 5(2 2), 5(4 0), 2(2 3), 34 1),
10(0 6), 9(2 4), 12(4 2), 2(6 0), 3(2 5), 7(4 3), 46 1),
8(0 8), 10(2 6), 15(4 4), 96 2), 6(8 0), 22 1), 7(4 5),
7(6 3), 5(8 1), 6(0 10), 7(2 8), 13(4 6), 10(6 4), 11(8 2),
2(10 0), 2 9, 44 N, 5(6 5), 6(8 3), 3(10 1), 40 12),
402 10), 8(4 8), 7(6 6), 9(8 4), 5010 2), 4(12 0), 2(4 9),
2(6 7y, 3(8 9), 3(10 3), 2(12 1), 2(0 14), 22 12), 4(4 10),
3(6 8), (8 6), 3(10 4), 4012 2), (4 11), (6 9, 8 7,
(10 5), (12 3), (14 1), (0 16), (2 14), 204 12), (6 10),
2(8 8), (10 6), 2(12 4), (14 2), (16 0), (0 18), 4 14),
(8 10), (12 6), (16 2).
10 2(0 0), 6(0 2), 1000 4), 6(2 2), 6(4 0), 0 5), 202 3),
44 1), 12¢(0 6), 12(2 4), 15(4 2), 2(6 0), 4(2 5), 9(4 3,
6(6 1), 12(0 8), 142 6), 11(4 4), 12(6 2), 8(8 0), 42 1),
11(4 5), 10(6 3), 7(8 1), 9(0 10), 11(2 8), 19(4 6), 16(6 4),
16(8 2), 3(10 0), 2(2 9), 84 ), 9(6 5), 10(8 3), 6(10 1),
6(0 12), 7(2 10), 14(4 8), 12(6 6), 16(8 4), 8(10 2), 6(12 0),
2 11, 44 9), 5(6 7, 7(8 5), 6(10 3), 412 1), 4(0 14),
42 12), 8(4 10), 7(6 8), 10(8 6), 7(10 4), 8(12 2), (14 0),
2(4 11), 2(6 9), 38 7), 3(10 5), 3(12 3), 2(14 1), 2(0 16),
202 14), 4(4 12), 3(6 10), 5(8 8), 3(10 6), 5(12 4), 2(14 2),
2(16 0), 4 13), (6 11, 8 9), (10 7, (12 5), (14 3),
(16 1), (0 18), (2 16), 2(4 14), 6 12), 2(8 10), (10 8),
2(12 6), (14 4), 2(16 2), 0 20), (4 16), (8 12), (12 8),
(16 4), (20 0).

Note that the Young labels of (m,,m,,m;m,) are Tables for this reduction have been listed by McKay and
{m, + my + my + mym, + m; + mym, + m,m,}. The  Patera.'*> On the other hand, there are also some analytic
reduction of SU(5) irreps (m,m,m;,m,) into irreps  decomposition rules available for SU(5) irreps of the form
(ay,a,) of O(5) is in general a four-missing label problem. (m,0,0,0), (m,2,0,0), (m,4,0,0), and (m,2,2,0) (see Refs. 4
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TABLE IIL Reduction of U(15) irreps [ N] for N< 10 into SU(3) irreps (4,2); the multiplicity of (4,4} is written in front.

1 (4 0).
2 (8 0y, 4 2), 0 4.
3 (12 0y, (8 2), (6 3), 4 4), (6 0, 3 3, (0 6),
(2 2), 0 0).
4 (16 0), (12 2), (10 3), 2(8 4), (10 0), (7 3), (8 1),
2(4 6), (5 4), 2(6 2), (3 °5), 4 3 3 b, 0 8),
22 4, 2{(4 0}, (1 3y, 0 2).
5 (20 0), (16 23, (14 3), 2(12 4), (14 0), (10 5), (11 3,
(12 1y, 2(8 6), S 4, 3(10 2y, 6 7), 2(7 5}, 2(8 3),
209 ), 2(4 8), {5 6), 46 4), (7 2), 38 Oy, (3 7,
2(4 5), 3(5 3), (6 1), (0 10, (1 8), 3(2 6), 2(3 4),
4(4 2), (1°5), 2 3, 31, 2(0 4), 2(2 0).
6 (24 0), (20 2y, (18 3), 2(16 4), (18 0), (14 53, (15 3),
(16 1), 3(12 6), (13 4), 3(14 2), (10 7, 2(11 5y, 3(i2 3y,
213 Y, 3(8 8y, 2(9 6), 5(10 4), 2(11 23, 4(12 0}, 6 9),
27 7, 4(8 5), 5(9 3y, 2(10 1), 2(4 10, 2(5 8), 6(6 63,
4(7 4), 7(8 2j, 2(3 9), 34 7, 5(5 5), S(6 3), 37 D,
2(0 123, 402 8), 4(3 6), 7{4 4), 2({5 2, 5{(6 0}, 21 7,
2(2 5y, 4(3 3), 2(4 1), 4(0 6), 2(1 4), 4(2 2), 2(0 0).
7 (28 0, (24 2), (22 3, 2(20 4), 22 0y, (18 5), (19 3,
20 1), 3(16 6), (17 4), 3(18 2), 2(14 7y, 2(15 5), 3(16 3),
2017 1), 3(12 8), 2(13 6), 6(14 4), 2(15 2y, 4(16 0), 2(10 9),
31y 7y, 5(12 5), 6(13 3, 3(14 1), 3(8 10y, 3(9 8), 8(10 6),
6(11 4), 912 23, (6 11y, 37 9, 6(8 7, 8(9 5), 8(10 3),
5(11 1y, 34 123, 2(5 10}, 8(6 8), 8(7 6), 13(8 43, 5(9 2),
7(10 03, 2(3 11), 4(4 9), 8(5 7, 9(6 5), 97 3y, 6(8 13,
(0 14}, (1 12), 5(2 10y, 5(3 8), 12¢4 6), 8(5 4), 11(6 23,
41 9), 42 7, 8(3 3), 7(4 33, 4(5 1), 5(0 8), 31 6),
92 4), 3(3 2), 5(4 0), 31 3, @2 n, 3(0 2).
8 (32 0), 28 2), (26 3), 2(24 4), (26 0), (22 5), (23 3),
(24 1), 3(20 6), (21 4), 322 2, 2(18 7), 2(19 35), 3(20 3y,
221 D, 4(16 8), 2(17 6), 6(18 4), 2019 2), 4(20 0), 2(14 9),
315 7), 5(16 5), 6(17 3), 3(18 1, 4(12 10), 4(13 8), 9(14 6),
7(15 4), 10(16 2), 2{10 11, 4(11 9), 8(12 ), 16(13 5), 10(14 3,
6(15 1), 4(8 12, 3(9 10), 11(10 8), 1111 6), 17(12 4), 7(13 2},
9(14 O}, (6 13), 4(7 11), 8(8 9), 13(9 7), 15¢10 5), 14(11 3y,
912 1), 34 14), 3(5 12), 10(6 10), 11(7 8), 21(8 6}, 15(9 4y,
18(10 2), (11 0), 2(3 13y, 5(4 11), 11(5 9), 14(6 7), 18¢(7 5),
16(8 3), 9(9 1), 2(0 16), (1 14), 6(2 12), 8(3 10), 18¢4 8),
14(5 6), 23(6 4), 10(7 2), 10(8 0), 4(1 11y, 6(2 9), 13(3 7),
14(4 5), 14(5 3), 7(6 1), 6(0 10), 7(1 8), 15(2 6, 93 4),
14(4 2), 1(5 0y, 0o 7N, 7(1 5), 5(2 3, 5(3 1), 7(0 4),
12, 4(2 0).
9 (36 0), (32 2, (30 3}, 2(28 4}, (30 0y, (26 5), (27 33,
28 13, 3(24 6), (25 4), 3(26 2), 222 7, 2(23 53, 3(24 3y,
2(25 1), 420 8), 2(21 6}, 6(22 4y, 2(23 2), 4024 O), 3(18 9y,
3(19 7, 6(20 35), 6(21 3y, 322 D), 4(16 10), 4(17 8), 10(18 6),
T(19 4), 10(20 2), 3(14 11, 5(15 9), 9(16 7), 11(17 5), 11(18 3),
6(19 1), 5(12 12), 4(13 10), 13(14 8), 13(15 6), 19(16 4), 8(17 2),
10(18 0), 2(10 13), 5(11 11y, 11(12 9), 16(13 7, 19(14 5), 17(15 3y,
11(16 1), 4(8 14), 5(9 12), 14(10 10), 16(11 8), 28(12 6), 20013 4),
23(14 2), 2(15 0), 2(6 15), 4(7 13), 10(8 11), 18(9 9), 23(10 7),
27(11 5), 25(12 3), 13(13 1y, 3(4 16), 3(5 14y, 12(6 12), 15¢7 10y,
30(8 8), 26(9 6), 36(10 4, 17(11 23, 15¢12 Oy, 3(3 15), 6(4 13),
14(5 11y, 21(6 9), 29(7 7y, 31(8 35}, 28(9 3, 15¢10 1), 2(0 18),
(1 16}, 7(2 14}, 10(3 12), 22(4 10y, 24(5 8), 318(6 6), 25(7 43,
29(8 2), 4(9 O, 5(1 13y, 92 11y, 19(3 9), 23(4 7), 28(5 5),
23(6 3), 14(7 1), 9(0 12), 9(1 10), 23(2 8), 21(3 6), 29(4 4),
12¢(5 2}, 13¢(6 0), 3(0 9, 11 7, 12(2 5), 16(3 3), 7(4 1),
11(0 6), 71 4, 12(2 2), 0 3), 2(1 1), 4(0 0).
10 (40 0), (36 2), (34 3, 2(32 4), (34 O), (30 35), (31 3),
32 1), 3(28 6), (29 4y, 3(30 2), 2(26 1), 2(27 5), 3(28 3),
2(29 1), 424 8, 2(25 6), 6(26 4), 227 2y, 4(28 0, 3(22 9),
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TABLE III. (Continued.)

3(23 7), 6(24 5), 6(25 3), 3(26 1), 5(20 10), 4(21 8), 10022 6),
7(23 4), 10(24 2), 3(18 11y, 5(19 9), 1020 7), 11(21 5), 11(22 3),
6(23 1), 6(16 12), 5(17 10), 14(18 B8), 14(19 6), 20020 4), 8(21 2),
10(22 0), 3(14 13), 6(15 11), 13(16 9), 18(17 7), 21(18 5), 18(19 3),
12(20 1), 5(12 14), 6(13 12), 17(14 10), 19(15 8), 32(16 6), 23(17 4),
26(18 2), 2(19 0), 3(10 15), 6(11 13), 14(12 11), 23(13 9), 3014 7),
33(15 5), 30(16 3), 16(17 1), 5(8 16), 5(9 14), 17(10 12), 22(11 10),
40(12 8), 35(13 6), 47(14 4), 23(15 2), 18(16 0), (6 17, 5(7 15),
12(8 13), 22(9 11), 33(10 9), 43(11 7), 46(12 5), 39(13 3), 22(14 1),
4(4 18), 4(5 16), 14(6 14), 2007 12), 39(8 10), 42(9 8), 60(10 6),
42(11 4), 44(12 2), 7(13 0), 3(3 17), 7(4 15), 17(5 13), 27(6 11),
41(7 9), 50(8 7), 53(9 5), 43(10 3), 26(11 1), 2(0 20), (1 18),
8(2 16), 11(3 14), 29(4 12), 33(5 10), 55(6 8), 49(7 6), 60(8 4),
28(9 2), 22(10 0), 7(1 15), 11(2 13), 26(3 11), 36(4 9), 47(5 7),
46(6 5), 42(7 3), 22(8 1), 1000 14), 13(1 12), 32(2 10), 33(3 8),
50(4 6), 36(5 4), 37(6 2), 3(7 0), 3(0 11), 19(1 9), 232 7,
31(3 5), 25(4 3), 16(5 1), 18(0 8), 16¢1 6), 27(2 4), 123 2),
14(4 0), 3(0 5), 9(1 3), 42 1), 7(0 2).

and 9). For example, The decomposition of (v4,0,...) has been discussed before.

[m/2] The states in this chain are labeled by
(m,0,0,0)—»(a]yaz) = rgo (m - 2r,0) » 'stdg vdg a’(al’az)ﬂ’L> . (323)
(m—2,2,0,0) > (a,,a,) (VII) SU(6): Using weight space techniques, as de-
[(m—2)/2) scribed in chain I1I, one can prove that the reductions in the
=m0+ 3 (m- 2r,0)? (3.18) chain U(15) DSU(6) DSp(6) are given by the following

r=1 rules:
[(m~—1)/2]
+(m—=2[m/21,0) + ¥ (m—2r2) U(15)D8U(6):
r=1
[(m —2)/2) [N]—»E (0,7,0,N — 2j — 3k,0) ; (3.24)
+ Y (m—2r—24). ik
r=0 SU(6) DSp(6):

In (3.18) [x] is integer part of x. Finally, the reduction min(uv) p p+v-p—gq
O(5) D0(3) has already been discussed in chain III. Thus 0,00 - > % > (gng). (3.25)

the basis states in the present chain are labeled by p=0 ¢=0 r=p-—gq
For SU(6), the Young labels of (0,u,0,v,0) are

IN (ml’mzrmz’m4) a,(apaz) B.L ) . (3.19)

(V) SU(3): The SU(3) chain is the one that has been
studied most extensively.®*!”2! In order to obtain the re-
duction U(15) DSU(3), we have used a similar method as
previously described for U(14) DO(5). For an alternative
procedure which is based on Littlewood’s theorems, see
Kota.?? Listings for the reduction of [N] into SU(3) irreps
(A,u) are given in Table III for N<10. The reduction of
SU(3) irreps into SO(3) multiplets is well known,'® and
thus the states in this chain are labeled by

INa,(Au) K,.L) . (3.20)

(VI) O(15): The reductions U(15)D0(15) and
O(15) 20(14) are classical, and determined by

U(15)D0(15):
[N] _)z(vsdg’oy"-’o)y

Vg = NN —2,.,1 or 0; (3.21)
O(15)D0(14):
(U:dg’or")_’Z(Udg,o,-..,o),
Udg = Usdg,vsdg - 1,..-,0 . (3.22)
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{u + vu + v,v,»,0}, and for Sp(6) the Young labels of
(g,r,q) are given by (2q + #,g + r,q). Finally, we have to
consider the decomposition of Sp(6) irreps (g¢,7,g) into
O(3) irreps (L). There is no analytic formula for the reduc-
tion Sp(6) DO(3), hence we have to list the reductions in
tables. Such tables have actually already been provided by
McKay and Patera,'® therefore we do not repeat them here;
see also Kota.?® The basis states in this chain are described by

|V (0,,0,v,0) p(q,r,9) a,L) . (3.26)

IV. CASIMIR OPERATORS AND ENERGY SPECTRA

When the gIBM-Hamiltonian A is expressible in terms
of the Casimir operators of the groups appearing in a sym-
metry group chain, one speaks of a dynamical symmetry. In
that case, we can write down the energy formula. With the
generators given in Sec. II one can construct the Casimir
operators of the various groups in the seven limits of gIBM.
The expressions for the matrix elements of the Casimir oper-
ators of U(N), Sp(N), and O(N) are well known.?* If we
assume that i is a (1 + 2)-body operator, we have to deal
with the linear and quadratic Casimir operators only.

Rather than giving the energy formulas for each chain
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separately, we shall only list here the general expressions for
the Casimir operators for various representations. The linear
and quadratic Casimir operators of U(M) have the follow-
ing eigenvalue when acting on states of symmetric irreps
(£,0,...,0) = [k]:

(CUM))) =k, (CUM))) =k(k+M). (4.1)

We encouter them while dealing with U, (5), U, (9),
U, (6), Uy, (10), Uy, (14), U, (1), and U, (15) groups,
the subscripts denoting the relevant / orbits. Here the Casi-
mir operators C,(U(M))}, and C,(U(M)) are simply express-
ible in terms of number operators. For example, for the
U, (10) group they are ft,, = (A; + A, ) and i, (A, + 10),
respectively. The quadratic Casimir of O(M), acting on
states of the irrep with Cartan—Dynkin labels (%,0,...,0) has
the value

(C{O(M))) = k(k + M —2). (4.2)
This expression is useful for the O, (5), O, (9), O, (6),
0, (10), O, (14), and Oy, (15) groups. The explicit form
of the Casimir operator C,(O(M)) for these groups can be
given by the following general considerations. Given
L,15,....1x orbit, we can define u® (1,1,), v*” (1,1;) operators
as

uP L) = b]xb)P,
v (L)
= [B1xB)S +all)(— DY 1] X537,
(4.3)

where a(l;})) = + L, a(l])) =a(ll;), and a(l,])) a(}],)
= —a(ll). Now u{V(1,];) and A odd and v{" (/,];) with
I;>1; (or I, <l) generate the orthogonal group
OM = 3(2/, + 1)). Now the quadratic Casimir operator of
the group O(M) is given by

COUM) = [2 > u“’(lil,-)'”(l)(lili)]
[}
A odd

+ [2 u‘“(l,.g)-u‘“(ljl,)l . (4.4)

i

>

.
Herein -4 stands for ( — 1)*y24 + 1 (P X u?)§,
The quadratic Casimir operator of the SU(5) group in chain
IV can be expressed in terms of the operators L ¥, 0 and
0@, 0%, defined in (2.4), (2.10), and (2.12), respectively,
as

C,(SU(5)) = IOHL‘”-L(D +2.02-0?

+i_gQ(3).Q(3)+z4§Q(4),Q(4)] . (4-5)

Its eigenvalue for representations (a,,a,,a5,a,) of SU(S5) is
given by

(CSU(5))) =24t + 3a3 + 3a5 + 245 + 3a,a,
+ 2a,a; + a,a, + 4aa, + 2a,a,
+ 3a,a, + 5(2a, + 3a, + 3a; + 2a,) ,
(4.6)
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or, equivalently, in terms of the labels

{m11m2’m3ym4}i

Young

— (mymy, + mms + mmy 4+ mym,
+ mm, +mym,) +502m, + m,—m,) .
4.7
Similarly for the O(5) group in chain IV,
CoO(5)) =16[1LV-L Y + 180®-0] (4.8)

and for representations of O(5) with Dynkin labels (a,,a,)
and Young labels [7,,7,] one finds

(CO(5))) =1(a} + 2a,a, + 2a; + 4a, + 6a,) (4.9)
=7(1+3) + (7 + 1) . (4.10)

For the SU(3) groupin chain V, the quadratic Casimir oper-
ator and its matrix elements are

CZ(SU(3))=%[3§TZT(2)'T(Z)+ IOL(I).L(I)] (4.11)
and
(CSUBR)) =A%+ +Ap + 34 +p), (4.12)

where T is defined in (2.14). Finally for the SU(6) and
Sp(6) groups in chain VII we have

CZ(SU(6))=3[;L“"L“’+72g4P(2"P‘2’+§89L2P‘3’-P‘3’
+§g2P‘4’~P“”+%gP‘5’-P‘5’] , (4.13)

Cz(Sp(6))=4[%L‘”-L‘”+3§2P‘3"P(3>+;—¢§P‘5’-P‘5’] ,
(4.14)

where the operators P are defined in (2.18). The eigenval-
ues in terms of Cartan-Dynkin labels or Young labels are
given by

CoSU(6))op0v0y =2+ ¥V + v+ 6(u+v), (4.15)
5
CoSUE)) (o = 3, Mi(m; —2i+7),  (4.16)
i=1
Co(SP(6))grgy = 3¢° + r* + 3gr + 9q + 51, (4.17)
Co(Sp(6))ea,2,10
=4 (A; +6) + A,(4, +4) +A;(4;+2) . (4.18)

With the expressions given above for the Casimir opera-
tors and their matrix elements, it is easy to construct gIBM
Hamiltonians having any of the seven dynamical symme-
tries and also we can write down the corresponding energy
formulas. For example, in chain IT with states (3.10a) one
has, up to an N-dependent term,

Ey=An, +A;n,;(ny; +5) +4;0{(v+3)
+A4,L,(Ly +1) + Bing + Bong (n, + 10)
—+—B3usg(vﬂZ +8) + By, (v, +7)
+B L (L, + 1)+ CL(L+1). (4.19)

With the representations of the groups in the seven limits,
given in Sec. III and the Casimir operator expressions given
above one can easily construct the typical spectra that ap-
pear in gIBM.
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V. CONCLUDING REMARKS

The first task in the study of the dynamical symmetries
of gIBM is completed in this paper, namely the identification
of the symmetry group chains, the determination of their
generators, the construction of the Casimir operators in
terms of the generators, and finally the solution of the pleth-
ysm problem for the various group—subgroup chains. Now
one is in a position to construct the energy spectra in all the
symmetry limits. Moreover, by diagonalizing a linear combi-
nation of the Casimir operators of the groups in a given
chain, in a convenient basis like |s"d "aL ;;g"BL ;LM ),
one can construct symmetry defined basis states.

In order to further investigate which symmetry limits
have any physical relevance, it is necessary to calculate the
electromagnetic transition strengths and particle transfer
strengths, since these calculations would give us a clear in-
sight into the band structure of energy spectra. This pro-
gram, however, requires the derivation of analytic expres-
sions for reduced matrix elements of tensor operators in the
various group chains.
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Theta series and magic numbers for diamond and certain ionic crystal

structures
N. J. A. Sloane
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Two earlier papers by Teo and the author [J. Chem. Phys. 83, 6520 (1985); Inorg. Chem. 25,
2315 (1986) ] studied circular and spherical clusters in the simplest close-packed structures in
two and three dimensions. The present work considers clusters in other fundamental structures
(the hexagonal net, diamond), and applies the results to study clusters in related structures
(Lonsdaleite, graphite) and in binary arrays with the structure of the idealized ionic crystals

NaCl, CsCl, ZnS, CaF,, TiO,, O,Bi,.

1. INTRODUCTION

In Refs. 1 and 2 Teo and the author investigated circular
clusters in the square and hexagonal lattices in two dimen-
sions (2D), and spherical clusters in the simple, face-cen-
tered, and body-centered cubic lattices and the hexagonal
close-packing in three dimensions (3D), for various choices
for the center of the cluster. In these papers we gave the theta
series for each cluster, table of the coefficients and their par-
tial sums, which are the nuclearities or magic numbers of the
clusters, and coordinates for the atoms in the first few shells
of each cluster.

The present paper has two goals: (i) to give the theta
series for certain fundamental structures not considered in
Refs. 1and 2 (e.g., the hexagonal net in 2D, the diamond net
in 3D); and (ii) to show how these fundamental theta series
may be used to study clusters in more complicated struc-
tures, including binary and higher-order compounds, and to
enumerate the atoms of the individual elements in the clus-
ters. This technique is illustrated by considering the hexag-
onal diamond (or Lonsdaleite) net, various 3-D nets related
to graphite, and binary compounds having the structure of
the ionic crystals NaCl, CsCl, ZnS (zinc blende and wurt-
zite), CaF,, TiO,, and O,Bi,. For applications of these re-
sults see Refs. 1 and 2.

Theta series have been used for almost 100 years in the
calculation of numerical sums (such as Madelung’s con-
stant) associated with lattices: see, for example, Tosi,’
Glasser and Zucker,* and Borwein ez al.> However, the pres-
ent series of papers appears to represent the first application
of theta series (at any rate in recent years) to the enumera-
tive or combinatorial study of clusters. For example, the
especially simple expressions (17) and (19) for clusters in
the diamond structure do not appear to have been published
before. On the other hand, it would not be surprising if they
were to be found somewhere in the older literature. The au-
thor would appreciate hearing of any references that have
been overlooked. Computer programs (such as MAC-
sYMA®7) that are capable of performing algebraic computa-
tions now make it particularly easy to manipulate theta se-
ries.

Since the methods are similar to those used in Refs. 1
and 2, the treatment here will be brief. Except for diamond
we give just an analytic expression for each theta series, and
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the number of atoms in the first few shells of the clusters. The
nuclearities of the clusters are the partial sums of the latter
numbers, and can easily be derived from the information
provided, as is illustrated for diamond in Table I.

The same methods may be applied to lattices in spaces of
higher dimension; these results are described elsewhere.®®
However, it seems worth giving two particularly appealing
examples. The theta series of the E; or Gosset lattice in eight
dimensions (with respect to a lattice point) is

65, (X) = 6,(X)° + 6,(X)% + 6,(X)"). (0

Comparison of this expression with Eq. (17) shows that E;
may be regarded as an eight-dimensional diamond lattice.
The theta series of the notorious Leech lattice in 24 dimen-
sions (with respect to a lattice point) is

TABLE 1. Clusters in diamond structure, centered at (a) an atom, (b) the
midpoint of two neighboring atoms, and (¢) the center of a tetrahedral hole.
Here S, is the number of points in the spherical shell of radius Jn,and G, s
the magic number of the cluster.

(a) Diamond, atom (b) Diamond, edge (c¢) Diamond, hole
3

n S, G, n—¢% S, G, n S, G,
0 1 1 0 2 2 4 4
3 4 5 1 6 8 1 6 10
2 12 17 2 12 20 23 12 22
23 12 29 3 12 32 3 8 30
4 6 35 4 6 38 43 12 42
43 12 47 5 18 56 5 24 66
6 24 71 6 18 74 63 16 82
63 16 87 7 12 86 83 24 106
8 12 99 8 30 116 9 30 136
82 24 123 9 14 130 103 12 148
10 24 147 10 6 136 11 24 172
103 12 159 11 30 166 12% 24 196
12 8 167 12 24 190 13 24 220

123 24 191 13 18 208 142 36 256
14 48 239 14 30 238 162 i2 268
143 36 275 15 26 264 17 48 316
16 6 281 16 24 288 182 28 344
163 i2 293 17 30 318 19 24 368
18 36 329 18 24 342 203 36 404
183 28 357 19 18 360 21 48 452
20 24 381 20 24 384 223 24 476
203 36 417 21 36 420 243 36 512
22 24 441 22 24 444 25 30 542
223 24 465 23 48 492 263 36 578
24 24 489 24 30 522 27 32 610
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eLeech (X) = %(gz(X)Z“ + 93(X)24 + 94(X)24)
— (6,(X)8,(X)8,(X)). 2)

There is no 3-D analog of this lattice.

il. THETA SERIES

Let T be an array of points {or atoms) in Euclidean
space (of any numbers of dimensions). The norm s's of a
vector s is its squared length. The theta series of T with re-
spect to an arbitrary point P is the formal power series

Orp(X) =YX PU=D, )

teT
The subscript P may be omitted if it is clear from the context.
The coefficient of X" in O1,(X), S, say, is therefore the
number of atoms in 7 at squared distance # from P, i.e., the
number of atoms on the spherical shell of radius {/» around
P. The partial sum

G, = S5, (4)

men
is the total number of atoms in the spherical cluster of radius

Jn centered at P, i.e., the nuclearity or magic number of that
cluster.

If T'is a binary array, consisting of two types of atoms,
say

T=Ty UTy,
where T, (resp. T ) is the set of atoms of type X (resp. ¥),

then the bivariate theta series of T with respect to an arbi-
trary point P is defined to be

075 (X,Y) =07 »(X) + O (). (5)

For greater emphasis we sometimes replace X and Y by the
symbols for the corresponding elements, as is illustrated in
Eqgs. (27)-(29).

The symbols Z, Z %, Z * denote the integer points along a
line, the square lattice of points with integer coordinates in
2D, and the simple cubic lattice in 3D, respectively. The hex-
agonal lattice in 2D (with coordination number 6, and
scaled so that neighboring atoms are at unit distance apart)
is denoted by A,.

The theta series of the structures considered in this pa-
per may be conveniently expressed in terms of the seven fun-
damental functions given in Eqs. (6)—(12). These are

S oxCroiZe,, ), (6)

for any real number a, which is the theta series with respect
to the origin of the 1-D array

wwa—laa+la+2,a+3,.. ;
0,(X) =7,/2,(X) =0, ,,,(X)
=2X 14 42X 42X 4 L ox O 4 (7
0:(X) = 75(X) = 0, (X)
=14+2X+2X*+2X° +2X ' 42X 4 -+, (8)
04(X)=03(—X)
=1-2X+2X*—2X° 42X 22X 4 .-+ (9)

7. (X) =
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(6,, 6,, and 6, are particular examples of Jacobi theta se-
ries'?); and the theta series of the hexagonal lattice with re-
spect to an atom, the midpoint of an edge joining two neigh-
boring atoms, and the center of a triangular hole,
respectively, which are

$o(X) = Oy aiom (X)
= 0,(X)0,(X>) + 6,(X)6,(X?)
=14+6X+6X°+6X°
+12X7 4+ 6X°% 4+ 6X 12+ --, (10)
$1(X) = O, egge (X)
=160,(X "*)0,(X*'*)

22X1/4+2X3’/4+4X”4+2X9M+4X13/4+ ey
(11)

$:(X) = O, e (X)
= 0,(07,6(X?) + 05X, 5(X?)
= §{Bo(X ) — (X))
— 3X1/3 + 3X4/3 + 6X7/3 + 6X13/3
+3X (12)

Tables 46 of Ref. 1 give the first 80 terms in (10)—(12). The
Jacobi theta series 6,,6,,0, satisfy numerous identities'*'?;
these have been used to simplify later formulas whenever
possible.

. TWO-DIMENSIONAL NETS

Two-dimensional nets have been extensively studied:
see, for example, Wells'"'? and O*K eeffe and Hyde.'* There
are three regular nets, two of which (the square lattice
4* = Z ? and the hexagonal lattice 3° = A,) we investigated
in Refs. 1, 2, and 14.

We now consider the third regular net, the hexagonal
net 6* = H, (Fig. 1). This may be regarded as the union of
A, and a reflected copy of A,. Let neighboring atoms be at
unit distance apart. Then, using the results in Ref. 1, it fol-
lows that the theta series of H, with respect to an atom, the
midpoint of an edge joining neighboring atoms, and the cen-
ter of a hexagonal hole are, respectively,

O, atom (X) = $o(X3) + $,(X?)
= o (X) + (X))
=143X +6X°+3X*+6X" +6X°
+6X 1+ 6X T +3X 146X+ -,
(13)
O, cage (X) = 4, (X) — ¢,(X?)
292()(3/4)7?”6()(9/4)
=2X VA4 AXT 44X P g gy 1ol
S0 SRR CUANW') SULNIYS gL
+ 6X W L 4x o (14)
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FIG. 1. Two-dimensional hexagonal net H,.

eHz,hole(X)
= Po(X) — ¢o(X?) = 24,(X?)
=6+ 6X 12X+ 12X B+ 6X 0+ 12X Y
FOXP 12X 12X+ 12X+ . (19)

Remarks: In principal there is no difficulty in calculat-
ing the theta series of any 2-D or 3-D structure (as illustrat-
ed in Sec. IX of Ref. 1). The interesting question is to find as
simple an expression as possible. Using Refs. 1 and 2 and the
above formulas simple expressions may be obtained for
many other 2-D nets. For example the theta series of the
Kagomé ner (Fig. 8 of Ref. 13) with respect to an atom and
the center of a hexagonal hole are

$o(z) — ¢,(42) and Py(2) — $o(42), (16)
respectively.
IV. THE DIAMOND NET

The diamond net (p. 117 of Ref. 11, p. 121 of Ref. 12, p.
26 of Ref. 15) may be regarded as the union of a face-cen-
tered cubic (fce) lattice [in which the 12 neighbors of the
origin have coordinates of the form (+ 1, +1,0)] and a
translation of this fcc lattice by (1,4,4). The minimal distance
between atoms is y3/2. Then using the results in Ref. 1 we
find that the theta series of diamond with respect to an atom
[e.g., the point (0,0,0)], the midpoint of an edge [e.g.,
(4,4,1) ], and the center of a tetrahedral hole [e.g., (0,0,1)]
are, respectively,

$)

diamond,atom (X )
= }(6,(X)? + 6,(X)° + 6,(X)7)
=14+4X3* L 12X 12X "4 4 o) (17)
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ediznmond,edge (X )
= 6,V HO,(X)m3/5(X*) + 05(X )7, 5(X )}
— 2X3/16+ 6X19/16+ 12X35/]6+ 12X51/16 + ey

(18)
ediamond,hole (X)
= §(6,(X)’ + 0;(X)* — 6,(X)%)
=4X3* L 6X 4+ 12X VA 48X e (19)

Table I displays the first 50 coefficients .S, in (17)-(19)
and their partial sums G, [see Eq. (4)]. The first column
agrees with and extends a small table given by Prins and
Petersen'® (reprinted on p. 1039 of Ref. 17).

For the closely related hexagonal diamond or Lonsda-
leite net (Fig. 3.35¢c of Ref. 12) we give just the theta series
with respect to an atom, which on the same scale is

{92(X16/3)¢2(X2) +93(X16/3)¢0(X2)}+ {7]1/8(X16/3)
X (X ?) + (102X *3) — 7,,5(X 197))po (X )}
=1 +4X3/4 + 12X2 +X25/12 +9X“/4 + 6X4

+6X49/12+9X19/4+2X16/3+18X6+ (20)
(using Tables 16 and 22 of Ref. 1).

V. GRAPHITE AND RELATED 3-D NETS

The hexagonal net H, contains twice as many atoms as
hexagonal holes, and many different 3-D nets may be formed
by stacking appropriately displaced layers of H, (p. 922 of
Ref. 12). By stacking identical layers, i.e., using the sequence
AAA - -+ we obtain the primitive hexagonal array (p. 596 of
Ref. 13). If the distance between layers is g, and the distance
between atoms in the same layer is 1, the theta series of the
primitive hexagonal array with respect to an atom is, from
( 13 ) H

105X ) (Bo(X 172) + po(X >'D)). (21)

By stacking layers in the sequence ABAB - - - we obtain
the ordinary graphite net (p. 922 of Ref. 12), in which there
are two geometrically distinct types of atoms. With respect
to an atom which is opposite afoms in the two adjacent lay-
ers, the theta series of graphite is also given by (21). With
respect to an atom which is opposite soles in the two adjacent
layers, the theta series of graphite is

5 (X “)(Bo(X %) + $o (X)) + 26,(X “), (X *2).
(22)
By stacking layers in the order ABCABC - -+ we obtain
the rhombohedral graphite net (p. 923 of Ref. 12), in which
all atoms are geometrically equivalent. The theta series with
respect to any atom is
186(XD)(36;(X°%) — 6;(X )
+ 1do(X2)(36,(X ) — 6;(X 7). (23)

VL. IONIC CRYSTAL STRUCTURES

To illustrate the application of theta series to binary
compounds we consider seven of the most regular ionic crys-
tal structures. The first six are pictured on p. 15 of Ref. 18.
We use the most symmetrical (idealized) versions of these

N. J. A. Sloane 1655



structures, in which the parameters of the unit cell are such
as to give the highest coordination number. The same tech-
niques may be applied to more general structures, but the
resulting theta series are not as simple.

The first four examples all follow the same pattern. We
begin with the simplest.

(1) The idealized rock salt (NaCl) structure consists of
two types of atoms (Na and Cl, or more generally X and Y)
placed alternately at the points of the simple cubic lattice.
The theta series with respect to an X-type atom is [from (45)
and (53) of Ref. 1]

erock salt, X (X3 Y)
= efcc,atom (X) + efcc,oct. hole ( Y)
= §60,(X)* + 0,(X)°) + 40;5(Y)® — 6,(Y)°)

=X+ 6Y+ 12X2 4+ 8Y3 4+ 6X*+24Y°
+24X°+ 12X8 4+ 30Y° +24X 10 4 -+, (24)

The X- and Y-type atoms are geometrically equivalent, so
the theta series with respect to a Y-type atom is obtained by
interchanging X and Yin (24).

(ii) The cesium chloride (CsCl) structure similarly con-
sists of two types of atoms placed alternately at the points of
the body-centered cubic (bce) lattice. The theta series with
respect to an X-type atom is [from (37), (43) of Ref. 1]

eCsCl,X (X’ Y)
= ez—‘,atom (X) + eZ",hole (Y)
=0,(X)° + 6,(Y)*
=X 4 8Y34 46X+ 12X+ 24Y'/4 4 8X3
+ 66X 424714 L 24X5 4 24X0 4 -+ (25)

(iii) The zinc blende (ZnS) structure is obtained in the
same way from the diamond net. The theta series with re-
spect to an X-type atom is [compare Eq. (17)]

ezinc blende, X X,Y)
=16,(Y)° + 6,(X)* + 6,(X)?)
=X 4L 4Y¥ 4 12X2 4+ 12V 4 6X 4 + 127194
4+ 24X° 4+ 16274 L 12X 8 4+ 24734 4 ... | (26)

(iv) The wurtzite (ZnS) structure'® is similarly ob-
tained from hexagonal diamond. The theta series with re-
spect to an X-type atom is obtained by replacing X by Yin the
second bracketed expression in (20).

(v) In the idealized fluorite (CaF,) structure the two
types of atoms are not geometrically equivalent, and so it
seems clearest to replace X and Y by the appropriate chemi-
cal symbols. With respect to a calcium atom we have [using
(45) and (51) of Ref. 1]

eCan,Ca (Ca,F)
= Oec,atom (C8) + 204 e note (F)
= }(6;(Ca)’ + 6,(Ca)’) + 6,(F)?
=Ca’ + 8 F*4 4 12 Ca® + 24 F'/*
+6Ca’ + 24 F'%4 1 24 Ca% 4+ 32 F¥7/4
+12Ca® + 48 F>5/4 ... (27)

{compare (26) ]. The fluorite structure may also be regard-
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ed as a simple cubic lattice of F atoms with half the holes
filled by Ca atoms. Therefore, with respect to a fluorine
atom, we have

ec«an,F (Ca,F)

= eZ",atom (F) + %623,hole (Ca)

= 6,(F)> + 16,(Ca)’

=F"4+4Ca¥* +6F +12F* +12Ca'"’* + 8 F®

+6F +12Ca"®* +24F° +24F° +---.  (28)

For antifluorite (p. 161 of Ref. 12) we interchange Ca and F
in (27) and (28).

(vi) The rutile (TiO,) structure illustrates how less reg-
ular structures may be handled. Rutile consists of Ti atoms

at the positions of the bee lattice and O atoms at four trans-
lates of the simple cubic lattice Z * by the amounts

i (uyu’o)x i (% + uy% - u9o)y
where u~0.30. The theta series of the translate Z3

+ (u,0,w) is n, (X) 7, (X)), (X). It follows using (71) of
Ref. 1 that
eTiOz,Ti (T,0)

= 6,(Ti)® + 8,(Ti)?

+27[u (0)293(0) +277u+1/2(o)262(0)- (29)

(vii) The final example illustrates how close-packed te-
trahedral structures (such as are described on pp. 161 and
162 of Ref. 12) may be handled. The idealized O,Bi, struc-
ture consists of Bi atoms at the points of an fcc lattice in
which three-quarters of the tetrahedral holes are occupied
by O atoms. The theta series with respect to a Bi atom is

[using (45) and (51) of Ref. 1, and counting the holes with
the correct multiplicity ]

©0.5i, 5 (0,B1)
= e aom (B1) + 3720 1er. note (O)
= %(ez(Bi)3 + 93(Bi)3) + %92(0)3
= Bi® + 6 0%* + 12 Bi* + 18 O'/* + 6 Bi*
+ 18 0"/% 124 Bi® + 16 0?7/ + 12 Bi®
+240%4 4 .- (30)

The coordination number of 6 agrees with Table 4.5 of Ref.
12.

Erratum of Ref. 1: In Eq. (10) of Ref. 1, the second +
sign should be omitted.
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A particular class of nonempty spatially homogeneous orthogonal cosmologies of the Bianchi
classification is considered in the presence of a nonzero cosmological constant A, i.e.,
cosmologies that can be transformed into a three-dimensional autonomous dynamical system:
these are the axisymmetric type II, the pseudoaxisymmetric type VI, and the (n% = 0) types
V, VI, (including III = VI_,). A qualitative method to investigate such dynamical systems as
a whole is presented. The qualitative study yields for every type a set of solutions of nonzero
measure and another one of zero measure becoming isotropic in an infinite cosmological time

when A> 0.

. INTRODUCTION

The discovery of the microwave background radiation
in 1965 confirmed the isotropy assumption in the early
Friedmann-Lemaitre-Robertson-Walker ~ cosmological
models. However, it left open the question of why our uni-
verse should be isotropic. Several attempts to solve this prob-
lem have been done since that time. The most recent is the
inflationary model of the Universe,’ suggested by Guth.? In
this model, a period of exponential expansion can reduce an
initial anisotropy, but it has been shown by Barrow> that an
initially high anisotropy will prevent the Universe from get-
ting into an exponentially expanding phase. Collins and
Hawking showed* that the set of spatially homogeneous cos-
mological models approaching isotropy at infinite times is of
zero measure. They concluded therefore that the isotropy of
the Universe cannot be explained without postulating spe-
cial initial conditions.® However, they did not consider the
possible influence of a nonzero cosmological constant A on
the isotropy of the Universe. In two previous articles®’ we
have shown then that for the special class of the anisotropic
cosmologies of the Kantowski-Sachs type, there exist sets of
solutions of nonzero measure (when they originate at cer-
tain singular points, in the context of autonomous dynamical
systems, outlined in the following) as well as a set of zero
measure which is not contained in the preceding ones (be-
cause the models start in this case at a different singular
point), all approaching isotropy at infinite times, when a
positive cosmological constant is considered. This brings us
back to the idea of Misner who suggested® that our Universe
started off in a chaotic state with inhomogeneities and an-
isotropies of all kinds. In order to investigate this point of
view, Misner has considered® the effects of neutrino viscosity
in damping out the anisotropy of the homogeneous cosmolo-
gical model of Bianchi type I. The “dissipative process” we
use here is only a nonzero cosmological constant.

The results for the Kantowski-Sachs type, however,
have been obtained by studying a three-dimensional autono-
mous dynamical system, which gives us global qualitative

) Present address: Université du Burundi, B. P. 2700 Bujumbura, Burundi.

1658 J. Math. Phys. 28 (7), July 1987

0022-2488/87/071658-09$02.50

solutions and quantitative asymptotic behaviors around the
singularity points. Autonomous dynamical systems are well
known in cosmology'®!' but only in the plane case is the
mathematical theory well established.'*!* The generaliza-
tion to three dimensions was initiated by Bihari'* and
Couper,'? who studied the modes of approach to the sim-
plest types'® of singular points (i.e., where the right-hand
sides disappear simultaneously). When the dimension is
higher than 3, we have at our disposal a general theorem,
stated by Bogoyavlensky,'” applying to nondegenerate sin-
gular points of autonomous dynamical systems of any di-
mension. Because of its interest it will be given in the Appen-
dix. Autonomous dynamical systems of (at least) three
dimensions appear quite naturally in Bianchi cosmolo-
gies.!®!1718 We present here a method to investigate globally
three-dimensional autonomous dynamical systems. Let us
indicate that our method differs from the one given by Bo-
goyavlensky.'”!> We obtain then the evolutions of cosmolo-
gical models from one singular point to another. In this pa-
per, we will restrict ourselves to a certain class of orthogonal
Bianchi models containing a perfect fluid: to the class A in
the notation of Ellis and MacCallum,?° where we analyze the
axisymmetric model of Bianchi type II and the pseudoaxi-
symmetric one of type VI,; to those of class B, which have
ng = 0: the models are then of the types III, V, VI, where
III = VI_,. The other axisymmetric models of class A are
either lower- or higher-dimensional autonomous systems.
The special case A = — 1/9 of class B will be considered
elsewhere.'® The technique for the asymptotic behavior
around the singularity points for these models has been in-
vestigated by MacCallum.*! The main results in our paper
are, as well as the qualitative study of a class of empty Bian-
chi models with cosmological constant, the existence of sets
of zero and especially nonzero measure of solutions becom-
ing isotropic in an infinite cosmological time when A > 0 for
all types studied herein. These sets whose scale factor is zero
at the beginning of the evolution then asymptotically ap-
proach the de Sitter solution, indicated by Wald*” as being
the asymptotic behavior for all Bianchi models when A > 0.
Some of the models belonging to the set of zero measure have
the additional property of starting at the Einstein—de Sitter
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model. Let us indicate that in this paper we present global
qualitative solutions of a particular class of Bianchi models
with a particular matter stress-energy tensor whereas Wald
gives only the asymptotic behavior but for all Bianchi mod-
els without any assumption about the nature of the matter
stress-energy tensor. Furthermore our method enables us to
conclude that there exists a set of solutions approaching as-
ymptotically the de Sitter one, which is of nonzero measure.

The paper is organized as follows. In Sec. II the global
qualitative method to study three-dimensional autonomous
dynamical systems is described. In Sec. III we discuss qual-
itatively empty Bianchi models of the types II, III, V, VI,
and VI, in the presence of a nonzero cosmological constant
and in Sec. IV the nonempty models for all these types are
studied by means of a three-dimensional autonomous dy-
namical system in the presence of the same constant. Con-
clusions are outlined in Sec. V.

Il. QUALITATIVE METHOD

Einstein’s field equations can be written in the form
X =x[(3y—2)(1—x) —B" +3Az], 2.1
B" =1B'[4— By —2)x — B + (2A/3)z]

—27IC{4 — 4x — B2 — (4A/3)2), (2.2)

7= —2z[1+3By —2)x+ 1B — (A/3)z], (2.3)
with the first integral

B?=4—4x — Az -z, (2.4)

for the restricted class of perfect fluid Bianchi models, *° indi-
cated in Sec. I, in the presence of a nonzero cosmological
constant, where' =d /d() is the derivation with respect to the
time variable Q = €(¢), first used by Misner®**- to study
the asymptotic behavior of models of the Bianchi types I and
IX. The variables x = 3u/8%and B’ = 2.30/6 (where ois
the shear scalar) measure, respectively, the dynamical im-
portance of the matter content and the rate of shear in terms
of the volume expansion 8, z = 96 ~2, and ¥, is an effective
potential for the model’s anisotropy,”' 8= (f3,,3,), where

for axisymmetric models 8 = 3, and for (n? = 0) models,

V3B, = kf3,, for some constant k, 8 being then defined by

— B3+ kZ=kB, + 3B,. Here C takesthe values4, — 2,

0,0 < C<2fortypesII, VI, V,and VI, , respectively, C =1
for type IIl and C = 2¢/\/q” — 3k for type VI, (where g is
defined for instance in Ref. 20). The equation of state has the
barotropic form p = (¥ — 1)u, where p is the pressure, i the
density of matter, and ¥ a constant whose values lie in
the range 1<y<2. The upper limit ¥ =2 corresponds to
Zeldovich’s stiff equation of state.

In order to study the three-dimensional autonomous dy-
namical system (2.1)—(2.3), we first calculate the singular
points at finite distance (called also critical points or equilib-
rium points or rest points) and examine the behavior of inte-
gral curves in their neighborhood. We obtain the singular
points at infinite distance by introducing three different

Poincaré transformations®!’
x=us"!, x=s5"1 x=us""!,
B'=s"", B'=us"!, B'=uvs"],
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1

z=uvs"1, !

z=uvs"}, !

z=s5"",
alternatively in the system (2.1)-(2.3). The first integral
(2.4) determines the region of physical interest: we have
B'? — 4+ 4x + $Az <0, since V, is purely exponential for
the models dealt with in this paper. Let us remember® that
for the Kantowski-Sachs type we had fB7
— 4 4 4x + $Az > 0. In addition we have x > 0, 2> 0. As for
a plane system, we distinguish between simple (nondegener-
ate: all the eigenvalues have nonzero real parts) and multiple
(degenerate: at least one eigenvalue is zero) singular points.
In the first case, two different types appear: saddles and
nodes. When two of the three eigenvalues have real parts
with the same sign, we have a saddle point. If the three real
parts have the same sign, we have a node, attracting (stable)
if all the real parts are negative, repelling (unstable) in the
other case.
We analyze first a saddle point with the autonomous
dynamical system put into the canonical form

X' =AX+f, Y =uY+g, zZ=vZ+h, (2.5)

where A, u, v are (nonzero) eigenvalues and where f, g, 4 are
the three nonlinear terms of the system.?® The singular point
is at the origin of the coordinates (X,Y,Z). Let us assume
A>0,u>0,v <0forthesystem (2.5). Here, 8, ¢ intervening
in what follows correspond to the angles of the usual spheri-
cal coordinates (X =rsin@cos ¢, Y =rsinfsing, Z=r
cos 8). The sign of v is denoted by o(v). The following
theorem'#?” gives us then the behavior of the separatrices of
the saddle.

Theorem 2.1: If the autonomous system (2.5) has its
characteristic roots as assumed, then there is (a) only one
orbit tending to the origin with o(v)Q1— — « and 8_
=lim,, . __ 6 =0 and only one orbit with  _ = 7; and
(b) a curve y satisfying the following properties: ¥ and its
projection on the plane (X,Y) are homeomorphic to a circle,
and every orbit starting at some point of y is tending to the
origin with o(v)Q— + « and lim_g,_ | . 6 = 7/2. The an-
gle ¢ is fixed according to the well-known theorems of
nodes and foci for a plane autonomous system,'*!2

We consider now a node for the same®® autonomous
dynamical system (2.5) and assume |v| < |u|<|4 |.

Theorem 2.2'%; If the eigenvalues are all of the same
sign, there is a sphere centered at the origin such that every
orbit starting at its surface tends to the singular point with
ol — 0.

Theorem 2.3'%: If the eigenvalues are such as assumed,
then every orbit which tends to the origin does go alongside
the positive Z axis or the negative one except those orbits
which start at a curve ¥ which is homeomorphic to a circle,
as well as its projection on the plane (X,Y); in this case
6. = /2. The same remark as before applies for the angle

o

d.

These two latter theorems show what is essentially new
in Bihari’s work about nodes in three dimensions: there are
double infinities of orbits tending to the singular point (in
this case alongside the Z axis), instead of only simple infini-
ties as in the plane case. The generalization of these theorems
about the topological structure of nondegenerate critical
points to yet higher-dimensional autonomous dynamical
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systems is given in the Appendix. The case where one of the
characteristic roots is zero and the other two of opposite
sign, i.e., the case of a multiple or degenerate singular point,
has been studied by Couper.'® In this case the behavior of the
integral curves is significantly more complex than for nonde-
generate critical points.”® All the theorems in this section
and in the Appendix apply to the case of isolated singular
points. When we have continuous sets, i.e., nonisolated sin-
gular points, it is sometimes possible to extend the above
definitions and theorems to these cases.*”

In order to arrive at a global picture, we have to join the
different equilibrium states, at finite distance and at infinite
distance (if the variables of our system extend that far). We
do this by analyzing the three surfaces

lia =0 laa=o lia=2

in particular their intersections. We obtain then the sign of,
for instance, dz/dx along some orbit and can so derive the
global behavior of all the orbits between the singular points.

i1l. PLANE AUTONOMOUS SYSTEMS: THE EMPTY CASE

When the cosmological constant vanishes, we obtain
plane autonomous dynamical systems in the variables x, 5’
for all Bianchi types under investigation. They have been
studied in detail by Collins.'° For Bianchi type V, C = 0: we
have a plane system in the variables x, z. By setting x = 0 in
(2.1), we obtain a class of empty plane autonomous systems
in the presence of a cosmological constant

B"=1B"4—B"+ (2A/3)2) —1C(4 — B> — (4A/3)2),
3.1

Z'= —2z(1 +1B8"%— (A/3)z). (3.2)

These two latter cases have not yet been studied by qualita-
tive methods and are very useful as further subcases of the
three-dimensional systems in order to obtain a better idea of
the global behavior of the integral curves in three dimen-
sions.

For type II models, the critical points at finite distance
are simple. The point (2,0) is a saddle point, ( — 2,0) an
improper node, as well as (0,3/A), which exists only for
A>0. When A<O, the Poincaré transformation'’
(B=uvs"",z==s"") enables us to study the critical point at
infinity (v = 0, s = 0) on the Z-axis, which is a double singu-
lar point. We find three directions of approach (in polar
coordinates) ¢ = 0, arctan ( —}), and 7. For A>0, the
typical behavior is the following one: the model starts at the
critical point ( — 2,0) which is a pancake with the one-axis
distinguished, where A is negligible while the shear o and the
expansion & are dominant, and tends to the singular point
(0,3/A) (from the point of view of an autonomous system ),
which we call a “divergent type,” since X— o« and
Y=2Z- o for 1> «, where X ,Y, Z are time-dependent
functions on which the metric depends,?! not to be confused
with the same symbols used in Sec. II as coordinates. The
quantities A and 6 are dominant and o is negligible. The
critical point ( — 2,0) is a cosmological singularity because
t—0_ and because the curvature invariant R s R *"° di-
verges as one approaches this point.>'* The average length
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scale ] = e~ is proportional to ( 4 £)'/3. It is not the case
for (0,3/A), for which t— F o with /~exp ( F/A/31).
When A <0, models start at ( — 2,0), extending to infinitely
large values of z and coming back to the same critical point.
One curve is time symmetric. The global picture for A >0
and A <0 is drawn in Fig. 1. The arrows depict the entire
course of evolution, but the time reverses are also possible.
All the type II models considered here are locally rotational-
ly symmetric (LRS).

The type V models divide into two classes: those in the
(x,z) plane and those in the (5’,z) plane. In the variables x,z
we have three singular points. Two of them, (1,0) and (0,3/
A), are improper nodes and (0,0) is a saddle point. Here
(0,3/A) exists only for A > 0. By the Poincaré transforma-
tion (x =wvs~ 1, z=s""1) we find, for A <0, the double sin-
gular points (s = 0, 0<v< — A/3). It is a continuous line of
nonisolated singular points. The direction of approach is giv-
en by tan ¢ = [(3y — 2)v, — 2A/3]/3yv,, where 0<v,
< — A/3. When A >0, models start at (1,0), which is a
point singularity, where matter is dynamically important,
and tend to (0,3/A) which is of the divergent type with the
matter dynamically negligible but A important. The singular
point (1,0) is a cosmological singularity with /~ ( + £)>”.
In the case A <0, all the models are time symmetric. The
typical behaviors are drawn in Fig. 2.

The empty case in the variables 8’, z contains three or
four simple equilibrium states according to A <0 and A > 0.

FIG. 1. The entire evolution of the empty Bianchi models with A >0 and
A <0 is depicted, in terms of the variables 8’ = 243(¢/0) and z = 90 ~2.
Here x measures the dynamical importance of matter and ' measures the
importance of shear anisotropy. When A > 0, arrows refer to the evolution
of the model with the time reverse also possible. When A <0, there exists
one single time symmetric model. The types of arrows indicating the entire
evolution are otherwise associate. The general behavior of the integral
curves has been found from the qualitative method and then been used to
sketch qualitative figures by hand. We describe the trajectories of the
LRS(B,=0) type Il model when A >0 [diagram (a)] and A <0 [diagram
(b)].
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FIG. 2. The plane case in the variables (x,z) for the (12 = 0) type V model.
In (b), all the models are time symmetric. See also the caption to Fig. 1.

The singular points (2,0), ( —2,0), and (0,3/A) are im-
proper nodes and (0,0) is a saddle point. At infinitely large
values for z, we obtain one double singular point, whose di-
rections of approach are ¢ = 0, 77/2, and 7. As shown in Fig.
3, we have a single model starting at (0,0) and tending to
(0,3/A) when A > 0. The saddle point (0,0) is then a point
singularity. All other models evolve from (2,0) or ( — 2,0),
which are of the cigar type with the three- or two-axis pre-
ferred, to the divergent type (0,3/A). When A <0, there is
one time-symmetric model; the other ones evolve from one
node to the other via the singular point at infinity.

The pseudoaxisymmetric type VI, empty models with
A = 0 have globally behaviors similar to those of type 1I
(Fig. 4). These behaviors are in fact corresponding as in the
case'® of the nonempty models with a vanishing cosmologi-
cal constant. The singular point (2,0) is now an improper
node which is cigar shaped with the one-axis preferred, and
( —2,0) is a saddle point. The directions of approach at
infinity are ¢ = O, arctan}, and 7.

The type VI, models investigated herein have
O<k< w0, k #3 (k=3 corresponds to the type BbII) and
consequently 0 < C <2 (C #3) whereC =2k /3 + k% A
particular case is Bianchi III, for which k= C=1. The
plane autonomous system for this latter type is the same as
for the Kantowski-Sachs models®; the only difference re-
sides in the physical region: we have 8'* + $Az — 4 <0 for
type III whereas this expression is positive for the Kan-
towski-Sachs cosmologies. There are four simple equilibri-
um states. Here (2,0) and (0,3/A) are always improper
nodes while ( — 2,0) is an improper node except for the val-
ue C = 1, for which it is a proper node. The critical point
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(h)

FIG. 3. The plane case in the variables (8',2). See also the caption to Fig. 1.

(C,0) is a saddle point. The directions of approach are
shown in Figs. 5 and 6. When A <0, (0,3/A) does not exist
but there is then a double singular point at infinity whose
directions of approach are ¥ =0, arctan ( — 1/2C), w.
When A >0, there is one single model evolving from (C,0)
to (0,3/A), which is of the divergent type while (C,0) isa
point singularity when O « C < 1, a barrel with the three-axis
preferred for C = 1, and a cigar with the three-axis preferred
when 1 < C < 2. Models start from the cigar-shaped singular-

FIG. 4. The global behavior of the axisymmetric (5,=0) type VI; model.
See also the caption to Fig. 1.
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FIG. 5. The particular case III = VI _, for which C = 1. See also the cap-
tion to Fig. 1.

ity (2,0) with the three-axis preferred, as well as from
( — 2,0) being a cigar with the two-axis preferred, a pancake
with the three-axis preferred, or a cigar with the one-axis
preferred according to k <1, k = 1, or k> 1, tending all to
(0,3/A). When A <0, one single model evolves from (C,0)
to ( — 2,0); there is one time-symmetric solution, 8’ = — 2
when C = 1. Typical behaviors are models which evolve
from ( — 2,0) toinfinity and come back either to ( — 2,0) or
(2,0).

IV.NONEMPTY BIANCHI TYPES WITH A
COSMOLOGICAL CONSTANT

We will follow the method outlined in Sec. II to study
the three-dimensional autonomous dynamical system
(2.1)—(2.3) with first integral (2.4) according to the values
of C. The region of physical interestis [x >0,z>0,8"* — 4
+ 4x + (4A/3)z <0]. The singular points (0, 4 2,0) and
(1,0,0) are simple and exist for all types, when 1<y <2, and
for A positive or negative (Fig. 7). The topological type of
(x =0,8" =2,z =0) isanode except for Bianchi type Il for
which it is a saddle point; the characteristic roots
A=3y—6, u= —442C, v= — 6 are negative except
for C = 4. We have three corresponding characteristic vec-
tors I, = (1,— 1,0), /, = (0,1,0), and /; = (0, — 1,3/A)
when A >0 [or (0,1, — 3/A) when A <0} in all cases, ex-
cept for values of C in the range 1<C<2, where we have

1<y < (242C)/3: ju| <A< v, (4.1)
y=02+2C)/3: |u|=|1]| <], (4.2)
(24+20)3 <y <2: A | < lp] <|v| (4.3)
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When ¥ = (2 + 2C)/3, we have an infinity of characteristic
directions in the plane (X,Y). No physical orbits tend to
(0,2,0) for Bianchi type II; there is a double infinity of orbits
starting at a sphere centered at (0,2,0) (see Theorem: 2.2)
and tending to this point Q- «, alongside the vector /,,
except for the cases (4.1) and (4.2) for which the orbits tend
to (0,2,0) alongside /, and along the plane (X, Y), respective-
ly (Fig. 8).

The point (0, — 2,0) is a node with negative eigenvalues

z

i Ul ly, | 1a)

I|| ‘<
1 2
i
l|] I
|
[
[ 2
{b)
// A
1 2
1< (<=2
A=<0 2
// 4
-2 0 1 2

FIG. 6. The (ng = 0) type VI, (h #0) model, whose behavior differs as
0<C<1orl<C<2. Seealso the caption to Fig. 1.
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FIG. 7. The region of physical interest for the three-dimensional autono-
mous system, as well as the singular points at finite distance according to the
value of y and of the cosmological constant A are depicted. Striped parts are
outside the region of physical interest.

A=3—6,u= —4—2C,v= — 6, except for the Bian-
chi type VI, In this case the eigenvaluex = Oand (0, — 2,0)
behaves as a saddle point, with no physical orbits tending to
it. A double infinity of orbits tends to (0, — 2,0) alongside
the vector /, for all other types.

The singular point (1,0,0) is a saddle point for all types
with eigenvalues A = —3y+2, u=3—- )y, v= —3y
and with corresponding eigenvectors [/, = (1, —4C/
(2+31),0), I, =(0,1,0), ;= (F 1,0, + 3/A) according
to A>0or A <0. We find a simple infinity of orbits tending
to (1,0,0) along the vector /; (see Theorem 2.1).

In the plane (x,3 ') we have two singular points (0,C,0)
and ((C? — 3y +2)/C?, (3y — 2)/C,0), which do not exist
for all types. The point (0,C,0) is a saddle point for all types
and for y€[ 1,2] except when C = 4; in this case it does not
exist. When C = — 2, it coincides with the singular point
(0,—2,0). The eigenvalues are A=3y—2-—C?

FIG. 8. We indicate the region of physical interest which is inside the striped
part in the neighborhood of the critical point (0,2,0) for A> 0 and A <O0.
Here /,, 1,, I, are the three eigenvectors.
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u=2-C%2, v= —2—-C? and the corresponding
vectors [, = (1, ( —3C +3Cy/2)/(4 =3y + C?/2), 0),
I, =(0,1,0),/,= (0, F 1, + (4 + C?/2)/AC) according to
A>0or A<0. To C=0 corresponds Bianchi type V and
I, = (0,0,1). An interesting behavior occurs for Ce]1,2{
and ¥ < (C? 4 2)/3; in this case there is a simple infinity of
orbits tending to (0,C,0) along the vector /,.

The critical point ((C? — 3y 4+ 2)/C?, (3y —2)/C, 0)
exists only when ¥ #2 and for Bianchi types 11, VI, and for
VI, when y < (C?+ 2)/3. This latter inequality happens
only when 1 < C < 2. This critical point is a saddle point with
two complex eigenvalues. There is one single orbit along the
vector I, = (0,0,1). The results concerning the behavior of
the solutions in the neighborhood of these two singular
points are valid for A>0and A <0.

When y = 2 there exists a continuous line of singular
pointsintheplane (x,8'): (4 — 4x — B’ = 0,z = 0).Inthis
case we have a simple infinity of orbits tending to each singu-
lar point along its eigenvector in this plane.>*>’

There remains finally in the plane (8',z) the singular
point (0,0,3/A) when A >0 and y<[1,2]. It is a node with
eigenvalues A = 3y, 4 = 3, v = 2 and corresponding eigen-
vectors /, = (1,0, —3/A), 1,=1(0,1,0), ;= (0,1,—-3/
2AC) for C #0, I; = (0,0,1) for Bianchi type V.

This concludes the study of behaviors around singular
points at finite distance (Table I). When A <0, by setting
x=us", B=vs"", z=s5""in (2.1)-(2.4) we find a con-
tinuous line of double singular points at infinite distance:
(s=0, v=0, O<u< — A/3) which are not in the plane
(x,8"). The general expression of the directions of approach,
not in the plane (s = 0) of the singular points (s =0,v =0,
u = u,), is given then by

—1
{0} = ([2(3y— Mg — %] :

3yu,
2[ 3y — 2)u, — 2A/31%°

2C(uy,+ A/3) )
[(3y — 2)uy — 2A/31%/)

One should notice that tan ¥ = w,/w; = — 1/2C, when

1, = 0, in accordance with all plane autonomous systems in

the variables 3, z; when uy = — A/3,tan Y- .

By analyzing the three surfaces {dx/dQ) =0}, {dB'/
dQ = 0}, {dz/dQ = 0} we obtain a global picture of the or-
bits. For Bianchi type II models, we distinguish between four
different cases: (1<y <2, A>0); (1<¥y<2, A<0); (v =2,
A>0); (¥ =2, A<0). In the first case, we have a double
infinity of orbits starting at (0, — 2,0), a simple infinity
starting at (1,0,0), and one single orbit at {(18 — 3y)/16,
(3y — 2)/4, 0) all tending toward (0,0,3/A). The singular
point (0, — 2,0) is a pancake with the one-axis distin-
guished; the two equilibrium states (1,0,0) and ((18 — 3y)/
16, (3y — 2)/4, 0) are point singularities and (0,0,3/A) is,
as before, of divergent type. Around (0, — 2,0) matter is
dynamically negligible, becoming important during the evo-
lution and again negligible around (0,0,3/A). All these
models isotropize in an infinite cosmic time as they tend to
(0,0,3/A) which is the de Sitter model in the Stabell-Refs-
dal*® formalism. The point (1,0,0) corresponds to the Ein-
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TABLE I In this table the different topological types of the singularity points are indicated for the Bianchi types studied herein.

Bianchi type II v VI, Vi
C 4 0 ~2 0<C<2
IKy<2 (x8'2)
(0,2,0) saddle point node node node
0, —2,0) node node saddle point node
(1,0,0) saddle point saddle point saddle point saddle point
((C? =3y +2/C?),(3y —2)/C,0) saddle point saddle point 1<C<2
saddle point
I<y<2 (0,C0) saddle point saddle point saddle point
A>0 (0,0,3/A) node node node node

stein—de Sitter (EdS) model. When y = 2 and A > O we have
a simple infinity of orbits coming from each singular point in
the plane (x,4 ') and tending to (0,0,3/A). All these models
evolve from (0<€j <2, go=2,0<Z,<)) to the de Sitter
model. The variables €3,q,,2, are, respectively, the relative
root-mean-square deviation from isotropy, the deceleration
parameter, and the density parameter of the perfect fluid at a
given time ¢t = ¢,. For A <0 and 1<y <2, a time-symmetric
surface of orbits approaches the singular points at infinity
with ¢ = arctan w,/w,; when u, = 0, the orbit is identical to
the time-symmetric one in the (£',z) plane case and by
(— 4+ 4x + (4A/3)z =0) when uy, = — A/3. All the oth-
er orbits start from (0, — 2,0) alongside the vector /,. There
is further a double infinity of orbits starting at (0, — 2,0)
extending to infinity with ¢ = 7 and coming back to the
same critical point. There exists finally a simple infinity of
orbits starting at (1,0,0) and a single one at ((18 — 3y)/16,
(3y — 2)/4, 0) extending to infinity with ¢ = 0 and tending
to (0, — 2,0) alongside /. In the last case, a simple infinity of
orbits come from each singular point in the plane (x,8’) and
tend to the singular line at infinity with ¢ = 0 and 7 when
— 2<B’'<0; there is then also a time-symmetric surface of
orbits approaching the singularities at infinity with ¢
= arctan w,/w,. When 0 <3'<2, there is only a simple in-
finity tending to the singular line at infinity with ¢ = 0.
The global behavior of Bianchi type V models in three
dimensions can be divided into the same four cases as for the
type II. We obtain the same symmetric picture that we have
already found in the two plane systems (x,5') and (8',z).
From the points (0, + 2,0) starts a double infinity of orbits
and from (1,0,0) a simple infinity, tending all to (0,0,3/A)
with x, B, z being finite for the whole evolution when A >0
and 1<y <2. The simple infinity evolving from (1,0,0) to
(0,0,3/A) is the same as in the plane system with variables x,
z. It corresponds to a set of zero measure of EdS models
evolving to the de Sitter solution. The points (0, + 2,0) are
cigar shaped with the three- and two-axis distinguished, re-
spectively. We have the same behavior as for type II when
¥ =2 and A > 0. The singularity types in the plane (x,8’)
are the same as in Ref. 10. For A <0Oand 1<y <2, wehavea
time-symmetric surface of orbits starting at (1,0,0) and
evolving toward the singular line at infinity with ¢ = 7/2:
this is the plane case (x,z) with A <0, studied previously (in
Sec. III). All the other orbits start as a double infinity at
(0,2,0), tend to the line at infinity with ¢ = 0, and finally
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toward (0, — 2,0). When y = 2, we have simple infinities
starting from each singular point in the plane (x,5"). The
behavior at infinity is the same as for 2.

For Bianchi type V1, models, we obtain an identical be-
havior with type I1. The only differences reside in the cigar-
shaped point (0,2,0) from which starts a double infinity of
orbits along /, and in the fact that there exists for y = 2 and
A <0 a time-symmetric surface of orbits when 03’ < 2.

The Bianchi type VI, models divide into the same four
cases as before. In the first case, we distinguish between sev-
eral subcases according to the values of Cand . When A > 0,
1<y <2, and 0 < C <4, we have a double infinity of orbits
starting at (0, 4+ 2,0) alongside /, and a simple infinity start-
ing at (1,0,0), all tending to (0,0,3/A). When {<C<1, we
find the same behavior except around (0,2,0). In that case
for ¥ < (2 4+ 2C)/3, the double infinity evolves alongside /,;
for ¥y = (2 + 2C)/3, there is a simple infinity in every direc-
tion of the plane (X,Y), and for ¥ > (2 + 2C)/3, there is a
double infinity alongside /,. The Bianchi type III is included
in this global behavior (for C = 1). When 1 < C <2, we dis-
tinguish three subcases according toy <, =, > (C? 4 2)/3.
In the first subcase, we find in addition to the family of orbits
around (1,0,0) and (0, — 2,0) discussed previously a double
infinity of orbits starting at (0,2,0) along the vector /,, a
simple infinity from (0,C,0) along /,, and a single orbit from
([C*— 3y —2)]/C? (3y — 2)/C, 0), all tending toward
(0,0,3/A). For the second and third subcases, the three typi-
cal behaviors around (0,2,0) occur. When ¥ = 2, we have an
identical behavior with the previous types. With a negative
cosmological constant, 1<y <2 and 0 < C <}, we find a be-
havior around (0, — 2,0) identical with the case of Bianchi
type III. We have a double infinity around (0,2,0) and a
simple infinity around (1,0,0) tending toward (0, — 2,0) via
the singular line at infinity. For }<C<1, the typical behavior
occurs around (0,2,0). When 1 < C < 2, we distinguish again
between three subcases according to the value of y. Besides
typical behaviors, we have to add the simple infinity starting
at (0,C,0) and the single orbit at ([C* — (3y —2)1/C?,
(3y —2)/C,0) extending to infinity and tending to
(0, — 2,0). For the second and third subcases, we have to
mention again the triple behavior around (0,2,0). Fory = 2,
we have an identical behavior as for Bianchi type II. The
singularity types for (0, 4+ 2,0) and (1,0,0) are as mentioned
in Ref. 10. The point (0,C,0) is of the cigar type with the
three-axis preferred in the case we are interested in.
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V. CONCLUSION

We have carried out a detailed qualitative but giobal
analysis of some orthogonal Bianchi models in the presence
of a cosmological constant by means of autonomous dynam-
ical systems with two and three dimensions.

The plane autonomous systems gave us a class of empty
Bianchi cosmologies, with A >0 and A <0, which have not
yet been analyzed by qualitative methods and which are im-
portant insofar as there do not exist any known exact solu-
tions for all of these models.*’

When we considered the three-dimensional autono-
mous systems, we found for every Bianchi type in addition to
a set of zero measure, one of nonzero measure of solutions
becoming isotropic in an infinite cosmic time, i.e., tending to
the de Sitter model. This is an important result regarding the
isotropy of the present universe because the double infinity
of solutions found in this paper are global ones, although
qualitative with quantitative asymptotic behavior. By this
we particularize the results of Collins and Hawking* who
showed that the set of spatially homogeneous cosmological
models approaching isotropy at infinite times is of zero mea-
sure. However they did not consider a nonzero A, which is
essential in our discussion and implies an open set of cosmo-
logies approaching asymptotically the de Sitter solution, and
without postulating any special initial conditions. The pres-
ent work agrees also with the one of Wald,??* done from a
more general point of view but with different techniques, and
throws further light on the qualitative but global behavior of
Bianchi models with a cosmological constant.

It is clear that we have here a method to be applied to
other (orthogonal) Bianchi models when A is nonzero, i.e.,
Bianchi IX, in order to obtain global behaviors, which will
be reported on elsewhere.'®
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APPENDIX: THEOREMS FOR MULTIDIMENSIONAL
AUTONOMOUS DYNAMICAL SYSTEMS??

Consider an n-dimensional autonomous dynamical sys-
tem in the form
dX,

—L = f(X,,..X,),
dQ f:( 1 ’Xﬂ)

Definition I: A point (X9,..,.X°) is a singular point of
the system (A1) if £;(X9,....X2) =0, 1<i<n.

Consider now the eigenvalues A,,...,4, of the system
(A1) at the singular point (X9,...,.X°).

Definition 2: A singular point is called nondegenerate if
all the eigenvalues A, have nonzero real parts,

Definition 3: A nondegenerate singular point is an at-

1<ign. (A1)
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tracting (repelling) node, if Re A, <0 ( >0), 1<ign.

Theorem 1: If we have an attracting (repelling) node,
then all trajectories in the neighborhood of the singular point
approach the point for Q- * | .

Theorem 2: (a) If at some singular point (X 9,..,X%)
the system (A1) has m eigenvalues 4,,...,4,, with negative
(positive) real parts a,< ' <a,, <0 (a;> " '>a,,>0)
where the eigenvalues are counted with their multiplicities,
then there exists a (locally) invariant m-dimensional stable
(unstable) manifold M |, on which all trajectories of the
system (A1) approach (leave) the critical point for ) - .

(b) If there is only one eigenvalue A,, with the maxi-
mum (minimum) negative (positive) real part ,, then the
corresponding eigenvector is tangent to almost all trajector-
ies on the invariant manifold M 7,, (where by invariant
manifold we mean one such that each trajectory passing
through some nonsingular point on M lies entirely in M, i.e.,

— w0 << 4+ ).

Definition 4: A nondegenerate singular point is called a
saddle if at this point the system (A1) has m eigenvalues
with negative real parts and n — m eigenvalues with positive
real parts.

Theorem 3: There exist two invariant manifolds M
and M |, ~ " passing through a saddle and filled with separa-
trices approaching or leaving this singular point. All other
trajectories not lying on these manifolds do not approach the
saddle.
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